Pub. Mat. UAB N° 21 Oct.1980 Actes VII JMHL

COMPORTAMIENTO DE LOS OPERADORES ACOTADOS EN LOS SISTEMAS ORTOGONALES

Antonio Plans

Dpto de Geometría y Topología Universidad de Zaragoza

We deal with the real, separable, Hilbert space H and its linear, bounded operators. As a sample of the results that are obtained in this paper, we mention the following:

1. An operator A is completely continuous (A $\epsilon \mathbf{G}$) if and only if there is a system of subspaces $\{\mathbf{E}_{\mathbf{r}_{i}}; i \in \mathbf{N}\}$ such that $\sum_{i=1}^{\infty} \mathbf{\Phi} \mathbf{E}_{\mathbf{r}_{i}} = \mathbf{H}, \sum_{i=1}^{\infty} \|\mathbf{A}\|_{\mathbf{E}_{\mathbf{r}_{i}}}\|_{<\infty}^{1}$ and $\{\mathbf{A}(\mathbf{E}_{\mathbf{r}_{i}}); i \in \mathbf{N}\}$ is ortogonal. Thus \mathbf{G} is a natural generalization of \mathbf{G}^{2} .

2. An injective operator A has <u>non</u> closed range \triangle_A if and only if there is an ortonormal basis of H, $\{e_i; i \in N\}$, such that $Ae_i \xrightarrow{i \to \infty} 0$.