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Abstract

In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly
speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a
cylinder in terms of two coordinates,(l, θ), representing the displacement and angle in a cylindrical coor-
dinate system respectively. The starting point for our method is a set of different views of a cylindrical
surface, as well as a precomputed disparity map estimation between pair of images. The proposed varia-
tional technique is based on an energy minimization where webalance on the one hand the regularity of the
cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the
distance between the projection of the surface points on theimages and the expected location following the
precomputed disparity map estimation between pair of images. One interesting advantage of this approach
is that we regularize the 3D surface by means of a bi-dimensional minimization problem. We show some
experimental results for large stereo sequences.
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1 Introduction

The problem of 3D geometry reconstruction from multiple views has received much attention during the last
years. It is straight forward to recover a 3D surface from a stereoscopic pair of images since the pixel grid
makes it easy to establish the relation between the points. Nevertheless when we have more than two or three
images and try to recover the original scene, the problem becomes much more complex. There have been
different strategies to overcome this problem.

The most traditional approach is to first obtain a set of scattered points and try to find the surface that best
fits the set like the one proposed by Hong-Kai et al. in [11], where authors propose a technique to find out a
surface from an unorganized set of points. In [3] the authorspropose a volumetric method where the 3D surface
is an isosurface of the volumetric grid. Another approach are the particle-based methods like in [26] and [9]
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in where the points have attraction and repulse forces following the Newtonian dynamics. Kanade et al. [18]
proposed a deformable mesh representation to match multiple dense depth stereo data.

More recent methods like [15] combines the 3D and 2D image information and in [20] the authors propose a
method for uncalibrated cameras that combines different aspects from projective reconstruction, self-calibration
and dense depth estimation. Some new energy minimization techniques have been proposed in the literature
like the one proposed by Faugeras and Keriven in [6, 7] where alevel set approach is proposed to minimize a
surface energy. Other energy minimization methods are [21]and [13] which utilize graph cuts to minimize the
energy functional.

Normally after reconstruction the 3D surface is noisy. The previous approaches consider implicit or explicitly
some regularizing means to reduce the surface noise. There are techniques that focus only on the regularization
of the mesh. In papers like [24, 25, 12] the authors propose mesh smoothing techniques that in the case of the
last two ones there is a mechanism of feature preserving by means of anisotropic diffusion.

In this paper we propose a different approach which is also based on a variational formulation but only using
disparity map estimations between pair of images. We assumethat the 3D surface we want to recover has a
cylindrical geometry, that is, it can be expressed as an application S : (l, θ) → R3, where(l, θ) represents
a cylindrical parameterization of the 3D surface. Of course, this is an important limitation in terms of the
surface geometry, but it simplifies in a strong way the complexity of the problem and it can be applied in a lot
of situations like, for instance, human face reconstruction. There is an important reduction on the complexity
since it is easier to estimate a unique 3D surface by projecting the 3D points in a cylindrical structure than
directly from a cloud of scattered 3D points. We will also assume that the cameras are calibrated (see [5], [8] or
[10] for more details). In the last years, very accurate techniques to estimate the disparity map in a stereo pair
of images have been proposed. To extend these techniques to the case of multiple views is not a trivial problem.

The main contribution we propose in this paper is a variational model to recover the 3D geometry of a cylin-
drical surface. This variational model is based on the minimization of an objective function. The proposed
objective function is a balance between 2 terms. In the first term we minimize the distance between the pro-
jection of the3D surface points in the image sequence and the expected location following a precomputed
disparity estimation between pair of images. In the second term, we regularize the cylindrical function given
by the distance between the cylinder axis and the surface points.

This objective function also enables regularization by preserving discontinuities on the cylindrical function.
The regularizing term is similar to the terms used in other fields like stereoscopic reconstruction [1] or optical
flow estimation [2].

The associated Euler-Lagrange equation of this objective function yields to a nonlinear partial differential
equation that is then embedded into a gradient descend method to look for the solution. We develop an explicit
numerical scheme based on finite differences to implement the method.

We also present some experimental results to evaluate the method. The first experiment is composed of 36
images taken around a synthetic cylinder. For the second experiment we use a large sequence of 47 cameras
located around a woman bust.

