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 Abstract  
This paper describes an improvement of a classical energy-based model to simulate elastically deformable solids. 
The classical model lacks the ability to prevent the collapsing of solids under influence of external forces, such 
as user interactions and collision. A thorough explanation is given for the origins of instabilities, and extensions 
that solve the issues are proposed to the physical model. Within the original framework of the classical model a 
complete restoration of area and volume is introduced. The improved model is suitable for interactive simulation 
and can recover from volumetric collapsing, in particular upon large deformation. 
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1 Introduction 
Deformable objects seem to have gained increasing interest during recent years. Part of this success comes 
from a desire to interact with objects that resemble those in real life, which all seem to be deformable at 
some level. The next step in interactive applications, such as computer games, is a more expansive 
integration of complex physical objects such as deformable objects. Because CPUs and GPUs today are both 
advanced and powerful, it is possible to simulate and animate deformable objects interactively. 

This paper builds on work done by Terzopoulos et al. in 1987 [16], which focused on a generic model for 
simulating elastically deformable objects. The application is mainly objects of a very soft nature due to the 
elastic properties of the constraint structure. In this model problems with keeping integrity arise when 
simulating deformable solids. We will explain the origins of the instabilities that cause the solids to collapse. 
An introduction of area and volume restoration to the model is made that deal with the integrity issues. The 
result is an improved model that is suitable for a satisfactory simulation of solids. 

1.1  Background 

In 1987 Terzopoulos et al. presented a continuum model for simulating elastic curves, surfaces, and solids 
[16], which pioneered the field of computer graphics by introducing physically-based simulation. In the 
following year the model was extended to include both rigid and deformable components, which made the 

 
 Correspondence to: micky@kelager.dk 

 Recommended for acceptance by Perales F., Draper B. 
 ELCVIA ISSN: 1577-5097 
 Published by Computer Vision Center / Universitat Autonoma de Barcelona, Barcelona, Spain 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/33157989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


33  Kelager et al.  / Electronic Letters on Computer Vision and Image Analysis 5(3):32-43, 2005 

objects appear less elastic [17]. Concepts such as viscoelasticity, plasticity, and fracture were also added into 
the model [15]. 

In [1] a modified Conjugate Gradient method with integrated contact forces is used to increase 
performance with collision handling. In [18] energy-based preservation of distance, surface area, and volume 
were introduced, which is similar to the way we use area and volume restoration in this paper. 

In the area of geometrical approaches Provot used a relaxation-based method back in 1995 [13] to solve a 
system of constraints, and gained significant performance improvements. In [2] the relaxation-based method 
was introduced into in the impulse-based domain. In [7, 20] the iterative SHAKE and RATTLE methods 
from molecular dynamics were introduced into the area of physically-based simulation and animation. Both 
methods are based on the Verlet integration scheme. 

For better visual results of large deformations, stiffness warping [10] was used to separate the rotational 
element from the deformable motion. The stiffness warping method was extended in [11] to include 
plasticity, fracture, and a new method for cracking in a coupled mesh. 

In [6] integrity problems upon large deformations were handled by using a finite element method. It was 
done by using a diagonalization procedure within the tetrahedral mesh, which meant that the method could 
handle extreme cases such as inverted elements. This resembles the volume restoring technique that we are 
using in this paper. 

1.2  Motivation 

The physically-based model for simulating elastically deformable objects, presented in [16], is capable of 
describing deformable curves, surfaces and volumes. The method is still of interest today because it is firmly 
based on Newtonian mechanics. Many recent methods primarily use geometry-based procedures to achieve 
performance when imitating the complex behavior of deformable objects [10, 18, 11]. Physically accurate 
models convey a more believable behavior and with the increase in processing power they become more 
relevant. 

The integrity problems that are inherent in the original model make it unsuitable for simulating 
deformable solids in practice. Restoration of integrity is important to give a realistic impression to people 
who interact with them. With the restoration the objects will be forced to seek toward their original volume 
size. This should not be confused with volume preservation, which insures that the overall volume of the 
object never changes. The extensions are achieved by using concepts from the framework of the original 
model, with the price of a constant increase of calculations per particle. 

1.3  Overview 

In section 2 we revisit the theory of elastically deformable models, with focus on solids. The theory serves as 
a foundation for understanding the following sections. Section 3 reveals and explains the instabilities of the 
classical model. In section 4 we introduce our improvements to area and volume restoration, and in section 5 
we extend the model with the ability to resist collapsing. In section 6 we present the results of our 
improvements and perform comparisons visually between the improved and the classical model. 

