
Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005

Hand Tracking and Gesture Recognition for Human-Computer
Interaction

Cristina Manresa, Javier Varona, Ramon Mas and Francisco J. Perales

Unidad de Gráficos y Visión por Computador
Departamento de Matemáticas e Informática

Universitat de les Illes Balears
Edificio Anselm Turmeda, Crta. Valldemossa km 7.5

07122 – Palma de Mallorca - España

Received 4 February 2005; accepted 18 May 2005

Abstract
The proposed work is part of a project that aims at the control of a videogame based on hand gesture

recognition. This goal implies the restriction of real-time response and the use of unconstrained environments. In
this paper we present a new algorithm to track and recognise hand gestures for interacting with a videogame.
This algorithm is based on three main steps: hand segmentation, hand tracking and gesture recognition from
hand features. For the hand segmentation step we use the colour cue due to the characteristic colour values of
human skin, its invariant properties and its computational simplicity. To prevent errors from hand segmentation
we add the hand tracking as a second step. Tracking is performed assuming a constant velocity model and using
a pixel labeling approach. From the tracking process we extract several hand features that are fed into a finite
state classifier which identifies the hand configuration. The hand can be classified into one of the four gesture
classes or one of the four different movement directions. Finally, the system’s performance is evaluated by
showing the usability of the algorithm in a videogame environment.

Key Words: Hand Tracking, Gesture Recognition, Human-Computer Interaction, Perceptual User Interfaces.

1 Introduction

Nowadays, the majority of human-computer interaction (HCI) is based on mechanical devices such as
keyboards, mouses, joysticks or gamepads. In recent years there has been a growing interest in methods
based on computational vision due to its ability to recognise human gestures in a natural way [1]. These
methods use the images acquired from a camera or from a stereo pair of cameras as input. The main goal of
these algorithms is to measure the hand configuration at each time instant.

To facilitate this process many gesture recognition applications resort to the use of uniquely coloured
gloves or markers on hands or fingers [2]. In addition, using a controlled background makes it possible to
locate the hand efficiently, even in real-time [3]. These two conditions impose restrictions on the user and on
the interface setup. We have specifically avoided solutions that require coloured gloves or markers and a

 Correspondence to: <cristina.manresa@uib.es>

 Recommended for acceptance by <Perales F., Draper B.>
 ELCVIA ISSN: 1577-5097
 Published by Computer Vision Center / Universitat Autonoma de Barcelona, Barcelona, Spain

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/33157994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

97 Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005

controlled background because of the initial requirements of our application. It must work for different
people, without any complement on them and also for unpredictable backgrounds.

Our application uses images from a low-cost web camera placed in front of the work area, where the
recognised gestures act as the input for a computer 3D videogame. The players, rather than pressing buttons,
must use different hand gestures that our application should recognise. This fact, increases the complexity
since the response time must be very fast. Users should not appreciate a significant delay between the instant
they perform a gesture or motion and the instant the computer responds. Therefore, the algorithm must
provide real-time performance for a conventional processor. Most of the known hand tracking and
recognition algorithms do not meet this requirement and are inappropiate for visual interface. For instance,
particle filtering-based algorithms can maintain multiple hypotheses at the same time to robustly track the
hands but they need high computational demands [4]. Recently, several contributions for reducing the
complexity of particle filters have been presented, for example, using a deterministic process to help the
random search [5]. Also in [6], we can see a multi-scale colour feature for representing hand shape and
particle filtering that combines shape and colour cues in a hierarchical model. The system has been fully
tested and seems robust and stable. To our knowledge the system runs at about 10frames/second and does
not consider several hand states. However, these algorithms only work in real-time for a reduced size hand
and in our application, the hand fills most of the image. In [7], shape reconstruction is quite precise, a high
DOF model is considered, and in order to avoid self-occlusions infrared orthogonal cameras are used. The
authors propose to apply this technique using a colour skin segmentation algorithm.

