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Zürich

These notes are a more or less complete account of a series of talks

given at the Universitat Autónoma de Barcelona and at the Universidad

de Zaragoza in spring of 1979 . In these talks recent work on cohomolo-

gical characterisations - of classes of finite groups was presented .

The main results are as follows : We start with a brief treatment of

the Huppert-Thompson-Tate theorem (Theorem 2) which can be regarded

as a (co)homological characterisation of p-nilpotent groups . We

then continue with a characterisation of p-solvable groups iü terms

of the cohomology of certain quotient groups with simple coefficient

modules (Theorem 5) . This then leads us to characterisations in

terms of the cohomology with simple coefficient modules of the

classes of p-supersolvable (Proposition 12) and of p-nilpotent

groups (Proposition 14) . In a similar way, we are able to characterise

certain locally defined formations (Theorem 13) . Finally these same

classes are characterised in a way which generalises the well-known

result of Hoechsmann-Roquette-Zassenhaus on p-nilpotent groups

(Propositions 15,16, Theorem 19) .

In our talks, as in these notes, we have not always chosen the

shortest possible proofs . For example, we have not made use of

modular representation theory except where it was absolutély necessary .

We have done so for reasons of clarity and also to facilitate,access

to the results presented here .

It is a pleasure to express my sincere thanks to the Universitat

Autónoma de Barcelona and to the Universidad de Zaragoza for the

invitation, and to the many people who have contributed so much

to make my stay so smooth, pleasant and stimulating . In particular

I would like to thank Eulalio Bernal, Manuel Castellet, Pere

Menal, and Professor Sancho .
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1 . In this first section we briefly recall t'he definition of certain

classes of groups that play an important role in what follows .

Let G be a finite group . A chief series of G is a properly

descending series of normal subgroups

90

G = N0 DN 1 =) . . . DN Q-1 :D N R = e N .<G
1

with no proper refinement . The factors

	

Ni/Ni+l are simple

G-groups, the G-action being induced by conjugation . By Jordan-

Hblder the isomorphism classes and the multiplicity of these

factors are uniquely determined by G . They are called chief

factors of G .

The classes of groups we shall deal with are defined by putting

restriction on the structure of the chief factors . Let p be a

prime . A group G is called p- solvable if the chief factors are

either p-groups or p'-groups .

We note that p-chief factors (i .e . chief factors whose order is a

pvwcr v .~f p ) are úüvaiiu~.tomaticúii1 1y ~..,l~.es

	

tar`y' u ~.obel,.~i~ir,i

	

iua. p grvüps . ...r,

if P is a p-chief factor which is not elementary abelian, then

the insertion of a normal subroup of G corresponding to P' " P p

woul.d yield a proper refinement of the given chief series . We

may thus regard the p-chief factors of a p-solvable group as

modules over kG where k denotes the field of p-elements .

A group G is called p-supersolvable if G is p-solvable and

the p-chief factors are of k-dimension one . A group G is called

p-nilpotent if G is p-solvable and the p-chief factors are

isomorphic to the trivial kG-module k .

It is clear that a group G is solvable, subpersolvable, nilpotent

if and only if G is p=solvable, p-supersolvable, p-nilpotent

for every prime p dividing the group-order .

The following proposition is well-known . For completeness we

include a proof .



Proposition 1 . A group G is p-nilpotent if and only if there

exists a normal subgroup N of p'-order and p-index . (N is

called a normal p-complement .)

Proof : If N is a normal subgroup of G of p-index, then G/N

is a .p-group and hence has a chief series with factors

isomorphic to the trivial module k . Since N is a

p'-group, the group G is p-nilpotent .

For the converse we proceed by induction on the length of a

chief series . If there is only one chief factor it must be

a p-group or a p'-group . In both cases, the existente of

a normal p-complement is trivial . Thus suppose that M

is the last non-trivial term of a chief series of G .

