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Abstract. We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle) and small
(sheep and goats) domestic ruminants across Kazakhstan. The Getis-Ord (Gi*) statistic and a multidirectional optimal ecotope
algorithm (AMOEBA) were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used
to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regres-
sion was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests
revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA
(n = 149) and for small ruminants (n = 9). In contrast, Gi* revealed fewer large ruminant clusters (n = 122) and more small rumi-
nant clusters (n = 61). Significant environmental differences were found between groups using the Kruskall-Wallis and Mann-
Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for
large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75%
of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predic-
ted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters.
Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated
with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods
for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation. 
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Introduction

In general, tests for clustering in health research are
performed to locate hotspots or areas with an unusual
increase in the presence of a disease. These tests fre-
quently take the form of the following types of analysis:
global, focused, local and, more recently, cluster
morphology. Some of the more commonly utilised algo-
rithms in health data analysis include: Moran’s I (1950),
local Moran’s I (Anselin, 1995), local Gi and Gi* stati-
stic (Getis and Ord, 1992; Ord and Getis, 1995), and
the spatial scan statistic (Kulldorff, 1997). In particular,

the local Gi* statistic has been well established as a use-
ful tool for defining the extent of local spatial autocor-
relation and identifying clusters of disease including
malaria (de Castro et al., 2007), schistosomiasis
(Clennon et al., 2006), dengue (Jeffery et al., 2009), and
typhoid (Hinman et al., 2006). Additionally, the Gi*
statistic has also been employed to uncover geographic
and anthropogenic features associated with the distri-
bution of spatial data. Kelly-Hope et al. (2009) used
Gi* to compare environmental factors associated with
variations in the abundance of malaria vectors. This
study found there were correlations between environ-
mental factors and clusters of Anopheles spp.

More recently, a class of techniques concerned
with the shape or morphology of spatial clusters was
introduced including: simulated Annealing
(Duczmal and Assuncao, 2004), flexible scan (Tango
and Takahashi, 2005), a multidirectional optimal
ecotope algorithm (AMOEBA) (Aldstadt and Getis,
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2006), Greedy Growth Scan (Yiannakoulias et al.,
2007), and Cluster Morphology Analysis (CMA)
(Jacquez, 2009). These methods are designed to
identify contiguous, irregularly shaped clusters of
events on the landscape that may often be overesti-
mated in size, and/or shape by other methodologies
such as circular scan statistics (Duczmal and
Assuncao, 2004; Tango and Takahashi, 2005).
Locating irregularly shaped clusters may be advan-
tageous since they can possibly reveal patterns that
are associated with geographical features such as
elevation or water bodies (Yiannakoulias et al.,
2010). AMOEBA derived from local Gi* was shown
to perform well in tests identifying clusters of high
spatial values when compared to the circular
Kulldorff spatial scan statistic (Aldstadt and Getis,
2006). Additionally, Doi et al. (2008) applied
FleXScan to investigate Creutzfeldt-Jacob mortality
in Japan and found that irregularly shaped hotspots
appeared to follow the Fuji River basin; identifying
a potential link between spatial variations in health
outcomes and the environment. While local and
morphology cluster statistics (i.e. Gi* and AMOE-
BA) have been shown to be useful, there is little gui-
dance regarding potential advantages and/or disad-
vantages in selecting a particular method.

Here we explore the differences in the ability of
local and morphology methods to identify hotspots of
disease, while also examining relationships between
environmental characteristics and clusters. A number
of statistical methods have been used to model envi-
ronmental relationships in lieu of spatial clustering
algorithms including discriminant function analysis
(Rogers et al., 2002), and logistic regression (Eisen et
al., 2007). However, researchers have shown that
incorporating cluster analyses with statistical models
such as logistic regression may better assess the level
of risk (Ruiz et al., 2004). We used a long historical
record of anthrax outbreaks in livestock from
Kazakhstan (Aikembayev et al., 2010; Kracalik et al.,
2011) to uncover possible spatial clustering while also
trying to elucidate environmental factors associated
with areas of high anthrax outbreaks. 

Anthrax is a soil-borne zoonosis caused by the
Gram-positive, spore-forming bacterium Bacillus
anthracis, which primarily infects livestock and wildli-
fe and secondarily afflicts humans (Hugh-Jones and
Blackburn, 2009). It remains a problem in many deve-
loping countries including former states of the Soviet
Union, which have undergone dramatic changes in
their public and veterinary health infrastructure
(Hugh-Jones, 1999). In particular, Kazakhstan has

been burdened by outbreaks of the disease, both in
humans (Woods et al., 2004) and in livestock
(Aikembayev et al., 2010). Previous studies examining
anthrax ecology have used ecological niche models to
elucidate environmental characteristics that may either
constrain or promote the persistence of B. anthracis
spores across the landscape in the United States of
America (Blackburn et al., 2007) and Kazakhstan
(Joyner et al., 2010). While these studies have provi-
ded crucial information on the potential geographical
range of B. anthracis, they have not taken into account
environmental factors that may contribute to unusual-
ly high occurrences or clusters of the disease. 