In this paper we propose a real-time non-invasive hand tracking and gesture recognition system. In the
next sections we explain our method which is divided in three main steps. The first step is hand
segmentation, the image region that contains the hand has to be located. In this process, the use of the shape
cue is possible, but they vary greatly during the natural hand motion[8]. Therefore, we choose skin-colour as
the hand feature. The skin-colour is a distinctive cue of hands and it is invariant to scale and rotation. The
next step is to track the position and orientation of the hand to prevent errors in the segmentation phase. We
use a pixel-based tracking for the temporal update of the hand state. In the last step we use the estimated
hand state to extract several hand features to define a deterministic process of gesture recognition. Finally,
we present the system’s performance evaluation results that prove that our method works well in
unconstrained environments and for several users.

2 Hand Segmentation Criteria

The hand must be located in the image and segmented from the background before recognition. Colour
is the selected cue because of its computational simplicity, its invariant properties regarding to the hand
shape configurations and due to the human skin-colour characteristic values. Also, the assumption that
colour can be used as a cue to detect faces and hands has been proved useful in several publications [9,10].
For our application, the hand segmentation has been carried out using a low computational cost method that
performs well in real time. The method is based on a probabilistic model of the skin-colour pixels
distribution. Then, it is necessary to model the skin-colour of the user’s hand. The user places part of his
hand in a learning square as shown in Fig. 1. The pixels restricted in this area will be used for model
learning. Next, the selected pixels are transformed from the RGB-space to the HSL-space and the chroma
information is taken: hue and saturation.

Figure 1: Application interface and skin-colour learning square.

Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005 98

We have encountered two problems in this step that have been solved in a pre-processing phase. The
first one is that human skin hue values are very near to red colour, that is, their value is very close to 2π
radians, so it is difficult to learn the distribution due to the hue angular nature that can produce samples on
both limits. To solve this inconvenience the hue values are rotated π radians. The second problem in using
HSL-space appears when the saturation values are close to 0, because then the hue is unstable and can cause
false detections. This can be avoided discarding saturation values near 0.

Once the pre-processing phase has finished, the hue, H , and saturation, , values for each selected

pixel are used to infer the model, that is,
S

),...,(1 nxxx rrr
= , where n is the number of samples and a sample is

. A Gaussian model is chosen to represent the skin-colour probability density function. The
values for the parameters of the Gaussian model (mean,

),(iii SHx =
r

x , and covariance matrix,) are computed from the
sample set using standard maximum likelihood methods [11]. Once they are found, the probability that a new
pixel,

Σ

)S,(Hx =
r

, is skin can be calculated as

() Σ
skin is

22

1)(
π

=xP r))()((2
1 T-1Σ xxxxe −−−

rr

. (1)

Finally, we obtain the blob representation of the hand by applying a connected components algorithm to
the probability image, which groups pixels into the same blob. The system is robust to background changes
and low light conditions. If the system gets lost, you can initialise it again by going to the hand start state.
Fig. 2 shows the blob contours found by the algorithm for different environment conditions where the system
has been tested.

Figure 2: Hand contours for different backgrounds (1st row) and different light conditions (2nd row).

3 Tracking Procedure

USB cameras are known for the low quality images they produce. This fact can cause errors in the hand
segmentation process. In order to make the application robust to these segmentation errors we add a tracking
algorithm. This algorithm tries to maintain and propagate the hand state over time.

99 Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005

We represent the hand state in time , t)(tsr , by means of a vector,))(),(),(()(ttwtpts αrrr
= , where

),(yx ppp =
r

 is the hand position in the 2D image, the hand size is represented by),(hww =
r

, where is
the hand width and h is the hand height in pixels, and, finally,

w
α is the hand’s angle in the 2D image plane.