By induction G/M has a normal p-complement, i .e .'we have

a normal subgroup Q of G containing M, with G/Q a

p-group and G/M a p'-group . If the chief factor M is

a p'-group then cléarly Q is a normal p-complement of G

If M is isomorphic to k,

	

then by Schur-Zassenhaus

Q = M x Q

	

where

	

Q = Q/f1 .

	

It is then clear that

	

Q

	

is a

normal p-complement of G .

2 . We now turn to the Huppert-Thompson-Tate-theorem which gives a

characterisation of p-nilpotent groups in terms of the map in

homology, induced by the embedding of a p-Sylow subgroup .

Theorem 2 . [12] : Let P be a p-Sylow subgroup of G . Then the

following statements are equivalent :

(i)

	

G is p-nilpotent ;

(ii)

	

L * : H 1 (P,Z/) - H 1 (G,Z)

	

is injective ;

(iii)

	

L * H 1 (P,k) - H 1 (G,k)

	

is isomorphic .

Proof . (i) _> (ii) Let G be p-nilpotent . Then the embedding

L : P

	

G has a left inverse w : G } P ; hence

7r *L* :

	

H 1 (P,Z)

	

- H1 (G,1)

	

} H1 (P,a)

	

is the identity .

	

This

implies that L * : H 1 (P,Z/)

	

H1 (G,Z)

	

is injective .
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(ii) - _> (iii)

	

Since for any

	

G-module A the map
11i (P,A) -> Hi (G,A) is surjective on the p-primary part

of Hi (G,A), we conclude that i, * : H
1
(P,k) - H1(G,k)

is surjective . It is also injective since

H 1 (-,k) = H 1 (-,7í) G k

	

and

	

i. * : H 1 (P,Z) -> H~ (G,ZV)

	

is
injective and surjective on the p-primary part .

(iii) => (i) We first note that by the above
i. * : H 2 (P,k) - H2 (G,k) is surjective . We then apply a
result of Stallings and Stammbach (see for example [8],
p . 93) to show that i. induces isomorphisms
P/Pj ; G/Gj ,

	

j k 1 ,

	

where

	

Pi ,Gj	arethe terms of the
lower central p-series of P,G respectively . Since this
series terminates with e for the p-group P,

	

we may
conclude that

	

i,

	

induces an isomorphism

	

P -> G/nG
J
. .

Hence N = f1G . i s a normal p-complement of G .
J

Proposition 3 . [10] : Let P be a p-Sylow 'subgroup of G . Then
G is p-nilpotent if and only if i, * : H2 (P,k) --> H2 (G,k) is
isomorphic .

Before we attempt to prove this proposition, we note the following

example . Let

	

G =r,k = 7e/(3),

	

and let

	

P

	

be a 3-Sylow

subgroup of G .

	

Then i. * : Ai (P,k) -> H i (G,k)

	

is an isomorphism

for

	

i = 0

	

or

	

i_=3

	

(mod 4) ;

	

but of course, G

	

is not

3-nilpotent .

Proof : Consider the universal coefficient exact suequences

H 2P ® kr-> H 2 (P,k) -» Tor(H 1 P,k)

ay

	

B+

	

yy
H2G ® k >-> H 2 (G,k)

	

-» Tor(H 1 G,k)

where HiP,HiG is the i-th integral homology group of P,G

respectively, and the maps a,R,y are induced by L .

Since H 2P -> H 2G is surjective on the p-primary part,

a is i:iirjective too . Thus if B is injective, Y is



injective .

	

Now let

	

C = im(H 1 P -> H 1 G) ,

	

i .e .

	

let

	

C

	

be

the p-primary part of

	

H, G .

	

Then

	

Tor(C,k)

	

= Tor(H 1 G,k) ,

and the exact sequence

	

D r> H 1 P -» C

	

gives rise to the

exact sequence

0 -> Tor(D,k)

	

-> Tor(H 1 P,k)

	

} Tor(H 1 G,k)

Since .y is injective, it follows that Tor(D,k) = 0 ;

but D is a p-group, so that Tor(D,k) = 0 implies D = 0

Thus

	

i, * : H
1
P -~ H

1
G

	

is injective,

	

and

	

G

	

is p-nilpotent

by Theorem 2 .

