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Abstract . Theorems characterizing stable parabolic points are proved . Essen-

tially, stability is equivalent to the fact that the generating function of

the differomorphism, taking out the part which generates the identity, has a

strict extremum at the fixed point . With these results, the study of the sta

bility of fixed points of analytic area preserving mappings (APM) is ended .

Some examples are included, specially'the case of elliptic points whose el--

genvalues are cubic or fourth roots of unity .

51 . Introduction and results . Let T an analytic APM . The (Lyapunov) stabili-

ty of fixed points of T is a method usually employed f_or the study of the qua

litative properties of periodic orbits (P . O .) in hamiltonian systems with two

degrees of freedom, via the Poincaré mapping with respect to_a surface trans

versal to the P .O . in the energy level H =h. If the fixed point, that we take

as the origin, is hyperbolic, the inestability of the linear part remains

when nonlinear terms are taken into account . If the fixed point is elliptic

the stability of the linear part is preserved provided that the éigenvalues

are not third or fourth roots of unity and that suitable coefficients of

the Birkhoff Normal Form (B.N .F.) are not zero . When the fixed point is deg_e

nerated or parabolic, i .e ., Spec DT(0)C{±1}, the stability is a more subtle

question . It is not always enough to consider only the lower degree nonli- -

near terms to decide abóut stability . Besides the cases A3=1 and 14 = 1, di--

fficulties can appear for every A, k-th root of unity if all the determined

coefficients (the first [ k22 ] ones) in the B.N.F . are .zero . Examples of ines

tability exist for all k [91 . The case of A being a k-root of unity is redu-



ceo to tne parabolic one taxlng '1' insteaa o= 'l . wltnour- loss OT :j- : .cralll`f

we can suppose that in the parabolic case the eigenvalues are equal to one .

(Take T2 if necessary . This accounts also for T orientation reversing) .

In [111 the following results are proven for the,parabolic case when DT(0)
0can not be reduced to diagonal form, i .e ., DT(0) =( ;) in a suitable basis :

1 .1 . Lemma . Let T(x,y) = (x + f(x,y), x+y+g(x,y)) be an analytíe APM uwíth f,g

beg.ínn,¿ng with .tenme oj degnee at .Least two . Then theAe ex,í,at6 a neah. the

.íden,tcty polynomía.2 change o6 va~u:ables c such .that xhe tms6onmed mapp.íng
T* = c-1 T c

	

.íl6 g.íven by T* (x, y) = (x+Fn (x,y)+on+1 , x+y+On+1 )whexe Fn .c,s a

	

de-
gnee n polynom.í.ae. wthout P¿nean .tenme and o s etand6 6oA a &eA,íeh wíth zeAme

o 6 .1'oweA degAee at keast s .

1 .2 . Theonem . In the hypothee .ívs o6 1 .1 ltet Pn (z) = amzm+0m+1' at,~ o . Then

the otígín .íes e~e undeA T* (and theAelote undet T) í66 m íz odd and am<O .

The object of the communication is to give a theorem characterizing

	

the

stable parabolic points for the remaining case, i .e ., when DT(0) can be put

in diagonal form . (Then T is near the identity in a neighbournhood U of the

fixed point) .

Let (x',y') = T(x,y) a canonical mapping .

	

If Dy y' is regular

	

(as happens

in our case) we can define an analytic generating function (see [11) G(x,y')

such that G(x,y') = xy' + G (x,y')

	

and x'= D

	

y= D C. For the nondianonaly x
case of

	

1 .2 . we get G(x,y')=-x
2/2 + Fn (u) du +0n+2(x,y') . Theorem 1 .2 can

0
be reformulated as : stability is equivalent to G(x,y') having a strict extre

mum at the origin . That this characterization is applicable to the diagonal

case is stated in the main result :

1 .3 . Theonem . Let P be a paAabolc:c 6.íxed po,íwt o6 an analytí.c APM, T,

	

and

G(x,y') =xy' +G(x,y') a geneAatí,ng 6unctc:an 60A T . Then P Zb Lyapunov6.2e

ti« G hay a ath,íct extxemum at P .

ones of McGehee [71 but only for the conservative case .

§2 . Sketch of the proof. Only the case DT(0) =

	

1 0
~0 1/

of 1 .3 . remains to be

proved . Instead of using the fact that G has a strict extremum at the origin

we can equivalently consider that, near the origin, the sets G=g with Ig1
small and suitable sign, are closed curves around the origin . The algorithm

to decide whether or not G has a strict extremum at the origin using the

Newton polygon is defered to the next section .