The available literature suggests that the anthrax
bacterium has an ecological affinity for a range of
specific soil conditions preferring alkaline, calcium
rich soils with a high percentage organic material
(Van Ness, 1971). Outbreaks of the disease have been
linked to cyclical climatic patterns, specifically wet
springs followed by hot, dry summers followed by a
precipitation event (Gates et al., 1995; Turner et al.,
1999; Parkinson et al., 2003). Subsequent studies
have corroborated this affinity for specific environ-
ments (Dragon and Rennie, 1995; Gates et al., 1995;
Hugh-Jones and Blackburn, 2009) though few have
provided statistical correlations to link spatial pat-
terns of disease occurrence to environmental factors.
Smith et al. (1999, 2000) incorporated cluster analy-
sis to show that spatial variations of anthrax infec-
tions in wildlife were possibly associated with genetic
diversity and soil conditions. 

This current study had three specific objectives: (i)
identify local clusters of anthrax in large and small
ruminants in Kazakhstan, while elucidating any poten-
tial differences in the local (Gi*) and morphology
(AMOEBA) cluster methods; (ii) explore the use of the
AMOEBA methodology and the effects of using mul-
tiple settings in running the algorithm; and (iii) inve-
stigate differences in environmental variables in rela-
tion to statistically significant high cluster locations
and non-cluster areas. 

Methods

Geographical information systems (GIS) database
development

A spatial database consisting of 1,206 anthrax out-
breaks in large ruminants (cattle) and 1,318 outbreaks
in small ruminants (sheep and goats) from the time
period 1960 to 2006 was digitised from historical
cadastres to describe and analyse the spatial distribu-
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tion of livestock anthrax in Kazakhstan. These data
were obtained from a larger database development
effort in collaboration with the Kazakh Science Center
for Quarantine and Zoonotic Disease in Almaty,
Kazakhstan, described in detail elsewhere (Aikembayev
et al., 2010; Joyner et al., 2010; Kracalik et al., 2011).
The data were divided into livestock groups based on
results of Aikimbayev et al. (2010), which suggested
that cases within each group where distributed diffe-
rently. Broadly, this subset of data reflects the time
period after mass vaccination was implemented and
corresponds to the averaged climate data from the
WorldClim data set use in the environmental analysis
(see below). 

For the purposes of this study an outbreak was
defined as a location that reported one or more posi-
tive confirmations of an anthrax infection in either
large or small large ruminants. Confirmation was
either through laboratory diagnostics (e.g. blood film
evaluation, bacterial culture isolation and, more
recently, molecular confirmation by polymerase
chain reaction [PCR]) or classical clinical signs in
animal carcasses at the outbreak site (Aikembayev et
al., 2010). The locations and dates of livestock out-
breaks were provided as latitude/longitude coordina-
te pairs georeferenced to the nearest community
(Fig. 1). All GIS data were managed in ArcGIS 9.3.1
(ESRI, Redlands, CA, USA).

Both the Gi* statistic and AMOEBA are group-level
statistics that require data to be aggregated. A 25 km
hexagonal grid surface (measured from the centroid to
the center of a straight line) was generated for the enti-
re country of Kazakhstan using the Jennes repeating
shapes tool (http://www.jennessent.com/arcgis/repeat_
shapes.htm). Outbreak locations were then aggregated
to the grid surface using the Hawth’s Tool point-in-

polygon count (http://www.spatialecology.com/htools/
pntpolycnt.php). This resulted in 1,754 hexagons
representing Kazakhstan (Fig. 1). A spatial grid surfa-
ce was chosen in order to analyse the distribution of
anthrax at a smaller scale than the rayon level (district
equivalent political boundary; administrative level 2).
A number of different sized grid cells were tested, but
due to the computational time required to run the
AMOEBA statistic (Duque et al., 2010) the 25 km grid
cell was used in order to complete analyses in a mana-
geable period of time. Specifically, runs on small grid
cells could take days to weeks to run on a high-end
desktop computer. Because Kazakhstan sits at relati-
vely high latitude and has a large landmass, we used
the a conic map projection, often used for aeronauti-
cal charts, i.e. the Asia Lambert Conformal Conic
projection in ArcGIS (http://spatialreference.org/ref/
esri/102027/) to preserve both size and shape of the
grid cells across the entire country. 