Corollary 4 . [10] : The group G is p-nilpotent if and only if G

has a p-Sylow subgroup P such that every central extension

k>-> P -» P

	

of

	

P

	

by

	

k

	

can be embedded into a central

extension k>--> G -» G

	

of

	

G by k

Proof : Extensions are classified by the second cohomology group ;

hence the second statement is equivalent to the statement

that i, * : H 2 (G,k) -> H 2 (P,k) is surjective . But since

H 2 (G,k) = Hom(H 2 (G,k) , k)

	

and similarly for H Z (P,k),

this is equivalent to the injectivity of

i, * : H2 (G,k) -> H 2 (P,k) .

	

By Proposition 3 this in turn is

equivalent to G being p-nilpotent .

3 . In this section we obtain a characterisation of p-solvable groups .

We define the centralizer

	

CGM

	

of a kG-module M by

CGM = {xeG1 xm=m for all meM} .

We shall suppress the índex G whenever there is no danger of

confusion, writing

	

CM

	

instead of

	

CGM .

	

Clearly

	

CM

	

is a

normal subgroup in

	

G .

	

If

	

CM= G ,

	

the module

	

M

	

is called

trivial ; it is called faithful if

	

CM= e . Our main result is

the following

Theorem 5 . [9J : The group G is p-solvable if and only if

H 1 (G/CM,M) = 0 for all simple kG-modules M .
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Por the proof of this theorem we need some lemmas, most of them

well-known ; again we include proofs for completeness .

Lemma 6 . Let P be a p-group and let M be a simple kP-module .
Then

	

M=k .

Proof : Let M be a simple kP-module . Consider the semi-direct
product

	

Q=M:1 P . Clearly

	

Q

	

is a p-group ; hence its chief

factors are all isomorphic to k . But M is a chief factor
of

	

Q ;

	

hence

	

M_ k .

Lemma 7 . Let M be a faithful simple kP-module . Then G does
not contain a non-trivial normal p-subgroup .

Proof : Let N be a normal p-subgroup of G . Consider M as

kN-module . Then the last non-trivial term in a composition

series of

	

M

	

is a simple kN-submodule and hence isomorphic

tó k .

	

It follows that

	

MN 7É0, so that

	

MN	is a

94

nnn-l-ri vi a 1

	

kl:-ciihmnrlnl a

	

nf

	

M .

	

C i noma

	

M

	

i c

	

ci mnl a _

	

YoP

must have

	

MN= M,

	

¡ .e .

	

N c CM =e .

	

This shows that

	

N = e .

Lemma 8 .

	

(Baer-Gaschütz)

	

Let

	

GpÉe

	

be p-solvable and let

	

M

	

be
a faithful simple kG-module . Then

	

Hi (G,M) =0

	

for all

	

ii 0 .

We note that Lemma 8 implies that if G is p-solvable, then

H i (G/CM,M) = 0

	

for all simple kG-modules

	

M

	

and all

	

ili 1 .

In particular it implies one half of our Theorem 5 . We also note

the following group theoretic consequence : If G is p-solvable

and if M is a faithful simple kG-module, then every extension

of

	

G

	

by

	

M

	

splits (for

	

H2 (G,M) = 0)

	

and the complements of

M

	

in the extension group are all conjugate

	

(for

	

H 1 (G,M) = 0) .

Proof of Lemma 8 : By Lemma 7 the group G does not contain a

non-trivial normal p-subgroup . Since G is p-solvable,

there is a non-trivial normal p'-subgroup, say N .



Consider the extension N>-> G -» G/N and the associated
Lyndon-Hochschild-Serre spectral sequence

Hr (G/N , HS (N,M)) _> Hr+s(G,M) .

