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Abstract

In this paper we present a system for the reconstruction of 3D models of architectural scenes from
single or multiple uncalibrated images. The partial 3D model of a building is recovered from a single
image using geometric constraints such as parallelism and orthogonality, which are likely to be found in
most architectural scenes. The approximate corner positions of a building are selected interactively by a
user and then further refined automatically using Hough transform. The relative depths of the corner points
are calculated according to the perspective projection model. Partial 3D models recovered from different
viewpoints are registered to a common coordinate system for integration. The 3D model registration process
is carried out using modified ICP (iterative closest point) algorithm with the initial parameters provided by
geometric constraints of the building. The integrated 3D model is then fitted with piecewise planar surfaces
to generate a more geometrically consistent model. The acquired images are finally mapped onto the surface
of the reconstructed 3D model to create a photo-realistic model. A working system which allows a user to
interactively build a 3D model of an architectural scene from single or multiple images has been proposed
and implemented.
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1 Introduction

3D reconstruction of real scenes is one of the most challenging tasks in computer vision [7]. In this work we
have focused on the reconstruction of 3D models of architectural scenes. One major difference between the
3D reconstruction of architectural scenes and general objects is that the former contains easily detectable man-
made features such as parallel lines, orthogonal lines, corners, etc. These features are important cues for finding
the 3D structure of a building. Most research on architectural scene reconstruction in the photogrammetry
community has concentrated on 3D reconstruction from aerial images [8, 2]. Due to long-range photography,
aerial images are usually modeled as orthographic projection. Although the orthographic projection model is
easier for aerial images, one major drawback is that most of the 3D reconstruction of architectural scenes can
only be done on the roofs of the buildings. On the other hand, the perspective projection model is usually
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needed for close-range photography, which is capable of reconstructing the complete (360 degrees) 3D model
of an architectural scene.

3D models of architectural scenes have important application areas such as virtual reality (VR) and aug-
mented reality (AR). Both applications require photo-realistic 3D models as input. A photo-realistic model
of a building consists not only the 3D shape of the building (geometric information) but also the image tex-
ture on the outer visible surface of the building (photometric information). The geometric and photometric
information can be acquired either by range data and intensity images, or by the intensity images recorded by
a camera. Allen et al [1, 9] created 3D models of historic sites using both range and image data. They first
built the 3D models from range data using a volumetric set intersection method. The photometric information
was then mapped onto those models by registering features from both the 3D and 2D data sets. To accurately
register the range and intensity data, and reduce the overall complexity of the models, they developed range
data segmentation algorithms to identify planar regions and determine linear features from planar intersections.
Dick et al [5] recovered 3D models from uncalibrated images of architectural scenes. They proposed a method
which exploited the rigidity constraints usually seen in the indoor and outdoor architectural scenes such as par-
allelism and orthogonality. These constraints were then used to calibrate the intrinsic and extrinsic parameters
of the cameras through projection matrix using vanishing points [3]. The Euclidean models of the scene were
reconstructed from two images from arbitrary viewpoints.

In this work, we develop a system for 3D model reconstruction of architectural scenes from one or more un-
calibrated images. The input images can be taken from off-the-shelf digital cameras and the camera parameters
for 3D reconstruction are estimated from the structure of the architectural scene. The feature points (such as
corners) in the images are selected by a user interactively through a graphical user interface. The selected im-
age points are then refined automatically using Hough transform to obtain more accurate positions in subpixel
resolution. For a given set of corner points, various constraints such as parallelism, orthogonality, coplanarity
are enforced to create a 3D model of the building. Partial 3D models reconstructed from different viewpoints
are then registered to a common coordinate system to create a complete 3D model. The texture information is
finally mapped onto the building to create a photo-realistic 3D model.

2 Camera Model and Parameter Estimation

The most commonly used camera model is the pinhole camera model. In this model the projection from a point
(Xi, Yi, Zi) in Euclidean 3-space to a point (xi, yi) in the image plane can be represented in homogeneous
coordinates by
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where s is an arbitrary scale factor, and the 3× 4 matrix
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is the perspective projection matrix of the camera. The perspective projection matrix can be further decomposed
into the intrinsic camera parameters and the relative pose of the camera:

M = K[R t] (3)