First, from the hand state in time t we built a hypothesis of the hand state, h))t(),(),1((twtp αrrr
+= , for

time applying a simple second-order autoregressive process to the position component 1+t

)1()()()1(−−=−+ tptptptp rrrr
. (2)

Equation (2) expresses a dynamical model of constant velocity. Next, if we assume that at time t, M
blobs have been detected, { }Mj bbbB ,,,,1 KK= , where each blob b corresponds to a set of connected

skin-colour pixels, the tracking process has to set the relation between the hand hypothesis, , and the
observations, , over time.

j

h
r

jb

In order to cope with this problem, we define an approximation to the distance from the image pixel,

),(yxx =
r

, to the hypothesis
r

. First, we normalize the image pixel coordinates h

 ())1(+−⋅= tpxRn rrr
, (3)

where R is a standard 2D rotation matrix about the origin, α is the rotation angle, and),(yx nnn =
r

 are the

normalized pixel coordinates. Then, we can find the crossing point, c),(yx cc=
r

, between the hand
hypothesis ellipse and the normalized image pixel as follows

ϑ
ϑ

sin
cos
⋅=
⋅=

hc
wc

y

x , (4)

where ϑ is the angle between the normalized image pixel and the hand hypothesis. Finally, the distance
from an image pixel to the hand hypothesis is

() cnhxd rrr
−=, . (5)

This distance can be seen as the approximation of the distance from a point in the 2D space to a
normalized ellipse (normalized means centered in origin and not rotated). From the distance definition of (5)
it turns out that its value is equal or less than 0 if xr is inside the hypothesis , and greater than 0 if it is
outside. Therefore, considering the hand hypothesis h and a point

h
xr belonging to a blob , if the distance

is equal or less than 0, we conclude that the blob supports the existence of the hypothesis and it is
selected to represent the new hand state. This tracking process could also detect the presence or the absence
of the hand in the image [12].

b
b h

Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005 100

 Figure 3: Gesture alphabet and valid gesture transitions.

4 Gesture Recognition

Our gesture alphabet consists in four hand gestures and four hand directions in order to fulfil the
application’s requirements. The hand gestures correspond to a fully opened hand (with separated fingers), an
opened hand with fingers together, a fist and the last gesture appears when the hand is not visible, in part or
completely, in the camera’s field of view. These gestures are defined as Start, Move, Stop and the No-Hand
gesture respectively. Also, when the user is in the Move gesture, he can carry out Left, Right, Front and Back
movements. For the Left and Right movements, the user will rotate his wrist to the left or right. For the Front
and Back movements, the hand will get closer to or further from the camera. Finally, the valid hand gesture
transitions that the user can carry out are defined in Fig. 3.

The process of gesture recognition starts when the user’s hand is placed in front of the camera’s field of

view and the hand is in the Start gesture, that is, the hand is fully opened with separated fingers. In order to
avoid fast hand gesture changes that were not intended, every change should be kept fixed for 5 frames, if
not the hand gesture does not change from the previous recognised gesture.

To achieve this gesture recognition, we use the hand state estimated in the tracking process, that is,

),,(αwps rrr
= . This state can be viewed as an ellipse approximation of the hand where),(yx ppp =

r
 is the

ellipse center and),(hww =
r

 is the size of the ellipse in pixels. To facilitate the process we define the major
axis lenght as M and the minor axis lenght as . In addition, we compute the hand’s blob contour and its
corresponding convex hull using standard computer vision techniques. From the hand's contour and the
hand’s convex hull we can calculate a sequence of contour points between two consecutive convex hull
vertices. This sequence forms the so-called convexity defect (i.e., a finger concavity) and it is possible to
compute the depth of the ith-convexity defect, . From these depths it is possible to compute the depth

m

id

101 Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005

Figure 4: Extracted features for the hand gesture recognition. In the right image, u and indicate the start
and the end points of the ith-convexity defect, the depth, , is the distance from the farthermost point of
the convensity defect to the convex hull segment.

i iv

id

h
d

v

u
px, py

α

m

M

average, d , as a global hand feature, see (6), where is the total number of convexity defects in the hand’s
contour, see Fig. 4.

n

i
n

1

=t
n

start

∑
=t ..0

∑
=

=
n

idd
..0

. (6)

 The first step of the gesture recognition process is to model the Start gesture. The average of the depths
of the convexity defects of an opened hand with separated fingers is larger than in an open hand with no
separated fingers or in a fist. This feature is used for differentiating the next hand gesture transitions: from
Stop to Start; from Start to Move; and from No-Hand to Start. However, first it is necessary to compute the
Start gesture feature, T . Once the user is correctly placed in the camera’s field of view with the hand
widely opened the skin-colour learning process is initiated. The system also computes the Start gesture
feature for the n first frames,

start

()

2
..0

1

start

∑
= n

td
T . (7)

Once the Start gesture is identified, the most probable valid gesture change is the Move gesture.
Therefore, if the current hand depth is less than T the system goes to the Move hand gesture. If the
current hand gesture is Move the hand directions will be enabled: Front, Back, Left and Right.