Since

	

( IN¡, IMI ) = . 1

	

we

	

have

	

H' (N, M) =_ 0

	

for

	

s ? 1

	

,
so that we obtain isomorphisms

H1(G,M) = H1 (G/N, H' (N,M))

= Hi (G/N, MN )

Since

	

M

	

is faithful

	

MNyÉM ;

	

Since

	

M

	

is simple, we must

thus have

	

MN= 0 .

	

It follows that

	

Hl (G,M) = 0

	

for all

	

i ? 1

We may add that this result could also be obtained using modular
representation theory, for it is a well-known result of Brauer[31
that Op , pG centralizes every simple kG-module in the first block .
Hence if G is p-solvable and M is faithful, then M cannot

belong to the first block . Hence its cohomology is trivial

(see [51, p . 178) .

Lemma 9 .

	

Let

	

N aG

	

and let

	

B

	

be a simple kN-module . Then the

induced kG-module

	

A= HomkN (kG,B), regarded as kN-module, is a

direct sum of simple kN-module conjugate to B .

Proof : Let

	

G= UNxi

	

be a partition of

	

G

	

into cosets . Then

kG = ®(kN) xi	askN-module,

	

so that

	

A = ®HomkN ( (kN) xi , B) _ ® Bi,

where B .i
= B as k-vectorspace, but, in general, with a

new kN-module structure . Let f : (kN)x
i

-> B, and let
f (x i )

	

= bi EBi .

	

Then we obtain for

	

y eN

yB , bi	=

	

(y 0 f) (xi)

	

=

	

f(xiy)

	

=

	

f (xiyxi l "xi )

	

= xiyxi1
B

f (x i )
i

In other words : "y operates in B i in the same way as
xiyxil operates in B" . It is clear that every Bi is
simple .



We record for later use the following consequence for the

centralizer of B . in N
1

Lemma 10 . Let

	

A

	

be a kG-module with

	

Hn(G,A) ~ 0 .

	

Then there

exists a simple kG-module M, a composition factor of A, such

that

	

Hn(G, M) gá 0 .

Proof : We proceed by induction on the composition length of A .

Let B

	

be a minimal submodule of A ; then the long exact

cohomology sequence reads
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CN(Bi ) _ {ye N I ybi = b i	forall

	

biE Bi }

_ {yEN xiyxi l b = b

	

for all

	

bEB }

= xiICNBxi .

->Hn (G,B) -> Hn (G,A) -> Hn(G,A/B) -r

Thus

	

Hn(G,B)

	

yÉ 0 ,

	

in which case we set

	

M= B ,

	

or

Tin{G,1;/B) É n

	

in iuhic_h_ rase we infer by induction that

there is a composition factor M of A/B and hence of A

with

	

Hn(G,DI) ~ 0

Lemma 11 . If H l (G/CM, M) = 0 for all simple kG-modules M

then G is p-solvable .

Clearly this proves the other half of Theorem 5 .

Proof . We first note that if G has the property that

H'(G/CM, M) = 0

	

for all simple kG-modules M ,

	

then

every quotient group of G has this property too . So

in order to prove Lemma 11, we look at a group G of

smallest order which has this property but which is

not p-solvable, and deduce a contradiction .

We first claim that G cannot be simple . Indead, G

is not of prime order, since every such group is p-solvable .



Suppose that G is non-abelian and simple . Then every
non-trivial kG-module M is faithful, so that for every
simple kG-module M 7É k we have H l (G,M) = 0 . Moreover
H l (G,k) = G/G'®k= 0 . Hence by Lemma 10 the cohomolgy of
G in dimension 1 vanishes for all kG-modules . By
dimension shifting,the cohomology of G with kG-modules
is trivial in all dimension . It follows by a theorem

of Swan [111 that G is a p'-group . But then G would
be p-solvable, which is a contradiction .