The organization of the paper is as follows: In section 2 we introduce the cylindrical coordinate system
necessary for the representation of the cylindrical function and the relation with the projective camera model.
We also introduce the disparity map technique we use to estimate the disparity between pair of images. In
section 3 we present the variational model, and we compute the associated Euler-Lagrange equations. In section
3.2 we introduce an explicit numerical scheme to discretizethe model. In section 4 we present the experimental
results for synthetic and real image stereo sequences and finally in section 5 the conclusions.
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Figure 1: Cylindrical and Cartesian coordinate systems

2 The Cylinder Structure and Disparity Map Estimation

2.1 The Cylindrical Coordinate System and the Projective Camera

Using the notation represented in Fig. 1 we note byN1,N2 andN3 the orthogonal coordinate system and by
Q0 the origin of the system.N1 denotes the cylindrical axis. The cylindrical coordinatesare expressed by
means of a list of three coordinates(l, θ, r) wherel is the displacement on the cylindrical axisN1, θ is an angle
(as it is outlined in Fig. 1) andr is the distance from a 3D point toN1. A cylindrical surfaceS(l, θ, r) will be
given by a cylindrical functionr(l, θ) in the following way :

S(l, θ, r) = Q0 + lN1 + r(l, θ) (N2 cos θ + N3 sin θ) . (1)

S(l, θ, r) is a function that transforms a cylindrical functionr (l, θ) to a surface in the Cartesian coordinate
system.

We will see below that our method makes use of disparity maps computed between pairs of stereoscopic
images to constraint the regularization of the cylindricalfunction. The disparity maps are expressed in image
coordinates associated to every camera. We assume the projective model for the cameras. In our problem we
haveNc different projective cameras and every camera is represented by a projection matrixPc of dimensions
3x4 that projects 3D points into the image plane. In projective coordinates the points in the cylindrical surface
are projected onto the image plane as:

m̃c(l, θ) = Pc (S(l, θ, r), 1)t . (2)

To obtain the image coordinates associated to the 3D point wedivide by the third component of vector
m̃c(l, θ).

2.2 Disparity Map Estimation between Pair of Images

In order to estimate disparity maps between pair of images weuse the technique explained in [1]. In this paper
the disparity map is parameterized by a scalar function,λ, that represents the displacement on the epipolar
lines. The solution forλ is obtained through the minimization of the following objective function:

E(λ) =

∫

Ω
(Il(x, y) − Ir(x + u(λ(x, y)), y + v(λ(x, y))))2 dx dy

+ C

∫

Ω
∇λtD (∇Il)∇λdx dy (3)

where(u, v)t are the components of the optical flow between the left and right images and depend on theλ

function. Ω is the image domain,C is a positive constant, and∇λtD(∇Il)∇λ determines the regularization
term.
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D(.) is a regularized projection matrix in the direction perpendicular to∇I and was first proposed by Nagel
and Enkelmann in the context of optical flow estimation theory [16, 17]. The shape of this matrix is

D (∇Il) =
1

|∇Il|2 + 2ν2







[

∂Il

∂y

−∂Il

∂x

] [

∂Il

∂y

−∂Il

∂x

]t

+ ν2Id







. (4)

In this formulation,Id denotes the identity matrix.
When derived, we obtain a partial differential equation (PDE) that is then solved by means of a gradient

descend method. To recover large disparities the method is embedded into a linear scale–space strategy.

3 The Variational Method to Recover 3D Cylindrical Surfaces

The method we propose is based on the minimization of an objective function that depends on the cylindrical
function. It is minimized to obtain the Euler-Lagrange equations and a gradient descend approach is then
developed in order to solve the system. This gradient descend method is finally implemented by means of an
explicit numerical scheme.

3.1 Minimization of the Objective Function

The regularization of the cylindrical functionr(l, θ) is equivalent to regularize the cylindrical surfaceS(l, θ).
We propose a variational formulation to look for the regularized solution. This solution is the result of a
minimization problem. Our model is composed of two terms: anattachment term that makes use of the disparity
maps to constraint the process; and a regularizing term thatis used to obtain a smooth solution. This term is
designed to regularize the surface by preserving the discontinuities of the cylindrical function which are related
to the varying depth of the 3D surface.