2 Elastically Deformable Solids 
 The theory of deformable models is based on elasticity theory. From physical laws [16] have extrapolated a 
model that governs the movements of elastically deformable objects. 

A point in a solid is described by the intrinsic coordinates . A deformable solid is thought of 
as having a natural rest state, where no elastic energy is inherent. When the solid is deformed, it takes on a 
different shape than its rest shape, and distances between nearby points are either stretched or compressed 
with the deformation. This ultimately creates elasticity that results in internal forces that will seek to 
minimize the elastic energy. The deformation will evolve over time and can be described by the time-varying 

1 2 3[ , , ]a a a=a
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positional vector function ( ) ( ) ( ) ( )[ ]1 2 3, , , , ,t r t r t r t=r a a a a, , which is defined in 3-dimensional Euclidian 
space. The evolving deformation is independent of the rigid body motion of the solid. The equations 
governing the motion of particles in a deformable solid are obtained from Newtonian mechanics, and given 
by 

 
( ) ( ), t

t t t
δε

µ γ
δ

∂ ∂ ∂
+ + =
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rr r
f r
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where  is the position of the particle, , at time t , ( ), tr a a ( )µ a  is the mass density, ( )γ a  is the damping 
density, and the right hand side represents the sum of externally applied forces. The third term on the left 
hand side of (1) is called a variational derivative and represents the internal elastic energy. ( )ε r  is a 
functional that measures the potential energy that builds up when the solid is deformed. 

2.1  Energy of Deformation 

A method is needed to measure the deformation energies that arise when a solid deforms. For this task, we 
use differential geometry. It is convenient to look at arc-lengths on curves, running along the intrinsic 
directions of the solid. A way of measuring the directions is specified by the metric tensor also known as the 
first fundamental form 
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which is a symmetric tensor. The diagonal of the tensor represents length measurements along the coordinate 
directions from the particle in question. The off-diagonal elements represent angle measurements between 
the coordinate directions. When measuring deformation energy in a solid, we are interested in looking at the 
change of the shape, with respect to the natural rest shape, which is described by . The energy of 

deformation, , can be described by the weighted Hilbert-Schmidt matrix norm of the difference between 
the metric tensors in the deformed and rest states 

0
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where  is the domain of the deformable solid and  is a user defined tensor that weights each of the 
coefficients of the metric. By using the Euler-Lagrange equation from variational calculus on 

Ω η

( )S r  in (3) a 
minimizing term for the energy is obtained 
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The -tensors represent the comparison between the deformed state and the rest state of the solid. When an 
element in α  becomes positive, it means that the corresponding constraint has been stretched and it 
converges to its rest length by shrinking. Likewise, when an element becomes negative, the constraint has 
been compressed and it converges to its rest length by growing. 

α

2.2  Discretization 

The deformable object is continuous in the intrinsic coordinates. To allow an implementation of deformable 
solids, the object is discretized into a regular 3D grid structure, where grid nodes represent the particles 
which will make up a solid. The grid has three principal directions called l , , and n . Particles in the grid m
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are uniformly distributed with spacings in each of the three directions, given by , , and . The number 
of particles in each of the directions are designated 

1h 2h 3h
L , M , and . N

The model requires that derivatives are calculated in the intrinsic directions of the object. For this purpose 
we use finite difference operations to achieve the desired derivative approximations [3]. Replacing the 
derivatives with the corresponding difference operators yields the discrete equation for the elastic force  e

      where     [ ]
3

, 1

, , ( )[ , , ],i
i j

l m n D l m n−
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where the superscripts  and  designates forward and backward differences, respectively. The tensor field 
 is also discretized using finite differencing 

+ −
α
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To solve the equations for all particles at the same time, the values in the positional grid, , and the 
energy grid, , can be unwrapped into -dimensional vectors, 

r
e LMN r  and e . With these vectors, the entire 

system of equations can be written as 

 ( )=e K r r , (7) 

where ( )K r  is an  sized stiffness matrix, which has desirable computational properties such as 
sparseness and bandedness. We introduce the diagonal 

LMN LMN×

LMN LMN×  mass matrix , and damping matrix 
, assembled from the corresponding discrete values of  and , respectively. The equations 

of the elastically deformable objects (1) can now be expressed in grid vector form, by the coupled system of 
second-order ordinary differential equations 

M
C [ , , ]l m nµ [ , , ]l m nγ

 ( )
2

2t t

∂ ∂
+ +

∂ ∂

r r
M C K r r = f . (8) 

With these equations it is possible to implement real-time dynamic simulations of deformable solids. To 
evolve the solid through time we use the semi-implicit integration method described in [16]. The time 
derivatives in (8) can be approximated by second and first order central differencing [3]. Further more the 
desirable properties of the stiffness matrix indicate that a relaxation method, such as the conjugate gradient 
[14], can be utilized. 

