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Abstract . Generically hamiltonian systems are nonintegrable . However there

are few tools in order to prove that a given system is noninttegrable . Por

two degrees of freedom the usual methods rely upon the appearance of trans

versal homoclinic or heteroclinic orbits . The transversal character is

shown through evaluation of integrals along orbits . Such computation requi

res the knowledgement of a one parameter family of periodic orbits and an

explicit solution for the unperturbed (integrable) case . Due to the depen-

dence of the form exp(-C/£ k ) of the angle measuring transversality with

respect to the perturbation parameter, none of the approximations of pertur

bation theory is enough to establish nonintegrability .

§1 . The meaning of integrability and nonintegrability . Let H(q,p) be a ha�

miltonian of n degrees of freedom . Por the sake of simplicity we take R2n

as phase space . A first integral F of the associated hamiltonian system is

a smooth function such that the Poisson bracket (F,H) is identically zero .

Let Fi, j = 1-k smooth functions . We say that they are in involution if
(Fi ,F j ) = 0

	

Vi,j . From now on we take

	

F1 =H. A hamiltonian system is said

integrable if there are n functionally independent smooth global functions

in involution . We refer to [1] and (3] for basic definitions and results .

We recall that what Hamilton-Jacobi theory intends is to convert a given

system in an integrable one .

Under the preceding conditions if on the level set L ={P
J
.=C

j
,

j = 1= n} where C 1 , . . ., Cn are real values, the forms DFj , j = 1= n aje in-

dependent and L is compact, then it is diffeomorphic to the n-dimensional

torus Tn .

	

(Taking out the compactness condition we get some Rk x Tn-k ; even-

tual dependence of DF
J
., j = 1+ n , along subsets can produce that L be a union
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of tori along such subsets) . Then there exist action-angle variables (I,~o)

in Dn x Tn , a neighbourhood of Tn such that H

flow is

	

given by I (t) = I (0) , %o (t) =%0 (0)

	

+ wt

cy vector . Therefore we get a linear

the torus if w is incommensurable or

dependent) or in a lower dimensional

if the Z -module generated by the w's is 1-dimensional) . The solution can be

obtained through quadratures . The statements above constitute the Liouville-

Arnold theorem .

can be expressed as HM,

	

the

where w = (D IH) T is the frequen-

flow on Tn , quasi periodic and dense on

nonresonant (i .e ., w1 �� wn are Z - in-

torus otherwise (in particular periodic

Near the integrable systems the KAM theory [4] ensures the

existence of slighty distorted invariant tori (the resonant ones) . They

not fill completely the available phase space and if n>2 some slow escape

across the tori is possible : the so called Arnold diffusion .

do

In the situation opposite to the integrable systems we found

the ergodic ones . A hamiltonian systems is called ergodic if it is ergodic

in (almost) all the levels of the energy . Letting aside (functions of) H the

only first integrals are the constante . In the . integrable case the flow is

confined to a n-dimensional manifold almost everywhere (if DIH is nondegene-

rate) and dense there . In the ergodic_ case the flow is dense in their energy

level . The real world is neither integrable non ergodic . A mathematical sta-

tement is this direction is due to Markus and Meyer .

Let é( be the set of `er hamiltonians with the <Cr topology .It

is a Baire space . A propiety Q is called generic in Y if A={HSX IH satis-

fies P} is a set of the second category . Then the theorem [20] asserts : Ha--

miltonian systems are generically neither integrable non ergodic .

A standing problem is how many first integrals has, generica--

lly, a hamiltonian system . Some numerical experiments [12] and the destruc--

tion of symmetries by genericity seem to favourish the fact that only H re�

mains as first integral .

Let us look for the behaviour of the solutions in the noninte-

grable case . We first consider the easiest nontrivial case : n =2 . The levels

H = e are 3-dimensional hypersurfaces H . We restrict our study to some fixed

H . Let 1: be a 2-dimensional manifold in H

	

transversal to the flow at a
e

	

e
point P . Let us suppose that the orbit through P cuts again L transversally

(this is the case if such orbit is periodic) . Then we .can define (locally) a

map T : E-',)

	

given by : find the next cut (Poincaré map) .

