Pub. Mat. UAB

nQ 10, Desembre 1978

A NOTE ON THE ITERATION OF EXPONENTIALS

Carles Simó

Secció de Matemàtiques

Universitat Autònoma de Barcelona

We consider the sequence $y_{i \neq l} = z^{Y_i}$, $i \ge 0$, $z \in R_+$, with $y_0 = z$. In [1], the question of the <u>behavior</u> of such sequence is posed. Subsequently, many references to solutions are given (see [2]), for instance [3]. In this paper we obtain a full description of these iterates as functions of the parameter z, for every value of y. Our technique just uses the discretedynamical system in R_+ defined by $f_z(x) = z^x$. The properties of the curves of fixed points and of two-periodic points are also given.

§1.- Fixed points.

a) If z > 1, $f_z(x)$ is concave; $z^x = x$ has solution iff $z \le b$, where b must satisfy $x = b^x$, $1 = b^x \ln b \implies b = e^{1/e}$. If $z \in (1, b)$ there are two fixed points $x_1(z) < x_2(z)$. They coinc<u>i</u> de for z = b.

For $x_1(z)$ we have $0 < f'_z(x_1(z)) < 1$. Then it is stable. Instability occurs for $x_2(z)$.

b) If z < 1, $f_z(x)$ is monotonically decreasing. Then $x = z^x$ has only one solution $x_1(z)$.

Stability: $f'_{z}(x) < 0$ implies $x_{1}(z)$ stable if $f'_{z}(x_{1}) > -1$. The limit of stability is found at $x \ln z = -1 \implies x = 1/e$ and $z_{\lim} = a = e^{-e}$. For $z = 1 - \varepsilon$, ε small enough: $z^{X_1} > 1 - \varepsilon \implies f'_{Z}(x_1) = 0(\varepsilon)$. Then the fixed points is stable for $z \in [a, 1]$. The negative character of f' implies that the iterates alternate around the <u>fi</u> xed point.

c) Curve of fixed points: Consider the curve $\mathbf{x} = \mathbf{x}(z)$, $z \in (0,b]$ given by $\mathbf{x} = \mathbf{z}^{\mathbf{x}}$ (two branches if z > 1); $\mathbf{x}' = \frac{d\mathbf{x}}{dz} =$ $= \frac{\mathbf{x}}{\mathbf{z}(1 - \ln \mathbf{x})} = \frac{\ln \mathbf{x}}{\mathbf{z} \ln \mathbf{z}(1 - \ln \mathbf{x})}$. One has $\mathbf{x}' = \infty$ at z = b. The upper branch has $\mathbf{x}'_2 < 0$, $z \in (1,b)$, and lower one gives $\mathbf{x}'_1(z) > 0$ in (0,b). We get as limiting values: $\lim_{z \to 0^+} \mathbf{x}'_1 = -\lim_{z \to 0^+} \frac{1}{z \ln z} = \infty$;

 $\lim_{z \to 1} \frac{x_2' = -\infty}{z^{\pm 1}}; \lim_{z \to 1} \frac{x_1' = 1}{z}. \text{ We obtain for the second derivative } \\ x'' = \frac{x \ln x + x/(1 - \ln x)}{z^2(1 - \ln x)^2} \text{ zero values iff } \ln x = (1 \pm \sqrt{5})/2. \text{ Then }$

there are only two turning points: one, x_2^i , in $x_2(z)$ and the other, x_1^i , in $x_1(z)$ for some z < 1. With this information we can plot x(z). This is done in fig.1.

§ 2.- Periodic points.

a)Being $f_z(x)$ increasing if z > 1, there are no periodic points. For z < 1, $f_z^2(x)$ is also increasing. Then there are only fixed points under f_z (studied in §1)) or 2-periodic points $= x_3(z), x_4(z)$.

b) We consider the function $g_z(x) = z^x - \log_2 x$ for z < a. We have $g_z(x_1) = 0$, $g'_z(x_1) \le 0$ and $g_z(1) > 0$. Then there are points $y \in (x_1, 1)$ fixed under g_z . Let us now show their uniqueness.

It is enough to proof that there is a unique point x such that $g'_{z}(x) = 0$. Then $x z^{x} \ln^{2} z = 1$. We define $\Psi(x) = x z^{x}$. As $\Psi'(x) = (1 + \ln x) z^{x}$, we have for $x > x_{1}$:

 $|x \ln z| > |x_1 \ln z| = |\ln x_1| > 1 \implies \Psi'(x) < 0 \text{ for } x \in (x_1, 1).$ But $f'_{z}(x_1) = z^{x_1} \ln z$, $(f'_{z}(x_1))^2 = x_1 z^{x_1} \ln^2 z \implies \Psi'(x_1) =$ $= (f'_{z}(x_1))^2 / \ln^2 z$. Then g'_{z} has a zero in $(x_1, 1)$ iff x_1 is unstable for f_{z} , i.e., iff $z \in (0, a)$. So there is only one 2-periodic point in $(x_1, 1)$ which is $x_4(z)$. The image under f_{z} , $x_3(z)$, is also 2-periodic and belongs to $(0, x_1)$. The stability of 2-periodic points is guaranteed because $g'_{z}(x_1) > 0$, i = 3, 4. Furthermore, if $h_{z}(x) = z^{x}$ we have $h'_{z}(x_1) > 0$, i = 3, 4.

c) Curve of two-periodic points: There are two branches for $z \in (0,a]$ which coincide if z = a. From $z^{X} = \frac{\ln x}{\ln z}$ we derive $z \ln z (x \ln x \ln z - 1) x' = -x \ln x (1 + x \ln z)$. For $x \ln x \ln z = 1$ we get $x' = \infty$. This happens if $x = e^{-1}$, z = a. The signs of the factors allow us to state that $x'_{3} > 0$, $x'_{4} < 0$. Indeed, we begin by proving that $1 + x \ln z$ has only one zero: $z^{X} = e^{-1} = \ln x / \ln z$ and $x \ln z = -1$ imply $x \ln x = -e^{-1}$, i.e., $x = e^{-1}$.