The objective function proposed is

E(r) =

(

N
∑

c=1

∫ ∫

∥

∥mc+1 (l, θ) − mc (l, θ) − hc
+ (mc)

∥

∥

2
dldθ

+
N
∑

c=1

∫ ∫

∥

∥mc (l, θ) − mc+1 (l, θ) − hc
− (mc+1)

∥

∥

2
dldθ

)

+α

∫ ∫

φ (‖∇r‖) dldθ . (5)

mc+1 (l, θ) is the image coordinate for camerac + 1 denoted by (2) andmc (l, θ) is the correspondent for

camerac. Vectorshc
+/−(mc) =

(

u+/−(mc)

v+/−(mc)

)

represent the optical flow estimations for pixelmc on camera

c. Sign+ corresponds to the optical flow from camerac to c + 1 and sign− to the optical flow from camerac
to camerac− 1. We use a balance parameter,α. In the first term, the surface is constraint with the information
supplied by the original optical flows in both senses. The second term is the regularizing term. The purpose
of this term is to find a smooth solution respecting the cylindrical function discontinuities. This kind of term
has been extensively used in other related subjects like optical flow estimation, stereoscopic vision or image
restoration. In papers [4, 14] there is a discussion about functionφ (‖∇r‖) and some references to other related
works.

A functional variation of this energy leads to the Euler–Lagrange equation that is given by the following
PDE:
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∂E(r)

∂r
=

(

Nc
∑

c=1

(

(

mc+1 − mc − hc
+(mc)

)t

·

(

∂mc+1

∂r
−

∂mc

∂r
−Jhc

+

∂mc

∂r

))

+
Nc
∑

c=1

(

(

mc − mc+1 − hc+1
− (mc+1)

)t

·

(

∂mc

∂r
−

∂mc+1

∂r
−Jhc+1

−

∂mc+1

∂r

)))

− α · div

(

φ′ (‖∇r‖)

‖∇r‖
∇r

)

= 0 (6)

whereJh = J

(

u(x, y)
v(x, y)

)

=

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

.

In order to search for the solution we implement a gradient descend method in the way∂r
∂t = −∂E(r)

∂r , thus
having an equation in the form:

∂r

∂t
= α · div

(

φ′ (‖∇r‖)

‖∇r‖
∇r

)

−

(

Nc
∑
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(

(
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− (mc+1)

)t

·
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+
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∂mc+1

∂r
−

∂mc
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− Jhc

+

∂mc

∂r

)))

. (7)

In this case the divergence term is well known and acts like a diffusion scheme. If we expand the divergence
expression we obtain

div

(

φ′ (‖∇r‖)

‖∇r‖
∇r

)

=
φ′ (‖∇r‖)

‖∇r‖
rξξ + φ′′ (‖∇r‖) rηη (8)

whereη = ∇r
‖∇r‖ andξ = η⊥ are the unitary vectors in the directions parallel and perpendicular to the gradient,

respectively.
Playing with functionφ (s) it is possible to achieve an anisotropic diffusion at contours. The first in propos-

ing this kind of diffusion equation were Perona and Malik [19] in where they introduced a decreasing function
to avoid diffusion at contours. Other related works have appeared and some of them have addressed the problem
of regularizing along the isophotes. Our objective is not only to diffuse isotropically at homogeneous regions
but also to diffuse along the contours. We can get this behaviour by adapting the coefficients ofrξξ andrηη . The
first allows the diffusion to be carried out along the isophotes and the second in the direction of the gradient.

3.2 Numerical Scheme

In this section we study how to implement an explicit numerical scheme for this method. We derive∂m

∂r
analytically from (2). Regarding (8) the divergence is divided in two terms and the values for both of them are
given by the following expressions:
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rξξ =
rxxr2

y − 2rxryrxy + ryyr
2
x

r2
x + r2

y

, rηη =
ryyr

2
y + 2rxryrxy + rxxr2

x

r2
x + r2

y

. (9)

The first and second derivatives onx andy are approximated by finite differences as

rx ≃
ri+1,j − ri−1,j

2
,

ry ≃
ri,j+1 − ri,j−1

2
,

rxx ≃ ri+1,j − 2ri,j + ri−1,j,

ryy ≃ ri,j+1 − 2ri,j + ri,j−1,

rxy ≃
ri+1,j+1 + ri−1,j−1 − ri−1,j+1 − ri+1,j−1

4
. (10)

The derivatives of the components of the optical flow,∂u
∂x , ∂u

∂y , ∂v
∂x , and∂v

∂y , have also been approximated by
finite differences.