	

If H= F1,F2 are first

e
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integrals, the set E¡) {F2= c2{ is a curve, except for degenerate cases . The

refore the iterates of P under T are on this curve . If H is perturbed and in

tegrability is lost the points are scattered in a more or less narrow strip

around the curve . It seems that they fill a region of positive measure accor_
with

ding to some density (bala host of holes smaller and smaller in it) . If the

system is ergodic they should be scattered through all F . In many examples

the simulation shows the existence of different unrelated "stochastic" zones

if n = 2 . We suspect that they are related through very narrow channels for

n> 2 .

To see how the nonintegrability depends on global questions

the following example is instructive . Let T : j-,!5 a Poincaré map. It is easy

to show [4] that it is area preserving . We can learn about qualitative beha

viour of flows if we study area preserving mappings (APM) from R2 into itself .

Suppose that T has a hyperbolic fixed point P : Spec (DT(P)) = {a, 1/Ín},1ñ1> 1 .

Then Hartman's theorem [14] assures that the behaviour near P is essentially

the one given by the linear part . Even in this case the linearizing change

of variables is analytic [30] . We have invariant stable and unstable mani- -

folds (Ws (P), Wu (P)) that can be globalized . In a similar way, some piece of

analytic invariant curve y near P can be extended by iteration of T and T 1 .

However if G is a first integral near P (i .e . G(T(P)) = G(P) in a neighbour-

hood U of P) this function can not be extended in general, for instance, if

WS (P) comes near P again . This happens if Wu (P)(1 Ws (P) # 0 . A point belon--

ging to both manifolds is called homoclinic . If P,Q are fixed hyperbolic and

S s Wu (P) 0 Ws (Q)

	

the point S is called heteroclinic and similar problems

can occur.

The intersections of globalized invariant curves can produce

to the folding of Wu is rela--

a submanifold of R2 . Wintner

integrals G (obtained locally and pie-

are not able to isolate the "in--

and the boundary of this set can have

of a point standing on G = g "fill"

	

a

cantorian sets . The lack of integrability due

ted to the fact that Wu is a manifold but not

[33] stated this fact saying that the

cewise continuated) are nonisolating : they

ner" and "outer" parts of a set G < g

positive measure . Therefore, iterates

strip .

In a different approach, using perturbation theory, the pro---

blems of small divisors, overlapping of resonances, etc . are typical of non-

integrable systems . For two degrees of freedom the shift of Bernoulli can be

included as a subsystem of the hamiltonian system [24] . Then, in particular,
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an infinity of periodic orbits (P.0 .) of arbitrary high period exist as well

as oscillatory and quasirandom motions .

§2 . Some analytical results . We beinn with a few historical comments . Newton

formulated the n-body problem and found the 10 classical integrals . Some 200

years were elapsed in a fruitless search of additional integrals . Later

	

in

the XIX century, Bruns proved that no more independent first integrals can

be found being algebraic functions of q and p, and Painlevé stated even the

nonexistence of additional first integrals algebraic in p . Poincaré [26] in

turn showed the lack of integrals analytical in q, p, M for the restricted

three body problem with mass parameter tA besides the Jacobi integral .

If we restrict ourselves to analytic hamiltonians near an equi

librium point then the existente of integrals is related to the problem

	

of

normal forms started by Birkhoff

	

(see

	

[23]

	

) . Let H = H2 +H3 +H4 + . . . an analy

tical function near an equilibrium point that we take as the origin . Hk	is
2the homogeneous part o .f degree k . Suppose H

2
= 1

	

o(
J

(q? + p?) and define
n

	

2
J = jk e Z

	

j(k,d) = 0} as the Z-module of the resonantes

	

(here

	

(,)

	

is the in-

ner product) .

Theorem (Gustavson [13]) : There is a formal change of varia-

bles (q,p)-(j,h) such that the new hamiltonian r is of the form (Gustavson
ic

	

k
Normal Form) r = F ckm 11

k Y m where ~,r = 1r
+ i 7r,

	

~k =

	

~1 1 "

	

. . .

	

" t nn

	

and

k-m E J . (Equivalently (H2 ,[') = 0) .

If the dimension of J is r we get n-r formal first integrals .

