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We consider the sequence vy, “_ z

iz0, ze R, with

Yo = 2. In 113, the guestion of the behavior of such seguence is
posed. g‘_,u_bseqﬁently, many references to solutions are given (see
{2]), for instance [3]. In this paper we obtain a full descrip-
tion of these iterates as functions of the parameter z, for eve
ry value of y . Our technigue just uses the discretedynamical sys
tew in R, defined by fz[x) =z" . The properties of the curves of

fixed points and of two-periodic points are alse given.

§1.- Fixed points.

a) If z=1, fz(x} is concave; 2% = x has solution iff
z< b, where b must satisfy x=bx, 1=b"Inb —= b=el/e. I1f

ze (1,b) there are two fixed points xl(z) <x2(z) . They coinci

de for z=D.

For xl(z) we have 0< f;[xl(z]) <1, Then it is stable. Ins

tability occurs for xz(z) .

. X
b) If =<1, fz(x) is monotonically decreasing. Then x=z

has only one solution xl{z) -

Stability: £ (x) < 0 1mplj.es %y {z) stable if f (x }> -1,
The 11m:|.t of stablllty is found at X lnz -1 = x-—1/e and

L= a —e—e.
ﬁlm
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For z=1-¢, % small enough: zx1>1—a — f'(xl) =0(e} ..
Then the fixed points is stable for zef[a,1). The negative cha-

racter of £' implies that the iterates alternate around the fi
xed point.

c) Curve of fixed points: Consider the curve x=x(z),
d
ze {(0,b] given by x= 2 {two branches if z>1); x'= -E-z-=
x - lnx
z{1-1nx) zlnz{l-1Inx) °*

One has X'=c» at z=h,. The

upper branch has x1<0, ze {(1,b}, and lower one gives xi[z) >0

2
in (0,b}). We get as limiting values: lim x! =-1lim o=
22 o -
lim x2" = =9 ; lim x! =1. We obtain for the second derivative
z 1t z*1

1 _ .
xn = Xloxex/(1-1n x) zero values iff lnx=(1t\/g}/2- Then

22(1—1nx}2

there are only two turning points: one, x;,
i, . L .
other, xl, in xl(z) for some z< 1. With this information we

can plot x{z}. This is done in fig.1.

in xz{z] and the

§ 2.- Periodic points.

a)Being fz(x) increasiay € z> 1, there are no periodic
woints., For z< 1, fi{x] -8 also increasing., Then there are
only fixed points under fz {studied in §1)} or 2-periodic points
x3(2) , x4(2) .
b) We consider the functicen gz(x) =" - logzx for z< g,
We have gz(xl} =0, g' (xl} < (¢ and gz(l) > 0. Then there are points
4

,1) fixed under 9, Let us now show their unigqueness.

e
.Y {xl

It is encugh teo proof that there is a unique point x such
~ that gz"(x) =0. Then x 2" 1n22=1. We define Y (x) =xzx. asg

¥'(x) = (1+ 1nx) z~, we have for x> X, s
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|xlnz!>fxllnz|=llnx1]>1z_;\y‘(x)qo for xa{xl“l).

' = X1 ' 2_
But fz{xl} z'1 1n z, {fz[xll} =X

X112 . -
12 lnz =¥y (xl)

= (f;(xll)z/lnzz. Then gé has a zero in (xl,ll iff x, is un-
stable for fz. i.e., iff ze (0,a}. So there is only one 2-pe-
riodic peoint in (xl.l} which is x4(z]. The image under fz,

x3(z). is also 2-periodic and belcongs to {O,xl). The stabili-

ty of 2-periodic points is guaranteed because g' [xi) >0, i=3,4.
z -
X
Furthermore, if hz(x) =z% we have hé(xi) >0, i=3,4.

c} Curve of two-pericdic points: There are two branches

Inx .
for z¢ (O,a] which coincide if z=a. From zx = oz we derive
zlnz(xlnxlnz-1) x' =-xinx{l+x1lnz). For xlnxlnz=1 we get

x' =cc. This happens if x=e_1, z=a. The signs of the factors
allow us to state that x:'1> 0. x:}-: 0. Indeed, we begin by proving
that 1+ x1n 2z has only one zero: zx=e_1 = Inx/lnz and x ln 2 =-1

. -1 -1
imply xlnx==~e =, i.e., x=e .

The same happens for x1lnxlnz - 1, but the proof is more

tediocus: zx=el/1nx=lnx/lnz and xIlnx1lnz=1 give us

X ln2x=el/lnx . The change t=1/lnx transforms the above given
conditicon to B(t}=g{ t_1) , where g(t) =t et, t< 0. We must veri
fy that t =-1 is the unigue sclution, This is eqguivalent to find
the positive solutiorsof ¢(t) =t, where g(t) =exp(-%—(t -1/£).
Obviously 0, 1 are solutions. But o' (t) = (t2+ 1]m(t]/{2t2} ptit) =
= (thataacs Do) /@) @ 0 =(Cracta12ed27e 1200 1) (11888,
Then, ' (0)<1, @' (1) =1, ®"{1) = 0, u"'({1) >0 implies that the
numberof zercs of @{t)=t in (0,1) counted with their multiplici
ties is even. If that number is positive, ®"(t) must have at least
two zeros in {0,1), but such zeros satisfy t4+2t+1=4t. Since
(t2+1)2 is concave, there are exactly 2 solutions and one of them

is 1. Then there are no solutions of ®({t) =t in {0,1). On the
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other side ™ >0 if t>1, implies g(t)>t, Vt» 1. This ends the

proof.
The behavior of the two branches near z=0 is found by
asymptotic expansions: Let g =z{1+a(z)), a(=) =o(l). We try
. x 2
to satisfy z° =1lnx/ln z. Then a(z) =zlr12 Z4 0(z2ln z) . The ima

ge under'fz gives x,=1+z1Inz+ 0(zzlnzz). This allows us to

"plot x,(2), i=3.4. See fig.1.

§ 3.- Behavior of the iterates.

Let be Ygr ¥ ¥or¥grens the successive iterates.
a)If z>b one has ynfm.

b} For z=b and y0£ e, we have ynie.

oo,
For Yo > e = ynf
c) If ze (1,b) and Yo xl(z) we get
ynTxl(ZI: Yo € (xi.xz)aynul: Yo %,
=
ynloo-

d) When ze[a,1), for every initial
va lue Yo Ve have Y, = xltz] » but the
iterates alternate in {O,xl) . (xl,m] .

So, € (O,xi) = yzktxl.

Yo Yor s 14%1
For the critical value z=ga we have
a bifurcation: xi(z] losses the sta-

bility and a two-point stable cycle

e) If z¢ (0,a) we have also the fixed

point xl(z), but any yo# xliz] gives

I
i
|
;
1
|
; appears.
1
]
|
i
1
1

, iterates converging to the cycle

a=exp(-e) 1 b=exp({l/e) X, 4[z) tand them they do not proper-

Fig.l ly converge) .
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4 P R . .
Yo ® (X Xy) == Yo o 1%y Yol ¥yr vpf 03 ) =y %, Vo %,

Similar results are chtained for yOE (xl,x4) or y0€ (x4,cc).

In particular, if y0= z the iterates converge to x1 iff

z€{a,b] and to the cycle {xx,} iff z<a.
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