The same happens for x ln x ln z - 1, but the proof is more tedious: $z^{X} = e^{1/\ln x} = \ln x/\ln z$ and x ln x ln z = 1 give us $x \ln^{2} x = e^{1/\ln x}$. The change t = 1/ln x transforms the above given condition to $\xi(t) = \xi(t^{-1})$, where $\xi(t) = t e^{t}$, t<0. We must ver<u>i</u> fy that t = -1 is the unique solution. This is equivalent to find the positive solutions of $\varphi(t) = t$, where $\varphi(t) = \exp(\frac{1}{2}(t-1/t))$. Obviously 0, 1 are solutions. But $\varphi'(t) = (t^{2} + 1)\varphi(t)/(2t^{2});\varphi''(t) =$ $= (t^{4}+2t^{2}-4t+1)\varphi(t)/(4t^{4}); \varphi''(t)=(t^{6}+3t^{4}-12t^{3}+27t^{2}-12t+1)\varphi(t)/(8t^{6}).$ Then, $\varphi'(0)<1$, $\varphi'(1)=1$, $\varphi''(1)=0$, $\varphi'''(1)>0$ implies that the number of zeros of $\varphi(t)=t$ in (0,1) counted with their multiplic<u>i</u> ties is even. If that number is positive, $\varphi''(t)$ must have at least two zeros in (0,1), but such zeros satisfy $t^{4}+2t+1=4t$. Since $(t^{2}+1)^{2}$ is concave, there are exactly 2 solutions and one of them is 1. Then there are no solutions of $\varphi(t) = t$ in (0,1). On the other side $\phi'''>0$ if t>1, implies $\phi(t)>t, \ \forall t>1.$ This ends the proof.

The behavior of the two branches near z = 0 is found by asymptotic expansions: Let $x_3 = z(1 + \alpha(z))$, $\alpha(z) = o(1)$. We try to satisfy $z^x = \ln x/\ln z$. Then $\alpha(z) = z \ln^2 z + 0(z^2 \ln^2 z)$. The ima ge under f gives $x_4 = 1 + z \ln z + 0(z^2 \ln^2 z)$. This allows us to plot $x_i(z)$, i = 3, 4. See fig.1.

§ 3.- Behavior of the iterates.

Let be $y_0, y_1, y_2, y_3, \ldots$ the successive iterates.

a) If z > b one has $y_{p} \dagger \infty$.

b) For
$$z = b$$
 and $y_0 \le e$, we have $y_n^{\dagger}e$.
For $y_0 > e \Rightarrow y_n^{\dagger} \infty$.
c) If $z \in (1,b)$ and $y_0 \le x_1(z)$ we get
 $y_n^{\dagger}x_1(z); y_0 \in (x_1, x_2) \Rightarrow y_n^{\dagger}x_1; y_0 > x_2$
 $\Rightarrow y_n^{\dagger}\infty$.

d) When $z \in [a,1)$, for every initial value y_0 we have $y_n \rightarrow x_1(z)$, but the iterates alternate in $(0,x_1), (x_1,\infty)$. So, $y_0 \in (0,x_1) \implies y_{2k} \uparrow x_1, y_{2k+1} \downarrow x_1$. For the critical value z = a we have a bifurcation: $x_1(z)$ losses the stability and a two-point stable cycle appears.

e) If $z \in (0,a)$ we have also the fixed point $x_1(z)$, but any $y_0 \neq x_1(z)$ gives z iterates converging to the cycle $b=exp(1/e)x_{3,4}(z)$ (and them they do not properly converge).

ĥ.

$$\mathbf{y}_{0} \stackrel{\varepsilon}{(\mathbf{x}_{3}, \mathbf{x}_{1})} \Longrightarrow \mathbf{y}_{2k+1} \stackrel{\mathsf{t}}{(\mathbf{x}_{4}, \mathbf{y}_{2k})} \stackrel{\mathsf{x}_{3}}{(\mathbf{x}_{3}; \mathbf{y}_{0} \stackrel{\varepsilon}{(0, \mathbf{x}_{3})})} \Longrightarrow \mathbf{y}_{2k+1} \stackrel{\mathsf{t}}{(\mathbf{x}_{4}, \mathbf{y}_{2k})} \stackrel{\mathsf{x}_{3}}{(\mathbf{x}_{3}, \mathbf{x}_{3})}$$

Similar results are obtained for $y_0 \in (x_1, x_4)$ or $y_0 \in (x_4, \infty)$.

In particular, if $y_0 = z$ the iterates converge to x_1 iff $z \in [a,b]$ and to the cycle $\{x_3x_4\}$ iff z < a.

References

[1] Notices Amer. Math. Soc. 25(1978), 197.

[2] Notices Amer. Math. Soc. 25(1978), 253, 335.

[3] Bromwich, T.J.I'A.: "An Introduction to the Theory of Infinite Series", MacMillan, 1965, p. 23.