68

As far as instability is concerned the results obtained here extend the



Let (D1 be the time unit flow associated to the hamiltonian system with ha

miltonian G : m1 (x,y) = (x,y) . We intend to use m1 as an approximation of T in

U . By the way, if G,i is the partial derivative of G w .r .t . the i-th argument,

Gi , Gi , k , . . . the second, third, . . . partial derivatives, better approxima-
) 7

tions to T can be obtained with modified hamiltonians :

H = G - 2 G1G2 + 112 (G11G2 + 4G 12G 1 G2 + G22G~ ) - 6 (G 112G 1 G2 + G122G2G2 + G11 G 12G2 +

+ G22G12G2 + G11G22G1G2 +3G2 2G 1G2 )

	

+ . . .

We get increasing approximation taking terms of increasing order . However

H=G is enough for the proof .

In U - (01

	

we define r=G(x,y), a=2nt/T(r) where T(r) is the period of the

flow of hamiltonian G along the closed curve Y=1G(x,y)=rI . Here t stands

the time interval in going from (x0 ,0) to (x,y) along Y, with x0>0

	

(one

shows that Y is star-shaped w .r .t . the origin if Irl is small enough) .

the (r,a) variables one has m1 (r,a) = (r,a+2n/T(r)) . A

d T(r)/dr = 0(rp), /3<0 . Therefore

pressed in the (r,a) variables as T(r,a) = (r+¿ár, a +2n/T(r)+,áa),

begin with terms of relative high order . Hence T can be seen as

twist [81 and this guarantees the existente of invariant curves from

the stability follows .

01 is a twist . The

In

computation gives

initial map can be

where Ar,Ja

a perturbed

where

If G=g, Ig1 small, does not define closed curves in U but G=0 has

ral branches through the origin then we get instability under 01 [61

therefore, under T . Complete proofs appear in [121 .

for

ex

seve--

and,

§3 . An algorithm to decide about stability . First we plot the Newton poly--

gon associated to G . A necessary condition for stability is that all the

vertices have even coordinates . Let m+ka, n-k/3, a,PEZ+ , g.c .d . (a,P)=1,
r m+kak=0:r bepoints in one side of the polygon . There we get G= . . .+Y- akx

,y n-k~3+ . . . . Let (P=

	

akzk

	

0
. An additional necessary condition is that all

0
the real zeros of (p be of even multiplicity . If the multiplicity is zero

this is enough for stability . If it is not zero, three cases are posible,

associated to each of such zeros :

	

y = 0 (x) ;

	

x = 0 (ya ) , a > 1 ;

	

y = 0 (xa) , a > 1 . The

first and second cases can be reduced to the third one through a rotation

or a relabelling of the axes, respectively . Therefore, we can suppose

y = mxp/q+ . . . ,

	

p/q >l .

	

Introducing x =uq , y = mup +z, we get a new Newton

polygon and we proceed to the analysis of terms of the form z = 0(Up),P>q .



§4 . Some examples .

a) We consider the case ,1 a fourth root of unity . A simple map is T(x,y) =

_ (-y,x+f(y)) (a de Jonquiére map, normal form if T is a Cremona map of pri

me degree [31 ) . Taking T4 we can apply 1 .3 and §3 . If f begins with terms

of degree k and k is odd, the origin is stable . If k is even and f has only

one term (yk after scaling) the origin is stable . This is the case for the

classical Hénon map [5,101 with rotation angle a =7r/2 (k=2) . The invariant

curves are latin cross shaped . However, higher order terms can produce ins-

tability . For instance, T(x,y) = (-y, x+y2+ay3 ) is unstable for a E[-1,0) .See

[121 .

b) If 11 is a cubic root of unity and we restrict ourselves to T(x,y) _

= R2,c/3c) (x,y -xk) , where Rá is a rotation of anggle S around the origin, we

get stability (unstability) if k is odd (even) .

c) Concerning the restricted three-body problem, the stability of 4 for ma

sses ,a equal to the critical values of Routh (see [21) only the values

~¿2,u3 remain to settle the question . With the help of some lengthly computa

tions the results will appear elsewhere [131 . Other applications to the sta

bility of bifurcation orbits can be found in [41 .
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