Thus let

	

e jÉN a G , N ~ G

	

be a minimal normal subgroup .
Then G/N, being of smaller order than G , is p-solvable .
We may conclude that N is not p-solvable, otherwise G
would be p-solvable . Since N is of smaller order than
G, it follows that there is a simple kN-module B with
H 1 (N/CB , B) yÉ 0 . In particular CNB 74 N, ¡ .e . B YÉ k .
The beginning of the 5-term'sequence associated with
N >-> G -» G/N

	

reads

0 - H 1 (N/CB, B) -> H 1 (N/B)

hence H 1 (N,B) yÉ 0 .

	

Consider A = HomkN (kG,B), then

H 1 (G,A) = H 1 (G,HomkN (kG, B)) = H 1 (N,B) ~ 0 .

By Lemma 10 there exists a composition factor M of A
with H I (G,M) yÉ 0 .

	

Since, by hypothesis,

	

H i (G/CM, M) = 0
we conclude that C GM YÉ e .

	

The module A and hence M,
regarded as kN-module, is a direct sum of kN-modules B i ,
conjugate to B (Lemma 9) . The centralizers of B,i in
N are certain G-conjugates of CNB ,

	

which, by the above,
is a proper subgroup of N .

	

Hence, we may infer that
CNM = Nn CGM

	

is properly contained in

	

N .

	

But

	

CNM

	

is
a normal subgroup of

	

G ,

	

so that by minimality of

	

N,
we have

	

Nn CGM = e .

	

In other words, G/CGM

	

contains a
copy of N,

	

so that it cannot be p-solvable . Since
CGM ~ e this is a contradiction to the minimality o£ G .



We recall that a group is solvable if and only if it is p-solvable

for every prime . Since a finite simple ZG-module is automatically

a simple kG-module for some finite prime field k, our Theorem 5

easily yields the following

Corollary :

	

A group G is solvable if and only if H 1 (G/CM, M) = 0

for all finite simple M-modules M .

4 . In this Section, we shall give cohomological characterisations

of p-supersolvable groups and, more generally, of groups in

certain local formations . These results are obtained as consequences

of our Theorem 5 .

Proposition 12 . [1][9] : For a finite group G the following

statements are equivalent :

(i)

	

G is p-supersolvable ;

(ii)

	

H 1 (G,M) = 0 for all simple kG-modules M with

dimkM - 2

	

;

(iii)

	

Hi (G .M) = 0

	

for all simple kG-modules

	

M with

dimkM ? 2

	

and all

	

i ? 1 .

Proof : (i) _> (iii) Let G be p-supersolvable and let M be

a simple kG-module with dimkM 1 2 . By Lemma 8 we have

H l (G/CM, M) = 0

	

for all

	

i k 0 .

	

We may thus assume that

CM 96 e . We proceed by induction on the group order . Let

e yÉ NE-CM be a minimal normal subgroup of G ; in particular

N

	

is a chief factor of

	

G .

	

Consider N>--> G -» G/N

and the associated Lyndon-Hochschild-Serre spectral sequence
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Gr (G/N , HS (N,M)) => Hr+s(G,M) .

If

	

N

	

is a p'-group, then

	

HS (N,M) = 0

	

for

	

s k 1 . Since

N c:CM,

	

we may conclude by induction that

H i (G,M) = Hi (G/N , 110 (N,M) = Hi (G/N , M) . = 0 .

	

If

	

N

	

is a

p-group, it must be cyclic of order p . We then have

Hs (N,M) = Hom(HS (N,k) , M) = Hom(k,M) = M , where

	

indicates



that the G-action may have changed . Since M is again a
simple kG-module, it follows by induction that
Hr (G/N , HS (N, M))

	

= Hr (G/N , M)

	

=

	

0

	

for

	

r 1; 1

	

.

	

Hence

Hi (G,M) = 0 for i? 1

Since (iii) _>, (ii) is trivial, it remains to prove
(ii) => (i) . Let G be a group satisfying (ii), and let
M be a kG-module with dimkM k 2 . Since

0 -> H 1 (G/CM , M) -> H 1 (G,M)

	

is exact, we have that for any

such module

	

H1 , (G/CM , M) = 0 .