3 Instabilities 

Notions from differential geometry are used as a tool to measure deformation of an elastic object. For solids 
the  metric tensors are sufficient to distinguish between the shapes of two objects. However, the metric 
tensor of a solid is not sufficient to compute the complex particle movements of a deformed solid, seeking 
towards its resting shape. The discrete off-diagonal components of (2) are the cosine to the angle between 
directions through the dot product 

3 3×

 cos , 0θ θ π⋅ = ≤ ≤v w v w . (9) 

The angle between two vectors is not dependent on their mutual orientation, as verified by the domain of θ  
in (9). This leads to problems with area restoration on the sides of grid cubes. Figure 1(a) illustrates this 
instability. The bold lines and the angle between them form the natural condition. If particle  is moved 
towards particle , it will only be forced back towards its resting position when 

A
B 0 θ π< < , as depicted in 

case 1. If 0θ π θ= ∨ =  then the elastic force is ambiguously defined, as in case 2. If the particle reaches 
beyond the opposite diagonal, the elasticity will now push particle  into , as illustrated in case 3. This is A B



Kelager et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):32-43, 2005       36 

clearly a problem, as it can reduce the surface into a curve. The original model [16] suffers from this 
instability.

 

(a) The surface patch will collapse to a 
curve, when a particle crosses the opposite 

diagonal. 

 

 

 (b) Missing spatial diagonal constraint. 

 

Figure 1: Constraint instabilities. 

 

Internal constraints are enforced by comparing the deformed and undeformed metric tensors, which 
means that the model only looks at distances and angles between adjacent particles. As a result of the lack of 
spatial constraints, as depicted on Figure 1(b), volumetric instability issues arise. This leads to problems with 
solids not being able to restore their original volume. It turns out that the volume restoration problem is more 
significant than the problem with area restoration, and has a bigger impact on object integrity. 

4 Improvements 
To handle the integrity instabilities of the discrete grid cubes we extend the elasticity constraints in order to 
improve their ability to prevent collapsing. Basically, the extension will be done by both replacing and 
adding new constraints. The metric tensor is redesigned to stabilize the area restoration while we introduce a 
new spatial diagonal metric to handle volume restoration. 

4.1  Improved Area Restoration 

Area restoration concerns 2 dimensions, thus in the following we will focus on the metric tensor for 
deformable surfaces. For a surface, the tension constraints on a given particle are the four constraints given 
by the comparison between its 2  metric tensors G  and . The comparison between the diagonal 
elements defines the length constraints along the intrinsic coordinate directions. The comparison between the 
off-diagonal elements represents pairs of angular constraints between two intrinsic directions, which imply 
resistance to shearing within the local particle structure. Since  the idea is to replace the pair of 
angular constraints with two diagonal length constraints. These constraints will reach from the particle at 

 to the diagonally opposite particles at [ 1

2× 0G

ij jiG G=

[ , ]m n , 1m n ]+ +  and [ 1, 1m n ]− + , as depicted in Figure 2. The 
diagonal length constraints will implicitly work as angular constraints that can account for all  degrees. 
The directions along the new constraints will be considered as new intrinsic directions,  and . Writing 

out  in (3), for the case of surfaces, with the new directions yields 

360

1da 2da
( )S r
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where the elements  and  now holds the rest states of the new diagonal constraints. Using variational 
calculus on (10) results in the following discretization for the elastic force , 
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Notice that new difference operators arise with the new directions. These operators work exactly as the 
operators in the original directions. E.g. the new first order forward difference operators on the positional 
field  becomes r

 ( ) [ ] [ ]( )1

1 1 1, 1 ,d dD h m n m n+ −= + + −r r r      and     ( ) [ ] [ ]( )1
2 2 1, 1 ,d dD h m n m n+ −= − + −r r r , (13) 

where 2

1 2 1d dh h h h= = + 2

2  is the grid distance in both diagonal directions.  

 

  
(a) Original metric tensor    (b) Extended metric tensor 

 
Figure 2: (a) The angular constraints are replaced by  (b) two new diagonal constraints that will define the 

angular constraints implicitly. 