Getis-Ord Gi*

This statistic (Getis and Ord, 1992; Ord and Getis,
1995) was used to identify local clusters in both live-
stock groups. The Gi* statistic is a useful tool for
determining the spatial dependence between an obser-
vation and neighbouring observations within a user
specified distance threshold (Getis et al., 2003). The
Gi* statistic is written as:

(Eq. 1)

where x̄ is the mean of all anthrax outbreaks located
within the 25 km hexagonal grid cells and S the stan-
dard deviation. This statistic is distance-based and

Fig. 1. The spatial distribution of anthrax outbreaks in Kazakhstan during the time 1960 to 2006 for large ruminants (in orange)
n = 1,206 and small ruminants (in purple) n= 1,318.

Gi(d) =
wij (d) x xj - wi* x x̄

S x {[(nS*1i) - wi*2] (n-1)}/2

Σj
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three separate spatial weights matrices wij were utili-
sed based on 1st, 2nd and 3rd order Rook contiguity
relationships (O’Sullivan and Unwin, 2003) between
all grid cells i that share a border each contiguity order
are 1, including i, and all others are 0. Gi* values are
given as a standard normal variant with an associated
probability from the z-score distribution (Getis et al.,
2003). All contiguity matrices were constructed in
GeoDa 0.9.1 (http://geodacenter.asu.edu/).

As Gi* values approximate normal variants of the z-
distribution as the number of neighbours reaches eight
(Ord and Getis 1995), only those values greater than
3.18 representing a P ≤0.001 were used to define high
clusters. Following Getis et al. (2003) values of Gi*
must increase with increasing distance in order for a
grid cell or rayon to be deemed a significant cluster at
a particular distance. For example, a grid cell may
have a Gi* value exceeding the significance threshold
of 3.18 at a 2nd order weights designation, but if the
Gi* value at 1st order is greater, then the grid cell is
considered a significant cluster at the 1st order. This is
defined as the critical distance, dc, in Getis and
Aldstadt (2004). 

Multidirectional optimal ecotope-based algorithm
(AMOEBA)

In order to identify the morphology or the geometric
nature of anthrax clusters on the landscape an
AMOEBA algortitm (Aldstadt and Getis, 2006) was
used. The AMOEBA clustering algorithm is derived
from the calculation of Gi* values (Ord and Getis,
1995) aforementioned and is intended to search for
irregularly shaped continuous clusters of high and low
values (Aldstadt and Getis, 2006; Weeks et al., 2010).
For each hexagonal grid cell i denoted Gi* (0) and all
contiguous neighbours j, the statistic is calculated fol-
lowing (Aldstadt and Getis, 2006) where N is the
number of hexagonal spatial units, xj the number of
anthrax outbreaks at location j, and x the mean of all
outbreaks. AMOEBA searches in a multidirectional
manner from Gi* (0), if one of the j neighbouring
hexagonal units in the total set of n with in
Kazakhstan maximises the Gi* value of the statistic
either negatively (low cluster) or positively (high clu-
ster) then unit j becomes included in the continuous
cluster (Aldstadt and Getis, 2006). If additional hexa-
gonal units fail to increase the value of the statistic,
they are removed from the continuous cluster;
otherwise, they remain. In this study a statistical signi-
ficance alpha α = 0.001 was used derive hotspots of
anthrax. 

Additional settings within AMOEBA include the
selection of a Bonferroni, false discovery rate (FDR),
or a core cut-off threshold that limits the maximum
cluster size. The selection criteria for a core cut-off in
AMOEBA have not been described in detail so in
order to evaluate the effects of a threshold we chose
core cut-offs of: 2, 3, 6 and 12. 

Environmental comparison

To identify potential correlations between the pre-
sence of clusters and specific landscape characteristics
an environmental dataset was constructed. A total of
22 raster variables, at a spatial resolution of approxi-
mately 1 x 1 km, were used in the analysis, including
six WorldClim variables (www.worlclim.org), 15
variables from the harmonised soils world database
(HWSD) version 1.1 (http://www.iiasa.ac.at/
Research/LUC/External-World-soi l -database
/HTML/), and one variable from the Trypanosomiasis
and Land Use in Africa (TALA) research group (Hay
et al., 2006) (Table 1). Variables from HWSD were
comprised of various measures of soil composition
and physical properties available at the 1 x 1 km reso-
lution, while measurements of soil characteristics in
HWSD were tabulated by soil sampling units, which
are comprised of a larger group of grid cells. These lar-
ger soil sampling units may include a range of measu-
rements for a single soil variable, thereby resulting in
a range of values for a given pixels rather than assi-
gning a single unique value. In order to calculate spe-
cific soil raster variables the “summarise” feature in
ArcGIS 9.3.1 was used to generate statistics on speci-
fic soil measurements. For example, in order to calcu-
late measurements of pH, the total range of values for
a set of pixels were used to create an average minimum
and average maximum pH that would then be assi-
gned to a single pixel in that sampling unit. This pro-
cess was repeated for all soil variables used in Table 1.
The zonal statistics routine in ArcGIS 9.3.1 was then
applied to extract environmental information to each
grid surface across Kazakhstan. 