The question of obtaining more first integrals is sometimes refered as the

search of the third integral [9] because for problems of galactic dynamics

we already know the energy and momentum integrals .

If J=0 (c('s Z-independent) then k=m and therefore f=['(I) (Bir-
2 2khoff N.F . [6]), where I= (i1, . . .,In)T, I r = Ir + 7r' and the system is forma-

lly integrable . What about convergente?

For n = 2 we have the following result

	

(Siegel

	

[29j) : Let J¿ be

the set of analytic hamiltonians, H e M , H =
k

	

2
c~

tk
7
m . It is nota res

,
Y
meZ

	

-
triction

	

(use scaling if necessary) to suppose Ir, km{1 < 1 . Define a very fine

topology T in the following way : Given H and E= LEkm1 the ball of radius E

centered in H is the set

	

BE (H) _ {H* E Ée I

	

¡ ckm - ckm 1

	

< Ekm d k m} .

Theorem : with the topology 'C the set of hamiltonian systems in Y showing di-

vergence when going to the B .N.F . is dense .



A coarser topology cr' can be defined throug B F, N (H) = ¬ H*eal1

Ickmc*km 1< ¿km	for ¡k¡+ Iml < N} . Then we can produce finite changes to

B .N .F . without convergente problems . The set of integrable systems is dense

in W with respect to T' .

As examples of integrable systems we can display all the pro-

blems found in elementary textbooks in mechanics . Nonintegrability is dis--

played by systems with n = 2 possessing transversal homoclinic or heterocli-

nic orbits [2, 8, 15, 18, 19, 24,32] . However for n> 2 there are examples

with transversal homoclinic orbits that are integrable [10] .

Nonintegrability is related to the divergente of the transfor

mation to normal form . In fact, for n = 2,

	

Rüssmann

	

[28] proved that if

d2/ad ¢

	

Q and G = G 2 + G 3 + . . ,

	

is a first integral with G2 = 2 1fj (q~ + p2 ) ,

d
1

	

2
g

	

# 0 then we have convergente when going to the B .N .F .
r 1

	

P21
For the relation between divergente and destruction of inva--

riant curves see [27] .

§3 . Detecting nonintegrability . Faced to a definite problem, how to decide

about integrability? Here genericity is useless . A hopeless approach is

trying to get enough first integrals . However this is not be recommended ex

cept

	

if there is a strong evidente (numerically, see later)

	

of such exis--

tence . That was the way Hénon followed to show that the Toda lattice with

equal masses is integrable [16] .

If weproceed numerically the Poincaré map is a useful device .

If n = 2 and the iterates of a point are scattered along a line we have an

evidente of nonintegrability . However, if the system is very near an inte-

grable one it could be difficult to decide whether or not the points are on

a curve . A much finer criterion is to look for transversal homoclinic points

[18,19,24,31,32] or for a chain [4] of transversal heteroclinic points . We

return later to that topic . If n> 2 to visualize the Poincaré map we need

some "stroboscopic" device [22] or different cuts of E [11] .

A dimension-independent method consists in the computation of

the Lyapunov numbers . Let Ot be a (hamiltonian) (]ow and DOt the differen--

tial with respect to initial conditions(DOt is the solution of the firstor-
2n 2n

der variational equations ;

	

in coordinates D Ot = A (t) e 'f (R

	

, R

	

) , A (O) = I) .

The maximal Lyapunov number 1 1 (P) is the maximum rate of growth of the



length of a tangent vector at P under Dot , i .e . 1i (P) = lim In JIA(t)'1 2/t w_e

re we recall that IIA(t)11 2 = (4(A(t) AT(t))~z(S= spectral radius) . The rema¡~

ning Lyapunov numbers 1 ., j =2- 2n are defined in the following way : let
J

	

J
be the maximum rate of growth of the j-dimensional measure of a j-dimensio-

nal subspace of the tangent space at P under the action of Do. . Thenlj =

= .2 ./ .2

	

. See [5] for the effective computation of all the Lyapunov num--J j-1
bers (taking care of scaling,

	

orthogonalization, etc .) . he important fact

for detecting nonintegrability relies in the

Theorem : Integrability => all the Lyapunov numbers are zero .