 

The replacements to the metric tensor will improve the area restoration. However, collapses, or folds, 
within discrete grid patches can occur if 12 21 11 22η η η η+ < + , thus choosing  wisely is important. η

The improvements to the metric tensor for surfaces can likewise be applied to deformable solids in a straight 
forward manner. The off-diagonal elements of the 3 3×  metric tensor contain pair-wise expressions of the 
angular constraints between two of the three directions. These pairs can each be replaced by two diagonal 
length constraints. The extended metric tensor for solids will now span area restoration in the three directions 
of a discrete grid cube. When the extended metric tensor is applied to all particles of the deformable solid, 
the result will be that all grid patches have gained the desired area restoration. 
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4.2  Volume Restoration 

Area restoration can keep grid cube patches from collapsing. However, this is not always enough to keep the 
cubes from collapsing. If a particle is being forced along its spatial diagonal, the result of the area restoration 
will normally push the particle back to its relative point of origin. Yet, if the force is strong enough to push 
the particle beyond the center of the cube, the area restoration will still succeed, but the restoring of the grid 
patches will now push the particle further along the diagonal. This is an analogy to the instability problem 
discussed in section 3. 

To implement volume restoration, we introduce the spatial diagonal metric, V , which is a  tensor. 
The four elements of V  represent length constraints that will be spatially diagonal, meaning they will span 
grid cubes volumetrically, as depicted in Figure 3(a). 

2 2×

 1 1 2 2

3 3 4 4

v v v v

v v v v

D D D D
D D D D

+ + + +

+ + + +

⋅ ⋅
≡

⋅ ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

V , (14) 

where  are the four new first order forward difference operators along the new spatial diagonal 
directions. The spatial diagonal constraints can be chosen to favor any directions, as long as the contributions 
from the four particles on a grid cube patch will end up covering the cube symmetrically, as depicted in 
Figure 3(b). 

( )1..4vD+ u

The difference operators are designed similarly to the two dimensional case in (13). To implement volume 
restoration into the model, the discrete elastic force  must be extended to contain the contributions 
provided by the spatial diagonal metric. This can likewise be shown to be as straight forward as the addition 
of the extended metric tensor. 

[ , , ]l m ne

 

(a)   (b)  
 

Figure 3: Spatial length constraints for solids. (a) The four constraints reach out from the center. (b) The 
constraint contribution from four particles on a single cube patch renders symmetric behavior. 

5 Implosions 
With the improved area and volume restorations we can restore the shape of the discrete grid cubes after 
deformation. This is an important improvement towards keeping the integrity of a deformable solid intact. 
Another integrity issue still exists since a simulated solid is still unable to prevent implosions. We define an 
implosion as when grid cubes enter their adjacent grid cubes through non-mutual particles, as depicted in 
Figure 4(a). Implosions happen upon large deformation, which typically are caused by heavy external forces, 
e.g. reaction to collisions and aggressive user interactions. Implosions can also be described as internal self-
intersections, thus self-intersection detection can be utilized as a tool to prevent implosions. For details on 
the area of self-intersection we recommend papers such as [5, 9, 19, 8]. 
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We seek a mechanism that binds adjacent grid cubes together, in such a way that if implosions occur, we 
can disperse self-intersecting cubes. This is not a method that can prevent self-intersections, but it can restore 
the integrity of the solid upon implosions. We can reuse the constraint system that we have been working 
with so far, and thus reduce the computational cost and memory use significantly, compared to the extra load 
we would introduce into the system, if we had implemented a standard self-intersection detection algorithm. 

We introduce the pillar tensor , which is based upon the discrete metric tensor G , but extended to use 
first order central difference operators. For reasons of clarity we will limit  only to use the length 
constraints along the diagonal 
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The effect of using central difference operators results in a convincing way to bind adjacent grid cubes 
together, see Figure 4(b). The pillar tensor is yet another addition to the extended elasticity term and is 
handled exactly the same way as the area and volume restorations. Since every grid particle will be extended 
with the contribution of the pillar tensor, the combined range of  will overlap all grid cubes along the 
intrinsic directions. The effect of using the pillar tensor is that grid cubes will repel each other in situations of 
overlapping. 

P

   
                (a) Implosion.              (b) Effect of central differences. 

 
Figure 4: (a) Grid cube implosion is avoided using (b) Central differences that bind adjacent grid cubes 

together. 