Statistical analyses

Environmental signatures of clusters

All statistical tests were performed in SAS v 9.2. The
Kruskal-Wallis test (Sokal and Rohlf, 1995)was
performed using the Proc Npar1way procedure to
compare potential differences in environmental varia-
bles between multiple groups: AMOEBA, non-
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AMOEBA, Gi* and non-Gi*. An α = 0.05 was used
with a correction for multiple comparisons (k-1)/2,
where k equals the number of groups being tested (in
this case k = 4) resulting in an α = 0.0167. For the pur-
poses of this study we were only interested in compa-
ring statistically significant hotspots to every other
spatial unit not identified as high cluster values, which
were deemed non-hotspots. Since the Kruskal-Wallis
test does not specify which groups were statistically
different a Mann-Whitney U test (Sokal and Rohlf,
1995) was employed to perform pair-wise compari-
sons on the following individual groups: AMOEBA
and non-AMOEBA, AMOEBA and Gi* and Gi* and
non-Gi*, using an α = 0.0167.

Due to the small number of hotspots clusters obtai-
ned from the AMOEBA and Gi* tests when examining
anthrax outbreaks in small ruminants, all statistical

analyses comparing groups and their corresponding
environmental signatures were limited to large rumi-
nants outbreaks. In this manner we avoided any issues
that we may have had with extremely low sample sizes
(n ≤9).

Logistic regression analysis

Multivariate logistic regression models were built
to evaluate the association between the probability
that an area was able to support anthrax in large
ruminants and its environmental characteristics.
Logistic models took the form of the following equa-
tion:

Logit(P) = β0 + β1X1 + β2X2 ... + βkXk

(Eq. 2)

Table 1. Summary statistics for the database of environmental variables.

Variables Mean Standard 
deviation

Percentiles Correlated 
variables

25th 50th (median) 75th ρ s < 0.8

Average altitude*
Average Bio1*

(annual temperature range)
Sum Bio12*

(total annual precipitation)
Average NDVI^
Standard deviation pH¥

Minimum pH¥

Maximum pH¥

Standard deviation CaCO3¥

(calcium carbobnate)
Minimum CaCO3¥

Maximum CaCO3¥

Standard deviation OC¥

(organic carbon)
Minimum OC¥

Maximum OC¥

Standard deviation CaSO4¥

(gypsum)
Minimum CaSO4¥

Maximum CaSO4¥

Standard deviation ECE¥

(salinity)
Minimum ECE¥

Maximum ECE
Average Bio7*

(annual temperature range)
Average Bio13*

(precipitation of wettest month)
Average Bio14*

(precipitation of driest month)

376.18
57.96

4.87 x 105

0.15
0.30
6.73
7.72
0.88

1.42
9.09
0.12

0.49
1.51
0.20

0.17
1.51
0.54

0.41
4.04

266.50

35.62

10.44

480.00
37.37

2.84 x 105

0.14
0.70
1.03
0.90
1.14

1.91
6.41
0.15

0.31
0.90
0.33

0.58
1.88
0.80

1.28
4.30

216.63

17.41

5.01

116.27
27.02

3.13 x 105

0.11
0.02
6.40
7.44
0.07

0.26
4.02
0.01

0.29
0.70
0.00

0.03
0.10
0.02

0.08
1.20

31.38

21.01

6.71

242.40
57.52

4.72 x 105

0.16
0.10
7.02
7.96
0.46

1.00
5.87
0.06

0.40
1.61
0.02

0.10
0.27
0.15

0.20
1.88

413.24

31.12

11.37

450.53
84.76

6.32 x 105

0.22
0.24
7.31
8.13
1.18

1.40
15.86
0.19

0.62
1.97
0.31

0.10
2.40
0.83

0.30
5.91

474.55

47.13

13.16

X

X
X
X

X

X

X
X 

* WorldClim variables; ¥ HWSD variables; ^ TALA variable. Variables exhibiting significant correlations with other covariates were
removed from logistic and discriminant function models.
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where P is the probability of a hexagonal cell being
classified as suitable for anthrax in large ruminants, β0

the intercept and β1 the coefficient assigned to inde-
pendent variable X1. For this modelling approach, a
grid cell was defined as present if one or more large
ruminant anthrax outbreaks occurred in that cell
during the period 1960 to 2006 (n = 427); all other
cells were defined as absent (n = 1,327). Subsets of
training and testing data were created by randomly
splitting each dataset. A subset of ~20% was withheld
from the model-building process for post-hoc model
evaluation (testing data) and the remaining subset
(~80%) was used for model-building (training data)
(Table 3). A total of 23 environmental variables were
initially used in the model, including the latitude and
longitude centroid of each hexagonal grid cell (Table
1). Correlations between variables were tested with a
Spearman’s rank correlation test and significantly cor-
related variables were removed using a cutoff of
≥0.85.