	

If

	

M=k , then

	

G

	

acts

via

	

Aut k = Cp- 1 ,

	

so

	

that in this case

	

IG/CMI / p-1 .

It follows that

	

Hi (G/CM , M) = 0 .

	

By Theorem 5 we may

thus conclude that G is p-solvable . It remains to prove

that the p-chief-£actors are one-dimensional . Note that

property (ii) is inherited by quotient groups, so that we

may proceed by induction on the group order . Let N be a
minimal normal subgroup of G .

	

Then we may assume by

induction that G/N is p-supersolvable . If N is a p'-group

then G is p-supersolvable too . If N is a p-group,

we consider N as a simple kG-module . The 5-term sequence

associated with

	

N 1-> G -» GIN

	

then is

0 - H 1 (G/N , N) -> H 1 (G,N) -+ HomG(N,N) -> H Z (G/N,N) � H Z (G,N)

If dimkN >-_ 2,

	

then Hi (G/N,N) = 0 by induction and

(i) _> (iii) .

	

Hence H l (G,N) = HomG(N,N) is non-trivial .

This is a contradiciton . Hence dimkN = 1 and G is

p-supersolvable .

We note that the implication (i) _> (iii) could also be obtained
using modular representation theory, for it is well-known that
the simple modules in principal p-block of a p-supersolvable

group are of k-dimension one (see also Lemma 17) . Hence if M

is a simple kG-module with dimkM k 2 it does not belong to
the principal p-block and hence its cohomology is trivial
(see [51, p . 178) .

Next we give a generalization to certain local £ormations .
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Let C be an arbitrary formation (see [71, VI . 7) . Define F

to be the local formation defined by

	

F(p) = C

	

and

	

F(q) = y

the formation of all finite groups for

	

q~ p .

	

In other words,

the group G is in F if and only if .for every chief factor

M

	

of G

	

with p/¡MI

	

we have

	

G/CGM EC,

	

or equivalently, if

G/Op , pG EC

	

(see [71) .

Theorem 13 . [21 : For a finite group G the following statements

are equivalent :

(i)

	

G EF ;

(ii)

	

H 1 (G,M) = 0 for all simple kG-modules M with

G/CM 5C ;
(iii)

	

Hi (G,M) = 0 for all simple kG-modules M with

G/CM q(C

	

and all

	

i k 1 .

Proof : (i) _> (iii)

	

Let

	

G EF

	

and let

	

M

	

be a simple kG-module

with

	

G/CM Ve .

	

We claim that

	

M ` does not belong to

the principal p-block of G .

	

By [51, p . 178 this then

implies (iii) .

	

Weie

	

M

	

contained í.. the principal p-b10-k

of

	

G,

	

we would have

	

Op, pG £CGM

	

(see (31) .

	

Since

	

G c- F

we have

	

G/Op , pG E C ,

	

so that we would have

	

G/CM E C .

This is a contradicition .

Since (iii) => (ii) is trivial it remains to prove

(ii) => (i) .

	

We first note that property (ii) is inherited

by quotient groups . Hence we may consider a group G

satisfying (ii) with

	

G~íF

	

of smallest order . Let

	

N

	

be

a minimal normal subgroup of

	

G . Since

	

G/N

	

is in

	

F

and F is a formation, N is the unique minimal normal

subgroup of G .

	

Clearly p/IN¡ . If N is non-abelian,

then

	

H1 (N,k) = N/N' ® k = 0 . Hence, there exists a

non-trivial simple kN-module

	

B

	

with

	

Hl (N,B)

	

0 .

	

Set

A = HomkN (kG,B) .

	

Then H l (G,A) = H 1 (N,B) ~ 0 . By Lemma 10

there exists a composition factor M of A with

H 1 (G,M) ¢ 0 .

	

Moreover, M regarded as kN-module is a



direct sum of kN-modules conjugate to & . Since H 1 (G,M) # 0 ,
we conclude from (ii) that

	

G/CM EC .