 

In some cases of extreme external forces the pillar contribution is not enough to completely prevent grid 
cubes from overlapping. This is due to the sum of external forces is exceeding the internal elastic forces. One 
way to handle this is to strengthen the overall weight of the pillar tensor. However, as this can lead to 
numerical instabilities, the pillar tensor can implement the missing off-diagonal elements from the extended 
metric. To further prevent implosions an additional tensor can be added that implements a central difference 
spatial diagonal metric. 
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6 Results 

We have implemented the original model from [16] with our improvements of area and volume 
restoration and with the simple prevention of implosion, as described in section 4 and 5, respectively. The 
implementation is publicly available from [4]. Experiments have revealed that the effects of the spatial 
diagonal metric do not always succeed satisfactorily in moving particles back to their natural location. In 
some situations new energy equilibriums arise unnaturally. We have realized that the constraints from the 
area restoration can work against the volume restoration. To counteract this problem, we have simply 
squared the constraint forces of the spatial diagonal metric tensors, to make sure they prevail. In general this 
means that volume restoration should have a higher precedence than area restoration, which in turn should 
have a higher precedence than distance restoration. Numerical instabilities tend to occur when too large 
parameter values are used, such as particle mass, time step, and constraint strength. This is likely a problem 
with the semi-implicit integrator. 

We have performed visual comparisons between the original and our improved model to show the 
advantage of handling the integrity instabilities. In Figure 5, still frames of a small box that is influenced by 
gravity and collides with a plane are compared frame to frame between the two models. Primarily due to the 
lack of volume restoration, the constraints of the original model simply cannot keep the shape of the discrete 
grid cubes. In Figure 6 we compare two rubber balls with different particle mass. The rubber ball in Figure 
6(a) is simulated using the original model and fails to maintain its integrity, thus the ball collapses on itself. 
The rubber ball in Figure 6(b) is simulated using the improved model with the same parameters, and the 
integrity of the ball is now strong enough to stay solid. In Figure 7, a test of how well the two models can 
recover from a sudden aggressive deformation is performed. The original model fails its attempt at complete 
recovery, whereas the improved model actually performs its recovery convincingly. 

The improved model enables real-time simulation of situations that are impossible with the original 
model. In Figure 8, a soft solid is depicted. The solid has been constrained to the ground, and in three of the 
top corners. Pulling the free top corner downwards results in a large deformation and renders convincing 
material buckling. In Figure 9, the true strength of the pillar tensor contribution is illustrated, showing an 
effect of inflation. First the overall constraint strength is at a minimum and is then increased in the following 
frames. In Figure 10, a soft solid is constrained to the ground, and being twisted by its top face. The sides of 
the deformable solid skew as expected of a soft body like pudding. In Figure 11, a large water lily is 
deformed when resting on pearls. The improved model performs a great job in keeping the water lily fluffy. 

7 Conclusion 

The original model presented in [16] for simulating elastically deformable solids turned out to be 
insufficient for achieving realism. Even extremely modest external forces applied to the solids would ruin 
their integrity. In this paper we have shown how replacements to the metric tensor can be implemented to 
improve area restoration, and how to implement the missing volume restoration. Furthermore we have shown 
how to handle internal self-intersection using the framework from the original model. Even though the 
original model is dated back to 1987 it is still competitive in the field of physically-based simulation. Visual 
comparisons have revealed that our improvements to the model provide deformable solids with the ability to 
keep their integrity, and thus the ability to handle large deformations in real-time without collapsing. Our 
improved model is a viable alternative to other methods for simulating deformable solids. 

Interesting challenges for future work include using unstructured meshes instead of the regular 3D grid. 
However, this will complicate the use of finite difference operators when approximating derivatives. 
Working with solids gives the occasion to use tetrahedral meshes and the finite element method. The 
problem of generating tetrahedral meshed from closed 2D manifolds can be solved using the approach 
described in [12]. The advantage of the regular grid approach, taken by this model, compared to using a 
tetrahedral mesh is that fewer elements are needed to represent the deformable solid.  It is also possible that 
other integration procedures can perform better in terms of numerical stability and thus an analysis of this 
field might be beneficial. 
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(a)  

(b)   
 

Figure 5: A small box is influenced by gravity and collides with a plane. (a) The three stills illustrate the 
original model, and  (b) the frames from the improved model are shown. 

 

(a)   (b)  
 

Figure 6: Rubber balls. (a) Illustrates the situation from the original model, where the ball is unable to 
maintain its integrity, (b) the same situation is depicted, but simulated using the improved model. 

 

    
(a) Original Model.   (b) Improved Model. 

 
Figure 7: A wooden box is heavily lifted in one corner. 
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Figure 8: Large deformation results in convincing material buckling. 

 

 
Figure 9: Constraint strength is increased interactively and yields the effect of inflation. 

 

Figure 10: Twisting the pudding renders skewing. Figure 11: Fluffy water lily modeled using an 
ellipsoid solid. 

 