The final numerical scheme is implemented by means of an explicit scheme in the following way:

rt+1 = rt + dt · (α (rξξ + g (‖∇r‖) rηη)

−

(

Nc
∑
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∂mc+1

∂r
− Jhc+1

−
∂mc+1

∂r
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−
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+

∂mc
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. (11)

Functiong (s) is a decreasing function that disables isotropic diffusionfor big values of the gradient. This
function depends on a parameter calledλ that represents the value from where the gradient is considered to be
a contour. This parameter is estimated by means of an isotropy fraction s that states the value of the gradient
from a percentage (see [1] for more details).

The image coordinates,m, are computed from the cylindrical coordinates,r, θ and l. For this we have to
know from what cameras the values of the cylindrical function, r(θ,l) were obtained.

3.3 Surface Initialization. Building the Initial Cylindrical Function

In the proposed numerical scheme, we need to provide an initial guess for the 3D-cylindrical surface. We will
use a simple technique based on the 3D surface reconstruction obtained using pair of images. Initially, we
have as many 3D surfaces as cameras are there in the system. Wewill transform the 3D surfaces into a unique
cylindrical function that will be used in the method. Given the set of 3D surfaces the main steps for computing
the initial cylindrical function are:

1. EstimateQ0,N1,N2 andN3. This step depends on the position and orientation of the surface on the
scene. For instance if we assume that the image sequence is obtained by turning a camera around the
object in a orthogonal plane to the cylinder axis, then we caneasily compute the cylinder parameters as
it is explained below.
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Figure 2: Views 0, 4, 28 and 32 of the synthetic cylinder sequence.

2. Built the cylindrical image. The cylindrical function will be represented through an image. This is what
we call the cylindrical image. The rows and columns of this image are given by theN1 axis and the
angle,θ, respectively. The bigger this image is the more accuratelythe 3D surface is represented.

3. Create the cylindrical function,r(θ, l). We project all 3D surfaces obtained from each camera in the
cylindrical image. We merge the information of all the 3D surfaces by computing the mean for all
coincident 3D points that are projected on one pixel of the cylindrical image. We also keep track of the
cameras from where the 3D points are seen.

The first step is to estimate the position,Q0 = (q0, q1, q2)
T , and axis,N1 = (n11, n12, n13)

T ,N2 =
(n21, n22, n23)

T andN3 = (n31, n32, n33)
T , of the cylindrical coordinate system. We have supposed thatthe

camera configuration system is cylindrical in the sense thatall the cameras are situated around the scene and
looking at the centre. We also suppose that the foci of the cameras are situated close to a common plane.Q0

is estimated as the average of the 3D points of all surfaces.N1 is the cylindrical axis and is computed as the
orthogonal direction to the plane where the camera foci lay,N2 is the unitary vector in the camera focuses
plane that points from the cylindrical axis to the focus of the first camera andN3 is orthogonal toN1 andN2 .

In the second step we are concerned with the problem of representing the cylindrical function through a
bi-dimensional image. We have to compute the dimensions of an image that will allocate the values of the
3D points in cylindrical coordinates. To calculate the number of rows the lowest and highest 3D points in
theN1 component are computed. The difference between them definesthe size of the cylindrical axis. The
number of columns is estimated knowing that2 · π · radius is the length for the cylinder. We adapt the value
of radius in order to obtain an image with regular pixels (same pixel height and width). This value depends on
the dimension of the image in theN1 axis. This image represents ther(θ, l) function.

The last step consists of assigning a value to every pixel on the image. This process is carried out by
representing the 3D points in cylindrical coordinates and computing a mean for coincident points on a pixel.
There may be some locations where no 3D point is projected, soa post-processing to fill these gaps is necessary.
These are filled from the values of the surrounding pixels. Atthe same time that we compute a value for every
pixel we keep the information of the cameras from where thesepoints were obtained. This will be necessary
for the resolution of the method.