A stepwise modelling approach was adopted to
reduce the number of potential environmental factors
and select a single best model. Predictive accuracy
metrics were performed using the testing data (~20%
withheld from training). Sensitivity and specificity of
the model were calculated (Fielding and Bell, 1997), as
well as the area under the curve (AUC) score produced
using a receiver operating characteristic (ROC) (Zweig
and Campbell, 1993). We used a probability cutoff of
P ≥0.46 from a classification table that maximised sen-
sitivity and specificity. 

Predicted probabilities from the logistic regression
for each hexagonal cell were then mapped using the
“Spatial Analyst Extension” in ArcGIS v9.3.1 using

the following equation: 

(Eq. 3)

A risk surface was created using the same cut-off
threshold with high risk defined as any value ≥0.46
with any lower values defined as low risk. This pro-
bability threshold was derived from a classification
table by selecting a value that maximised the sensiti-
vity and specificity. The probability surface was reclas-
sified to high risk and low risk and mapped against
AMOEBA and Gi* clusters for large ruminants. The
total percentage of Kazakhstan defined as high risk
was calculated in Spatial Analyst Extension. 

Results

AMOEBA and Gi*

The total number of statistically significant high clu-
sters of anthrax across Kazakhstan varied among
small and large ruminants as well as between the
AMOEBA and Gi* statistics (Table 2). The number of
clusters for large ruminants using a 1st, 2nd and 3rd,
order Rook contiguity matrix was greater for AMOE-
BA (n = 119, 108 and 109, respectively) compared to
Gi* (n = 53, 81 and 102, respectively). The opposite
was true for small ruminants, with the number of clu-
sters at the 1st, 2nd and 3rd contiguity relationships
being greater for Gi* (n = 24, 77 and 55, respectively)
compared to AMOEBA (n = 6, 5 and 6, respectively).
In addition to differences in the number of clusters
detected by each method there were pronounced spa-

exp (β0 + β1X1 ... + β1X1)

1 + [exp (β0 + β1X1 ... + β1X1)]
P = 

AMOEBA 1st order1 2nd order2 3rd order3 Core 2 Core 3 Core 6 Core 12

H O H O H O H O H O H O H O

Large ruminants outbreaks 119 150 108 38 109 37 137 132 119 150 25 244 6 263

Small ruminants Outbreaks 6 12 5 6 6 5 6 12 6 12 4 14 2 16

Local Gi* 1st order1 2nd order2 3rd order3

High clusteersA High clusteers High clusteers

Large ruminants outbreaks 53 81 102

Small ruminants outbreaks 24 77 55

1 Contiguity analyses were performed using a core cutoff equal to 3; 2 Outbreak numbers were adjusted using the 2007 large rumi-
nants density estimates obtained from GLIPHA; 3 The number of high clusters determined by the Amoeba analysis; 4 The number of
spatial units deemed outside of a cluster by the Amoeba analysis; A The total number of significant  Gi* clusters for adjusted and
raw case numbers were derived using a cluster assignment procedure  whereby inclusion in a cluster group, e.g. 1st order or 2nd order
was based on the concept of increasing Gi* with increasing distance; using an α < 0.001. 

Table 2. Results from the spatial statistical analyses of anthrax outbreaks in large and small ruminants using the local  Gi* statistic
and the AMOEBA cluster morphology.
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tial differences. The spatial distributions of clusters in
large ruminants using AMOEBA (n = 149) appeared
more dispersed and greater in total numbers in the
north compared to Gi* clusters (n = 122), which were
predominantly concentrated in southern Kazakhstan
(Figs. 2 and 4). Spatial clusters of small ruminants
were only found in southern Kazakhstan with the Gi*
statistic identifying more clusters (n = 61) compared to
AMOEBA (n = 9) (Figs. 3 and 5). 

The selection of critical distances via the increasing
order of the contiguity matrices revealed that, for the
most part, greater magnitudes of distance or order
show a trend towards an increase in the number of
significant clusters. That is, as the distance increases
the number of spatial clusters assigned to the higher
order also increased as shown in Figs. 2, 3 and 4. The
exception in this case was that of small ruminant clu-
sters for AMOEBA, which had a relatively low num-

ber of clusters (n = 9) and did not display this trend.
Core cut-off values for AMOEBA showed an inver-

se relationship between the number significant high
clusters for both large and small ruminants (Figs. 6
and 7). The results indicated that selection of a core
cut-off value correspond to the number of spatial units
designated as outside of a cluster. The higher the core
cutoff value selected in AMOEBA the greater the num-
ber of spatial units defined as outside clusters, indica-
ting that particular grid cells were neither a high or
low cluster (Table 2). There were no core cut-off crite-
ria for the Gi* statistic so no direct comparisons were
made. Spatial agreement between the methods revealed
that for large ruminants 29.5% of AMOEBA clusters
and 36.1% of clusters defined by Gi* overlapped spa-
tially, while agreement between methods for small
ruminants revealed 77.8% of AMOEBA clusters and
11.5% of Gi* clusters overlapped spatially (Fig. 8).