The 3 × 3 matrix R and 3 × 1 vector t are the relative orientation and translation with respect to the world
coordinate system, respectively. The intrinsic parameter matrix K of the camera is a 3 × 3 matrix and usually
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Figure 1: Parallelepiped and a pinhole camera model

modeled as

K =




fx γ u0

0 fy v0

0 0 1
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where (u0, v0) is the principal point (the intersection of the optical axis with the image plane), γ is a skew
parameter related to the characteristic of the CCD array, and fx and fy are scale factors. Thus, Eq. (1) can be
rewritten as

sp = K[R t]P (5)

where P is a 3D point and p is the corresponding image point (in homogeneous coordinates).
The correctness of reconstructed 3D model depends on the accuracy of camera parameters. Classical camera

calibration methods [10] rely on fixed calibration patterns. In this work, the primary goal is to reconstruct 3D
models of architectural scenes. Since the man-made structures usually contain parallelepipeds, parallelism and
orthogonality will be used for camera parameter estimation. Consider a parallelepiped shown in Fig. 1, which
resembles the visible surface of a building. Two planes P0P1P4P2 and P0P2P5P3 are determined by the six
points, P0, P1, P2, P3, P4 and P5. Assume the corresponding image points are p0, p1, p2, p3, p4, p5, then
we have

sipi = K[RPi + t] (6)

for i = 0, 1, · · · , 5 by Eq. (5).
As shown in [4], for a given parallelepiped in 3D space, if the three angles between its adjacent edges,

θab, θbc, θca, and the image points of the six points of its two adjacent faces are available, then the pose of
the parallelepiped, intrinsic parameters of the camera and the size of the parallelepiped can be determined by
solving polynomial equations of at most fourth degree. For a special case that θab, θbc and θca are right angles,
the equation can be further simplified to a linear system. Thus, the camera parameters can be found if the corner
points of a building are identified. Furthermore, the focal length of the camera can be estimated and used for
3D model reconstruction in the next section.
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3 Three-Dimensional Model Reconstruction

3.1 Reconstruction Algorithm

Chen et al [4] showed that for any given parallelogram in 3D space with known image coordinates of four
corner points, the relative depths of the four corner points can be determined. If we consider the four points P0,
P1, P2 and P3, which forms a parallelogram as shown in Fig. 1, then P0 + P4 = P1 + P2 by the property of
parallelogram in any world coordinate. Thus, we have

s0
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where A is given by 
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with the corresponding image points pi = (ui, vi) for i = 0, 1, 2, 4. If the three points p1, p2, p4 are not
collinear, then A is nonsingular. Thus, the relative depths, s1/s0, s4/s0, s2/s0, of the 3D points are given by
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if the corresponding image points are not collinear.
The above algorithm calculates the relative depths of the object points, i.e., s1/s0, s4/s0, s2/s0, from their

corresponding image points p1, p4, p2 with respect to p0. Only the depth information is not sufficient for
shape recovery since the 3D model of the object contains x and y direction information as well. Thus, we use
the known focus length of the camera (obtained from camera parameter estimation described in the previous
section) to constraint the relative positions of the 3D points. That is, the focus length of the camera is used as a
factor to scale the displacement in the x and y directions with respect to the depth of the 3D point.

For example, suppose P0 and P1 are two 3D points, then we have

P0 ∼ s0p0 (10)

P1 ∼ s1p1 (11)

by the perspective projection. The ratio of P1 to P0 is given as

P1

P0
≈ s1P1

s0P0
=
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(12)

In the above equation, the z direction information is lost in the image coordinate system. To recover the 3D
shape of the object, the z coordinate of P0 is fixed as the focal length of the camera (in pixel), i.e., z = f or
P0 = [u0 v0 f ]T . Now, if P0 is used as a reference point as shown in Fig. 1, then we have

Pi =
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s0




ui

vi

f


 (13)

for i = 1, 2, 4.
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3.2 Registration and Pose Estimation

The goal of model registration is to combine two or more partial 3D models acquired from different viewpoints
to a complete 3D models. Usually the registration or pose estimation involve finding the rotation matrix and
translation vector for the transformation between two different coordinate systems. For any given two partial
3D models of an object, the overlapping parts are used to identify the corresponding 3D points for the two
models. The corresponding 3D points are then used to find the rotation matrix and translation vector.

Suppose there are two sets of 3D points to be registered. More precisely, if we want to find the rotation
matrix and translation vector for the data sets, {x1,x2, ...,xn} and {y1,y2, ...,yn}, where xi and yi are the
corresponding points, for i = 1, ..., n. Then the relationship between xi and yi can be written as

yi = Rxi + t (14)

Let the correlation matrix for the two data sets be

C =
n∑

i=1

wixiyT
i (15)

To find the rotation matrix R, singular value decomposition technique is used to rewrite C as C = UDVT by
Eq. (15). Since the rotation matrix must satisfy RRT = I, we have

R = U




1 0 0
0 1 0
0 0 det(UVT )


VT (16)

by Eq. (15). Finally, the translation vector t can be calculated by

t = ȳ −Rx̄ (17)

where x̄ and ȳ are the centroids of the two data sets, respectively [6].