	

Since

	

CNM

	

is

contained in a certain conjugate of CNB (see Lemma 9)
it is properly contained in N and hence trivial . We
conclude

	

e = CNM = CGM n N .

	

Since

	

N

	

is the

unique minimal normal subgroup, it follows that

C M = e .

	

But then

	

G = G/CM E F .

	

This is a contradiction .
G

Thus N is abelian and hence a simple kG-module . Since F

is saturated and G/N c-F, G splits over N . Since N

is the unique minimal subgroup, we must thus have

CGN = N .

	

Hence

	

G/CGN = G/N ¡ C,

	

otherweise

	

G

	

would

be in F .

	

But now the 5-term sequence associated with

the split extension

	

N>-> G -» G/N

0 1 H 1 (G/N,N)

	

-> H1 (G,N)

	

-> HONG (N,N)

	

ó H Z (G/N,N)

	

-" H2 (G,N)

has the properly that

	

d(1N) = 0, so that H 1 (G,N) qÉ0 .

This is a contradiction .

It is clear that Proposition 12 is a special case of Theorem 13 .

Also,we note that if we take

	

C= {e} ,

	

then

	

F

	

is the formation of

p-nilpotent groups . Hence we obtain the following

Proposition 14 . [9] : For a finite group G the following

statements are equivalent :

(i)

	

G is p-nilpotent ;

(ii)

	

H1 (G,M) = 0 for all non-trivial simple

kG-modules M ;

(iii)

	

Hi(G,M) = 0 for all non-trivial simple kG-modules

M

	

and all

	

i k 1

We note that this result can be regarded as a variant of Brauer's

theorem that a group is p-nilpotent if and only if k is the only

simple module in the principal p-block .



5 . There is a well-known cohomotogical characterisation of

p-nilpotent groups due to Hoechsmann-Roquette-Zassenhaus . For

our purposes it is convenient to state it in the following form .

Proposition 15 . [6] : For a finite group G the following statements

are equivalent_

(i)

	

G is p-nilpotent ;

(ii)

	

if A is a kG-module with H1 (G,A) yÉ 0 for

some i , then A 1 (G,A) ¢ 0 ;

(iii) if A is a kG-module with H1 (G,A) JÉ 0 for

some i,

	

then H9. (G,A) 96 0 for all Z .

Here H1 (G,A) denotes, as usual, the i-th Tate cohomology group .

A proof of this proposition may be obtained by proceeding in a manner

anrlogous to the proof of Proposition 16, which gives a similar

characterisation for p-supersolvable groups .

t on 1
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equivalent :

(i)

	

G is p-supersolvable ;
~i

(ii)

	

if A is a kG-module with H (G,A) ?É 0 for some

i, then there is a one-dimensional kG-module k

such that

	

!'(G, Hom(k,A)) ~ 0 .

(iii)

	

if A is a kG-module with H1 (G,A) qÉ 0 for some

i, then for every Q there is a one-dimensional

kG-module k depending on t such that
HQ (G , Hom(k, A))

	

0 .

Proof : (iii) => (i) We apply Proposition 12 . Let M be a simple

kG-module with H 1 (G,M) yÉ 0 .

	

By (iii) there exists a

one-dimensional kG-module

	

k

	

such that

	

H^o (G,Hom(k,M))

	

0

Hence

	

H0(G, Hom(k,M))

	

= HomkG (k,M)

	

iá 0,

	

so that

	

M = k

	

.

By Proposition 12 the group G is p-supersolvable .

(ii) => (iii) This implication is easily obtained by



dimension shifting and by using that for a projective

(and injective) kG-module P , the module Hom(k,P) is

again projective (and injective) .

For the implication (i) => (ii) we need some preparations .

We first recall the definition of a (p-)block of a finite

group G .