Fig. 2. Local clustering of anthrax outbreaks in large ruminants across Kazakhstan during the time period 1960-2006 using the Gi*
statistic with three different Rook contiguity thresholds used. Map portrays the differences in the spatial extent of clusters using a
1st , 2nd and 3rd order contiguity matrix. Critical distance thresholds are displayed in Gi* cluster map with 1st order dc shown in pink,
2nd order dc shown in red and 3rd order dc shown in burgundy. 
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Fig. 3. Local clustering of anthrax outbreaks in small ruminants across Kazakhstan during the time period 1960-2006 using the Gi*
statistic with three different Rook contiguity thresholds used. Map portrays the differences in the spatial extent of clusters using a
1st , 2nd and 3rd order contiguity matrix. Critical distance thresholds are displayed in Gi* cluster map with  1st order dc shown in
pink, 2nd order dc shown in red and 3rd order dc shown in burgundy.

Fig. 4. AMOEBA cluster morphology of anthrax outbreaks for large ruminants in Kazakhstan during the period 1960-2006.  Map
portrays 25 km grid cells that were clusters of high values shown in red and outside of a cluster shown in black. Rook contiguity
matrices were used at 1st order, 2nd order and 3rd order.  The AMOEBA cluster map illustrates the use of critical distance dc incor-
porating  the Rook contiguity matrix to determine significance with 1st order dc shown in pink, 2nd order dc shown in red and 3rd

order dc shown in burgundy. 
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Fig. 5. AMOEBA cluster morphology of anthrax outbreaks for small ruminants in Kazakhstan during the period 1960-2006.  Map
portrays 25 km grid cells that were clusters of high values shown in red and outside of a cluster shown in black. Rook contiguity
matrices were used at 1st order 2nd order and 3rd order.  The AMOEBA cluster map illustrates the use of critical distance dc incorpo-
rating  the Rook contiguity matrix to determine significance with 1st order dc shown in pink, 2nd order dc shown in red and 3rd order
dc shown in burgundy.

Fig. 6. AMOEBA core cut-off comparison for large ruminants showing core thresholds of 2, 3, 6 and 12. Hotspot cluster values are
shown in red while areas deemed outside of a cluster are shown in black.  
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Environmental comparison

The Kruskal-Wallis test analysing clusters and non-
clusters from each methodology indicated a significant
difference between groups P <0.001. Fig. 9 shows the
outcomes for the Mann-Whitney U test analysing pair
wise comparisons of environmental variables and the
following three groups: AMOEBA and non-AMOE-
BA, Gi* and non-Gi* as well as AMOEBA and Gi*,

also showed a statistical difference P <0.0167 or
-2.13 > z > 2.13 between the rank sums of environ-
mental variables in Table 1. In the AMOEBA/Gi*
comparison group, statistical differences were found
between the following variables: average altitude, ave-
rage Bio1 (annual mean temperature), sum Bio12
(annual precipitation), maximum pH, min OC, maxi-
mum CaSO4, average Bio7 (annual temperature
range), average Bio14 (precipitation of the driest

Fig. 7. AMOEBA core cut-off comparison for small ruminants showing core thresholds of 2, 3, 6, and 12.  Hotspot cluster values
are shown in red while areas deemed outside of a cluster are shown in black. 

Fig. 8. Spatial agreement among hotspot clusters in large ruminants (A) and small ruminants (B) using the local Gi* statistic and the
AMOEBA cluster morphology statistic. Spatial clusters that overlap between methodologies are displayed in black, clusters that
were spatially unique for  are displayed in light gray and spatially unique clusters for AMOEBA are shown in dark gray. 
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month), and maximum CaCO3. Differences in envi-
ronmental factors between all paired groups analysed
using the Mann-Whitney U tests were also found in
the following variables: average altitude, average Bio1,
average Bio13, minimum OC, maximum CaCO3 and
maximum CaSO4. Notable differences in the ecologi-
cal characteristics between AMOEBA and Gi* compa-
rison group were maximum pH, the sum Bio12 and
minimum organic carbon. 

Logistic regression

The probability of suitable habitats for anthrax in
Kazakhstan was defined by our best model (Table 4,
Fig. 10). The model prediction showed that the data
were a good fit and had an appropriate number of
variables based on the Hosmer and Lemeshow good-

ness-of-fit-test (P = 0.346). The results indicated that
bioclimatic variables as well as the normalized diffe-
rence vegetation index (NDVI), altitude and latitude
are all positively associated with the presence of anth-
rax (Table 4). The accuracy of the best model, based
on the AUC obtained from the ROC plot, was 0.83
indicating good discrimination between cells with
anthrax and cells without. The sensitivity of the model
was 77.7% and the specificity was 73.8%. 