If the user does not want to move in any direction, he should set his hand in the Move state. The first

time that the Move gesture appears, the system computes the Move gesture feature, T , that is an average
of the approximated area of the hand for n consecutive frames,

move

()⋅=
n

n tmtMT 1
move)(. (8)

In order to recognize the Left and Right directions, the calculated angle of the fitted ellipse is used. To
prevent non desired jitter effects in orientation, we introduce a predefined constant T . Then, if the angle jitter

Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005 102

of the ellipse that circumscribes the hand, α, satisfies α , Left orientation will be set. If the angle of

the ellipse that circumscribes the hand, α, satisfies α
jitterT>

jitterT−< , Right orientation will be set.

In order to control the Front and Back orientations and to return to the Move gesture the hand must not

be rotated and the Move gesture feature is used to differentiate these movements. If T mMC ⋅<⋅ frontmove
succeeds the hand orientation will be Front. The Back orientation will be achieved if M

m>backC .

The Stop gesture will be recognised using the ellipse’s axis. When the hand is in a fist, the fitted ellipse

is almost like a circle and m and M are practically the same, that is, when stopCmM <− . , C and

are predefined constants established during the algorithm performance evaluation. Finally, the No-
Hand state will appear when the system does not detect the hand, the size of the detected hand is not large
enough or when the hand is in the limits of the camera’s field of view. The next possible hand state will be
the Start gesture and it will be detected using the transition procedure from Stop to Start explained earlier on.

frontC back

stopC

Some examples of gesture transitions and the recognised gesture results can be seen in Fig. 5. These

examples are chosen to show the algorithm robustness for different lighting conditions, hand configurations
and users. We realize that a correct learning of the skin-colour is very important. If not, some problems with
the detection and the gesture recognition can be encountered. One of the main problems with the use of the
application is the hand control, maintaining the hand in the camera’s field of view and without touching the
limits of the capture area. This problem has been shown to disappear with user’s training.

Figure 5: Gesture recognition examples for different lighting conditions, users and hand configurations.

103 Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005

5 System's performance evaluation
In this section we show the accuracy of our hand tracking and gesture recognition algorithm. The

application has been implemented in Visual C++ using the OpenCV libraries [13]. The application has been
tested on a Pentium IV running at 1.8 GHz. The images have been captured using a Logitech Messenger
WebCam with USB connection. The camera provides 320x240 images at a capture and processing rate of 30
frames per second.

Gesture Recognition

0
50

100
150
200
250
300
350
400

S M L R F B P N

Hand gestures

N
º o

f t
es

ts

Total of gestures
Correct Gestures

Figure 6: System's performance evaluation results.

For the performance evaluation of the hand tracking and gesture recognition, t
on a set of 40 users. Each user has performed a predefined set of 40 gestures an
gestures to evaluate the application results. It is natural to think that the system’s a
controlling the performance of the desired user movements for managing the v
included all the application’s possible states and transitions. Figure 6 shows the
results. These results are represented using a graph with the application states, su
columns and the number of appearances of the gesture as rows. The columns are p
first column is the number of tests of the gesture that has been correctly identified;
total number of times that the gesture has been carried out. As it can be seen in Fi
gesture works well for a 98% of the cases.

6 Conclusions

In this paper we have presented a real-time algorithm to track and recognise
computer interaction within the context of videogames. We have proposed an algor
hand segmentation and tracking for gesture recognition from extracted hand mo
system’s performance evaluation results have shown that the users can substitu
metaphors with this low-cost interface.