Proof : (See also [7)) . We restrict ourselves to the case where the Liouvi--

lle-Arnold theorem applies . From = HI , I= 0, we get the variational equa-

tions A=
IP

Q', .
=

(0 HII) "
IP N)

, M(0) = Q(0) =I, N
2
(O) = P(0) = 0 . The

solutions are P=0, Q=I, M=I, N=HIIt, and AAT = N N Í) = O(t2 ) from

where the result follows because lim lnJIA(t)IIz / t = 0 .

We see that integrable systems have a "parabolic" character

in the same sense that a fixed parabolic point of a diffeomorphism .

Following a result of Pesin [25] the entropy of the flow is

given by h = l

	

Y- 1 .(P) . However a direct computation of hphase space

	

1 .> o

	

i
can be harder than that of thle Lyapunov numbers .

For n = 2 nonintegrability .follows if the Poincaré map has the

smale horseshoe embedded as a subsystem [24] . At some level of. energy h

for a hamiltonian it is possible to show the existence of transversal homo

clinic and chains of heteroclinic orbits and, therefore, of such embedding

by simple topological considerations . See f .i . [8) for. the Hénon-Heiles (HH)

problem and for the potential 2 (ql + q2)
-2 q1

x,q2 . However for those

	

and

other systems nonintegrability is detected numerically for smaller values of

h, far away of the value for which the zero velocity curve becomes open .

The HH problem is obtained through perturbation of a harmonic

oscillator . With a suitable scaling we have H =

	

H2 + E H3	on the levelH =1,

where H2 =

	

1
(q

2
1+q

2
2+p

2
1 +p

22 )

	

is the harmonic oscillator and H3 a homogeneous

third order term (or, in general, an analytic function beginning with terms

of third order at least) . We realize that is a resonant hamiltonian,

being here j(k,-k)j k e Z} .For E>0 all the orbits are periodic . In fact H=1

is S 3 and it is easily obtained than the space of orbits is S2 . For a n-di

mensional harmonic oscillator we have S2n-1 and Pn-1 (:), respectively . Per-

turbation methods or the Gustavson N .F . allow to establish the existence of
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a finite number (except for degenerate cases) of families of simple P .O.[17,

321 . We have a map near the identity in S2 that can be seen as the approxi-

mate time one flow of an integrable hamiltonian system . The rest points are

associated to families of P .O . of the original hamiltonian . For the HH pro--

blem there are 8 such families . The stability status of some of the orbits

can be a delicate question because they appear as parabolic up to high order

term, ¡ . .e ., the eigenvalues of the associated Poincaré map being of the form

1 + O(E4), we need several terms to detect the hyperbolicity . The effect of

this "slow" hyperbolicity is seen through the following result .

Theorem : Let p be the angle at one homoclinic point between Wu (P) and Ws (P)

where P is a hyperbolic point of a planar diffeomorphism T depending on a pa

rameter E .

	

If the eigenvalues of DT (P)

	

are

	

A = 1 ± 0(¿
k

)

	

then p - A

	

r£

exp(-B/¿k)

	

for

	

EJO, where A,B,r are constante . Equivalently we can put

fi(E)= A Er exp(-lnB(E) ) . A similar behaviour is found for suitable hetero-

clinic points .

As a consequence of the theorem S(E)«
¿rn

	

for all natural

	

m

when E+0 and using a theory of perturbations with respect to 1 we can not

find p analytically .

Examples of analytical computation of transversality of homo--

clinic (heteroclinic) points are found in [2], related to the problem of di-

ffusion, [z4] (for the Sitnikov problem) and [18,19] for the restricted pro-

blems of there bodies, planar and collinear, and general collinear problem .

In the first and third referentes the computation is obtained through the

use of a second perturbation parameter .

Proof of the theorem : we suppose that one of the branches WP' 1 of the unsta-

ble manifold of P coincides with one of the branches W P,2 of the stable ma-

nifold, or that we have coincidente WP' 1 _° wQ' 2 for the heteroclinic case .