The classified risk maps show that ~75% of AMOE-
BA clusters were within the high-risk zones versus
~64% of Gi* clusters (Fig. 10). The total percentage of
the Kazakh landscape defined as having a high risk of
large ruminant anthrax outbreaks was 32.2%. Thus,
overall, large areas within the northern latitudes of
Kazakhstan can be predicted to be highly suitability
for anthrax and should therefore be classified as high
risk for large ruminants.  

Discussion

Cluster detection methods have been well establi-
shed in epidemiological research as important tools for
identifying potential variation in the distribution of a
disease (Anderson and Titterington, 1997). We com-
pared two different methodologies: a local clustering
test and a cluster morphology test to delineate and
compare the spatial distribution of anthrax outbreaks
in Kazakhstan during the period 1960 to 2006. 

Fig. 9. Pair wise group comparisons of environmental variables using the Mann-Whitney U Test. Y-axis represents the z-score asso-
ciated with the individual test statistic and the x-axis represents the environmental variables used in the analysis. Red lines show the
critical significance level using a P = 0.0167 on a two-tail test representing a z-score threshold greater than 2.13 or less than -2.13. 

Metric Logistic

n presence to build model

n absence to build model

n presence to test model

n absence to test model

Sensitivity

Specificity

AUC

320

1,327

107

332

77.7%

73.8%

0.83

Table 3. Metrics used to build the stepwise multivariate logistic
regression model using an 80% training and 20% testing data
split. 
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In addition we examined the potential association
with clusters and environmental factors. The local Gi*
and the AMOEBA morphology statistic used in this
study indicated that there were distinct differences in
the spatial pattern of clusters identified between
methodologies. The findings presented here illustrate
the importance in choosing a spatial statistical metho-
dology while also selecting an appropriate level of
data aggregation.

Despite the fact that the AMOEBA statistic is deri-
ved from Gi* there were marked differences in their
cluster patterns and each methodology delineated spa-
tially unique hotspots (Fig. 8). The AMOEBA statistic,
as expected, located irregularly shaped patterns while
Gi* was restricted to more undefined, circular clusters.
Additionally, the Gi* statistic appeared to overestima-
te the boundary of clusters in small and large rumi-
nants in the south compared to that of AMOEBA,
while simultaneously also not detecting outbreak clu-
sters from large ruminants in the north. Observed
variations in the cluster patterns of Gi* and AMOEBA
could in part be a product of the low statistical power
of the Gi* statistic (Jacquez, 2009). The low level of
power would potentially result in a higher number of

false negatives. However, there are no similar tests on
AMOEBA that would allow for direct comparison of
each methodology’s statistical power. It is noteworthy
though that another cluster morphology technique,
Flex Scan, appears to have a relatively high power and
accuracy when compared to Gi* (Jacquez, 2009).

Spatial differences in the location of hotspots
between large and small ruminants highlight the distri-
butional and aggregation effects the data had on both
AMOEBA and Gi*. Despite the fact that there were
more anthrax outbreaks in small ruminants, there
were fewer clusters detected compared to that of large
ruminants. This outcome might have been strongly
influenced by separate geographical ranges for each
livestock group. AMOEBA detected a greater number
of large ruminant clusters while Gi* detected a greater
number of small ruminant clusters, suggesting that the
distribution of the outbreak data played a role in the
ability of each method to identify hotspots. Patterns of
clusters in this study were also most likely dependent
on the level of aggregation used. In this case a 25 km
hexagonal grid cell was selected to increase the mini-
mum number of neighbors included in each analysis
and also due to the intensive computational time

Fig. 10. Map (A) displaying the spatial prediction from the multivariate logistic regression with a higher probability of an anthrax
outbreak shown in red and lower probability shown in green.  Spatial risk map (B) displaying areas of high risk in red and areas of
low risk in green compared to AMOEBA clusters, using a probability cut-off threshold of 0.46 and above to represent presence or
high risk and everything below that threshold representing low risk. 

Parameter estimates Wald x2

Variables Coefficient SE x2 df P

Intercept
Bio13
Bio 14
Bio12
Bio 7
Altitude
NDVI
Bio 1
Latitude

-52.899
0.047
0.092

2.82E-06
0.027
0.003
1.658
0.074
0.602

7.912
0.008
0.018

3.10E-07
0.006

<0.001
0.809
0.012
0.106

44.70
36.66
25.87
82.51
20.42
19.47
4.20

38.85
32.04

1
1
1
1
1
1
1
1
1

< 0.001
< 0.001
< 0.001
< 0.001
< 0.001
< 0.001

0.040
< 0.001
< 0.001

Table 4. Model summary from stepwise multivariate logistic regression used to predict the presence/absence of anthrax outbreaks
in large ruminants across Kazakhstan. For variable definitions see Table 1.
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required for AMOEBA (Duque et al., 2010). Selecting
smaller grid cells for these analyses may have resulted
in different patterns of clusters. However, tests on grid
cells ≤10 km resulted in computational times greater
than 10 days for each Rook contiguity order analysed. 