The experiments have confirmed that continuous training of the users results

better performances. Also the system has been tested in indoor laboratory w
scenario and low light conditions. In these cases the systems run well, with the lo
skin background situations or several hands intersecting in the same space and t
improved to discard bad classifications situations due to the segmentation proced
user can restart the system only going to the Start hand state.
S : START

M: MOVE

L : LEFT

R: RIGHT

F: FRONT

B: BACK

P: STOP

N: NO HAND
he system has been tested
d therefore we have 1600
ccuracy will be measured
ideogame. This sequence
 performance evaluation
ch as Start or Move, as

aired for each gesture: the
 the second column is the
g. 6, the hand recognition

hand gestures for human-
ithm based on skin colour
rphological features. The
te traditional interaction

in higher skills and, thus,
ith changing background
gical exception of similar
ime. The system must be
ure. But, in this case, the

Manresa et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):96-104, 2005 104

Acknowledgements

The projects TIC2003-0931 and TIC2002-10743-E of MCYT Spanish Government and the European
Project HUMODAN 2001-32202 from UE V Program-IST have subsidized this work. J.Varona
acknowledges the support of a Ramon y Cajal fellowship from the spanish MEC.

References

[1] V.I. Pavlovic, R. Sharma, T.S Huang, “Visual interpretation of hand gestures for human-computer
interaction: a review”, IEEE Pattern Analysis and Machine Intelligence, 19(7): 677 – 695, 1997 .

[2] R. Bowden, D. Windridge, T. Kadir, A. Zisserman, M. Brady, “A Linguistic Feature Vector for the
Visual Interpretation of Sign Language”, in Tomas Pajdla, Jiri Matas (Eds), Proc. European
Conference on Computer Vision, ECCV04, v. 1: 391-401, LNCS3022, Springer-Verlag, 2004.

[3] J. Segen, S. Kumar, “Shadow gestures: 3D hand pose estimation using a single camera”, Proc. of the
Computer Vision and Pattern Recognition Conference, CVPR99, v. 1: 485, 1999.

[4] M. Isard, A. Blake, “ICONDENSATION: Unifying low-level and high-level tracking in a stochastic
framework”, Proc. European Conference on Computer Vision, ECCV98, pp. 893-908, 1998.

[5] C. Shan, Y. Wei, T. Tan, F.Ojardias , “Real time hand tracking by combining particle filtering and
mean shift”, Proc. Sixth IEEE Automatic Face and Gesture Recognition, FG04, pp: 229-674, 2004.

[6] L. Bretzner, I. Laptev, T. Lindeberg , “Hand Gesture Recognition using Multi-Scale Colour Features,
Hierarchical Models and Particle filtering”, Proc. Fifth IEEE International Conference on Automatic
Face and Gesture Recognition, FRG02, 2002 IEEE.

[7] K.Ogawara, K. Hashimoto, J. Takamtsu, K. Ikeuchi, “Grasp Recognition using a 3D Articulated
Model and Infrared Images”, Institute of Industrial Science,. Univ. of Tokyo, Tokyo, Japan.

[8] T. Heap, D. Hogg, “Wormholes in shape space: tracking through discontinuous changes in shape”,
Proc. Sixth International Conference on Computer Vision, ICCV98, pp. 344-349, 1998.

[9] G.R. Bradski, “Computer video face tracking for use in a perceptual user interface,” Intel Technology
Journal, Q2'98, 1998.

[10] D. Comaniciu, V. Ramesh, “Robust detection and tracking of human faces with an active camera”
Proc. of the Third IEEE International Workshop on Visual Surveillance, pp: 11-18, 2000.

[11] C.M. Bishop, Neural Networks for Pattern Recognition. Clarendon Press, 1995.
[12] J. Varona, J.M. Buades, F.J. Perales, “Hands and face tracking for VR applications”, Computers &

Graphics, 29(2):179-187, 2005.
[13] G.R. Bradski, V. Pisarevsky, “Intel's Computer Vision Library”, Proc of IEEE Conference on

Computer Vision and Pattern Recognition, CVPR00, v. 2: 796-797, 2000.