As we obtain the coincidente taking only a . finite number of terms of the

B .N .F . or of the G .N .F . we must compute the variation of the manifold due to

the suppressed terms . We get an expresion of the form I -- Es 'R tos t " f(t)

where f (t) is of the type exp (- 1ln a 't~) for t -±w, and ln a =' Ek .

	

Scaling

t= Ek
t

	

we get I = Es-k

	

IR tos (Z E-k)

	

f (L)

	

dr= Re

	

fR Es-k exp (ir E k ) f (Z)

	

dL =
= Es-k Re (2TTi

	

Res) where the summation is extended to the residues of f

in the upper semiplane . Let us suppose that the goles are

	

a .+ ib ., b . > 0
k

	

J

	

7

	

i k)residue

	

c +id . . Then

	

I = Es-

	

Re 21Ti(c .+id .)

	

exp((ia .-b .) E -k) and
J 7

	

J

	

3 7

	

7 3
the dominant term is of the form stated in the theorem .



With this theorem in mind we return to the HH problem . In the nu
merical survey where the problem is introduced [15] it is reported that for

small (E

	

= h) it seems to be a foliation by inv riant curves . For h = 0 .11

some curves dissappear and at h =0 .16 no invariant curve
perhaps, at a very small scale) . A numerical computation

produces the values of o<= tg P/2 as a function of E given
related results for the 2 (q2+ q2)

	

- 1 £

	

1
q2q2

(E=h) for which the lack of integrability was nondetected in

in table 2 .

2

We see that in fact we have nonintegrability for
is hard (or even impossible) to detect it for small energy due

ly small angle p . One can ask for the importance of very small

all h but it

to the extreme

angles . For
instance, for HH and h = 0 .01 a rough extrapolation gives p = 0(10-250), and

this is nonsense for the physical and numerical points of view . We can pro-
ceed in the converse way . The width of the "random" zone is of the order of

We define a 6-approximate first integral (for a diffeomorphism T : M--» as
a function F such that

	

IF (Tk (Q))

	

- F (Q) I< j , dk s Z, dQ E M .

	

Then we say that T

is J-1ntegrable, i .e ., we neglect zones of width 04) . We can ask for the maxi

mum value of h in the HH problem for which the system is

	

J -integrable . We set
r

X = A £

	

exp(-B/¿4 ) with values óf A,B,r obtaiñed analytically

	

(as in

or through a rough numerical estímate . For instance, using the second
values A = 1 .74E4, B = 0 .0554,

	

r = B

	

are obtained . Then X= 10-20 gives

z> h = 0 .036, j .e ., if zones of width 0(10-20 ) are taken as curves, we

that HH is integrable up to h =0 .036 .

Another analytical method to make apparent the nonintegrabili-
- h1 S1 h2 . . . aty is to show the existence of solenoids . Let S 1 h° S1

remains (except,

of the related angle

in table 1 . The

potential on the level H = 1

[15] are given

sequence of maps h . : S 1 ~ S 1 , h, (z) = zas	whereS1 = {z s C I izl
1 1 1solenoid Za is the projective limit, i .e . {(zo,z1,z2, . . .)E S xS xS x . . .

7 8

1181)
approach

£=0 .19

can say

= 11 . The

z . = h .(z . +1 ),

	

ji' 01

	

. Two solenoids are homeomorphic

	

(Fa= zb)

	

if for every~
r lpower of a prime

	

pr

	

and every k there is a m such that paoal . . .ak =;>pr,

bó 1 . . .bm

	

and conversely . l a is a compact abelian topological group, conne_c

ted, one-dimensional and without torsion and the flow in Ya is Bohr almost

periodic . If a system has embedded solenoids it is nonintegrable . A generici-

ty result is

Theorem [211 : There exist a generic set fZ. (with the ~r topology, r ~>4)

	

in óe

such that for every He ¡L and every solenoid la there is a minimal set, un
der the hamiltonian flow, homeomorphic to F-a .

E



The intuitive idea associated to the described solenoids is the

existence of islands inside the islands . Near an elliptic fixed point we have

a stable island (we think in the case n = 2 for simplicity) . Inside the inva-

riant curves given by Moser twist theorem there are elliptic periodic points

where the whole structure is repeated . However it can be very difficult to

check the existence of such chains of islands, smaller and smaller, for a con

crete system .
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