Finally what we obtain is an image that for every pixel position there is a value forr(θ, l). This is the way
we simplify the set of 3D surfaces into a cylindrical function that we use as an initial guest in the proposed
numerical scheme.

4 Experimental Results

In this section we show the results of reconstructing and regularizing a synthetic cylinder and a bust sequence.
In the web page ”http://serdis.dis.ulpgc.es/˜jsanchez/research/demos” the reader can find more details on the
numerical experiments we present here. In particular you can find vrml models of the 3D reconstruction.

In Fig. 2 we show several views of the cylinder. This sequenceis composed of 36 images around the figure.
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Figure 3: Different views of the 3D reconstruction of the cylinder. Front view, upper view, and view from the
bottom.

Figure 4: Regularization of the synthetic cylinder withλ = 0, 1.

We first compute the disparity maps between every pair of consecutive images, then we obtain a 3D surface
from every disparity map and finally we build the cylindricalfunction. In Fig. 3 we show the final 3D cylindrical
surface. In this figure we show three views: a front view, an upper view and a view from the bottom. We may
appreciate that the surface is not regular.

In Figs. 4 and 5 we show different regularizations. For the first example we have used a value forα of 0.1
and for the second a value of0.5. The 3D model obtained for the second is more regular. The result is in both
cases a surface with less noise.

Next we show a real sequence of a bust. A lot of research has been devoted to human body reconstruction
from image sequences (see for instance [22]). In this case the sequence is composed of 47 images taken around
a bust. Figure 6 shows the configuration of this sequence withthe projection planes of the cameras.

In Fig. 7 we show different views of the sequence. The Bust is introduced in a platform with some squares
and little labels on them. These labels were introduced to calibrate the cameras.

From Figs. 10, 11 and 12 we may appreciate several regularizations for different values ofα ands.

Figure 5: Regularization of the synthetic cylinder withλ = 0, 5.
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Figure 6: Bust configuration: This figure shows the 3D reconstructed bust and the distribution of the projection
planes corresponding to the 47 cameras

Figure 7: Images 0, 12, 20 and 32 of the Bust sequence

5 Conclusions

In this paper we have presented a novel method for the reconstruction and regularization of cylindrical surfaces.
This kind of surfaces allows us to develop specific techniques which are simpler and easier to implement than
other more general methods.

In particular we have considerably simplified the process of3D reconstruction from multiple views. First,
we obtain a set of 3D points for each pair of stereoscopic views using a previous technique. Then, all the 3D
points are merged in a common cylindrical function, which isa bi-dimensional array, in a very simple way and
it is very fast since the operations involved are projections and averaging of the 3D points. This avoids the
burden of determining the 3D geometry directly from the set of 3D points.

We have taken advantage of the simplicity of cylindrical coordinates to represent the set of 3D points. Once
the cylindrical function is built the problem of surface reconstruction and regularization is reduced to a 2D

Figure 8: The left image represents the texture of the Bust sequence projected on a cylindrical image. The right
image is the cylindrical function represented in grey levels (the white colour is associated to the highest values)
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Figure 9: Different views of the Bust reconstruction

problem of recovering and regularizing a bi-dimensional function.
We have established an energy in a traditional attachment–regularizing couple of terms. In the attachment

term we have used the disparity maps between pair of images inorder to minimize the difference between the
surface point projection on the images and the expected location using the precomputed disparity map. The
regularizing term allows for anisotropic diffusion by preserving the discontinuities of the cylindrical function.
From this we have derived a diffusion-reaction PDE and use a gradient descend approach to reach the solution.

We have shown in the experiments that varying theα parameter results in a more regular set of points and
varying theλ parameter implies a more regular set of points by preservingthe cylindrical function discontinu-
ities as we have expected from the results obtained in other fields. The use ofα andλ parameters are somehow
simple.α refers to the smoothness of the final set of points andλ refers to the way the regularization is carried
out at the contours. Varying these parameters is intuitive.Evenλ is computed from an isotropy fractions which
is delimited between 0 and 1.
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