3.3 Model Optimization

In this work, the 3D model is reconstructed using parallelism and orthogonality of an architectural scene. Thus,
selecting feature points (edge points) which form parallel or perpendicular lines is an important issue. In the
implementation, a graphical user interface is provided such that the user can manually select the corner points.
Since the selected points are not always accurate enough (for example, subpixel resolution is not possible and
the selection can be affected by the radial distortion of the camera), an automatic corner detection algorithm is
applied on the neighborhood of the selected points. Hough transform is then carried out to find more accurate
positions in subpixel resolution. For the images captured with short focal length, the lens radial distortion
parameter is approximated by line fitting and then used for image distortion correction.

To use parallelism, orthogonality constraints and force four corner points to be coplanar to create an opti-
mized 3D model, we first find the plane equations for the coplanar points, say A, B, C, D, using least squared
fitting. Then the four points are projected on the plane as points A′, B′, C ′, D′. Parallelism and orthogonality
constraints are applied on the above four points to obtain the points A′′, B′′, C ′′, D′′ which form a rectangle.
After the coplanar four points are determined, similar arguments apply to the planar surfaces which are parallel
and orthogonal to each other in order to satisfy the geometric constraints.

If the roof of a building contains different geometric primitives rather than rectangles (e.g., triangles or
trapezoids), parallelism and orthogonality constraints cannot be directly applied. In this case, a 3D model of the
lower part of the building is first reconstructed as a “base-model”, which typically contains two perpendicular
planar surfaces. The roof (i.e., upper part) of the building is then reconstructed using coplanarity, parallelism
and equidistance constraints on the image points corresponding to the roof and the 3D points on the base-model.
Commonly used equidistance constraints include the same length of the left and right sides of a triangle, and
the same length of the diagonals of a trapezoid.
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Figure 2: Graphics user interface

4 Experimental Results

The described algorithms are tested on a number of objects for the indoor environment and outdoor architectural
scenes. As shown in Fig. 2, a graphics user interface is developed to assist users to select approximate corner
points interactively for 3D model reconstruction. The first experiment is the 3D reconstruction of a building.
Fig. 2 shows the three images taken from different viewpoints. The images are used to create the partial 3D
shapes of the object individually. For each image, the corner points are selected manually by a user and the
positions are automatically refined by Hough transform. The reconstructed partial 3D models with texture
information using the acquired images are shown in Fig. 3. The complete 3D model after registration and
integration is shown in Fig. 4. Although plane fitting has been done on the object surface, rendering with
triangular mesh still cause some visual distortions.

For the structures of the objects containing non-rectangular surface patches, camera parameters and the
“base-models” are first obtained from the lower part of the objects. Additional image points associated with
the upper part of the object are then added with coplanarity and equidistance constraints. Fig. 6 shows the
reconstructed partial 3D models from the corresponding single input images shown in Fig. 5. We have tested
the proposed 3D model reconstruction approach on six outdoor architectural scenes and four indoor objects.
The small scale objects in the laboratory environment usually give better reconstruction results mainly because
of the controlled illumination conditions and the larger focal length used for image acquisition. For the outdoor
building reconstruction, careful selections of the initial corner points are mandatory since the images might
contain more complicate background scenes. Furthermore, the lens distortion has to be modeled for even close-
range photography with short focal length. Since the evaluation of the final reconstruction result is usually
based on the texture information of the object, novel views are best synthesized on the viewpoints closer to the
original acquired images.

5 Conclusion and Future Research

In this paper, we have presented a 3D model reconstruction system for architectural scenes using one or more
uncalibrated images. The images can be taken from off-the-shelf digital cameras. The feature points for 3D
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Figure 3: Partial 3D shapes of the first experiment

Figure 4: Complete 3D model of the first experiment

model reconstruction are selected by a user interactively through a graphical user interface. For a given set of
corner points from one viewpoint, parallelism, orthogonality and coplanarity constraints are applied to obtain
the partial 3D shape of the building. The complete (360 degrees) 3D model of the building is obtained by
registering the partial 3D models to a common coordinate system. Future research will focus on using additional
geometric constraints to create more detailed 3D models of architectural scenes. Whenever it is possible, texture
mapping which contains occluding objects such as trees will be avoided by using the images captured from
different viewpoints.
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