	

Let M = {M i , . . ., MR } be the set of isomorphism

classes of simple kG-modules . Define a graph P with vertices

Mi and with an edge joining Mr and Ms if and only if

ExtkG(Mr ,Ms ) ~ 0 or' ExtkG(Ms ,Mr ) ~ 0 . We say that Mi and

M .
J

belong to the same block if they belong to the same connected

component of the graph r .

	

Also, we say that Mi belongs to the

principal block if Mi and k belong to the sáme connected

component of the graph r .

We note as an example that the only simple module in the principal

block of a p-nilpotent group G is k .

	

This is easily proved

using Proposition 14 . For p-supersolvable groups we have the

following well-known result .

Lemma 17 . The simple modules in the principal block of a p-super-

solvable group are one-dimensional .

Proof : Let the simple module M be in the principal block of G .

Then there is a path in P joining M and k .

	

We may

thus suppose by indúction that there is a one-dimensional

kG-module k such that ExtkG(k,M) # 0 or Extk G(M,k) # 0 .

Suppose first that ExtkG(k,M) ~ 0 . then

0 pÉ ExtkG(k,M)

	

= ExtkG (k, Hom(k,M)) = H 1 (G, Hom(k,M))

where M = Hom(k,M) is again a simple kG-module . Using

Proposition 12, we conclude that M and hence M is

one-dimensional . The proof in the other case is similar

This completes the proof of Lemma 17 .



Lemma 18 .

	

Let

	

A

	

be a kG-module . Then

	

A = A' ®A" ,

	

where the

composition factors of A' belong to the principal block of G

and the composition factors of A" do not belong to the principal

block .

Proof . We proceed by induction on the composition length of

	

A .

Thus let

	

B cA

	

be a minimal submodule of

	

A .

	

By

induction we know that A/B = C' ®C" , where C'

	

and C"

have the obvious meaning . Let n : A -> A/B be the canonical

projection . If B belongs to the principal block, we set

A' = 1r -1 (C')

	

and get an exact sequence

	

A'>-> A -» C" .

If B does not belong to the principal block, we set

A" = iT" 1 (C")

	

and get an exact sequence

	

A">-> A -» C'

We now claim that these sequences split . We show this in

the first case, the proof of the second case is similar .

Thus suppose that

	

A' >-> A -» C"

	

does 11ot split ;

	

then

ExtkG(C",A') ~ 0 . By the argument,used in the proof of

Lemma 10 we may conclude that there is a composition

factor M" óf C" and a composition factor M' of A'

such that ExtkG (M",M') ~ 0 .

	

But this is a contradicition

since M' and M" do not belong to the same block .

We are now ready to complete the proof of Proposition 16 by

showing the implication (i) _> (ii) . Thus suppose H l (G,A) yÉ 0 .

We write A = A'®A" using Lemma 18 .

	

Since H1 (G,A") = 0

(see [5], p.178), we conclude that H 1 (G,A') 96 0 .

	

Thus A'

is not injective . Hence there exists a non-trivial extension

A' >-> E -» C, i .e .

	

ExtkG(C,A') ~ 0 . By the argument used in

the proof of Lemma 10 we infer that there is a composition factor

M" of C such that ExtkG(M",A') ~ 0 and a composition factor

M' of A' such that ExtkG (M",M') ~ 0 . Since M' belongs to

the principal block, M" belongs to the principal block too .

Since G is p-supersolvable, Lemma 17 implies that M" is

one-dimensional,

	

M" = IZ .

	

Thus ExtkG (k,A) ,~ 0 ,

	

and we obtain
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0

	

pÉ ExtkG(k,A)

	

= Ext 1	(k, Hom(k,A))

	

= H1 (G,Hom(k,A)) .



This completes the proof of the proposition .

We note that there is a generalisation of Propositions 15,16 to

formations . Let, as in section 4, C be an arbitrary formation

and let F be the local formation defined by F(p) = C and

F(q) = y, for q ~,p .

	

Recall that a kG-module M is called
F-central if

	

G/CGM e C .

Theorem 19 . For a finite group G the following statements are

equivalent :
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