The application of multiple orders of the Rook con-
tiguity matrix to both AMOEBA and Gi* showed that
each order (1st, 2nd or 3rd) produced unique varying
spatial patterns of clusters. That is, the 1st order conti-
guity matrix elicited hotspots that 2nd order matrix did
not and vice versa. The findings correspond with the
suggestions of Ord and Getis (1995), which proposed
analysing data at multiple distances. In this case the
contiguity matrix served as our distance threshold and
illustrates that the spatial structure of the data may
change with distance. Due to the relatively large grid
cell size of 25 km the use of a 2nd and 3rd order conti-
guity matrices may have exceeded the expectation of
searching for cluster locally. Searching too far in this
situation may bias the significance of the critical
distance dc towards the larger distance or contiguity
order. 

Similarly, core cut-off levels for AMOEBA elicited
varying patterns of clustering at each threshold (2, 3,
6 and 12). However, there has been no previous
discussion in the literature to guide the choice of an
appropriate threshold. While a lower core threshold
produced a greater number of hotspots this may not
always be conducive to uncovering patterns of disease.
Overestimating the burden of disease with high cluster
numbers may strain public health resources, therefore
finding a balance between the core threshold and the
critical distance is crucial for appropriately analysing
the spatial distribution of outbreaks. 

Differences in the environmental signatures for clu-
sters and non-clusters were consistent with research
suggesting precipitation (Turner et al., 1999), soil pH
(Van Ness, 1967; Smith et al., 2000), organic carbon
content (Hugh-Jones and Blackburn, 2009), calcium
(Himsworth, 2008), and temperature (Blackburn et
al., 2007) may play a role in spore persistence and sub-
sequent outbreaks. In terms of associating clusters
with the environment, the shape or morphology of clu-
sters may be an important aspect since ecological cha-
racteristics related to the presence of a disease may be
distributed irregularly or unevenly across the landsca-
pe (Doi et al., 2008). In both the AMOEBA/non-
AMEOBA and the Gi*/non-Gi* comparisons, signifi-
cant differences between variables were noted. For
example, Bio 13 and NDVI values were drastically dif-
ferent for both cluster techniques from non-clusters
(Fig. 9). While there were clear differences between

cluster and non-cluster comparisons, there were not
necessarily discrete differences between AMOEBA and
Gi*. Although the comparison of variables between
AMOEBA and non-AMOEBA elicited the greatest dif-
ferences, the Mann-Whitney U test did not establish
any conclusive link between the ability of the cluster
morphology statistic to better detect environmental
signatures associated with anthrax outbreaks when
compared to the local Gi*. 

The logistic model focused exclusively on the risk of
outbreaks in large ruminants in order to compare
agreement between high risk areas defined by the
model and hotspots from AMOEBA and Gi*. It is
important to note that this model does not identify all
areas in the country where anthrax is expected to
occur (Joyner et al., 2010). Epizootic or enzootic anth-
rax activity has been detected throughout the region in
several livestock species and this model does not cap-
ture the entire spatial heterogeneity of the disease
across Kazakhstan (Aikembayev et al., 2010). Our
model did, however, yield high (~83%) accuracy in
correctly classifying grid cells as outbreak present or
absent. Additionally it is likely that our model did not
capture all of the potential factors related to the occur-
rence of the anthrax since there are several unrecogni-
sed factors that may contribute to the disease. Overall
our classified logistic model predicted 32.2% of the
landscape across Kazakhstan as being of high risk for
anthrax outbreaks. In contrast, Joyner (2010) estima-
ted that 54.1% of the landscape having the potential
for spore habitat using an 8-variable, ecological niche
model (Joyner, 2010). 

While the scope of this current study was focused on
local cluster techniques, it is worthwhile to note some
of the differences in outbreak risk mapping from our
logistic regression model and ecological niche model-
ling. The latter models estimate (by definition) the
potential distribution of the target organism, B. anth-
racis spores, and may identify areas suitable for spo-
res, where the disease may not occur or having been
reported (Blackburn, 2010). In contrast, the risk
model presented here targets outbreaks, or the like-
lihood of increased cases. It is also important to note
that Joyner (2010) was modelling the pathogen from a
combination of large and small ruminant occurrences,
where our risk model is limited to large ruminants. We
suggest that there is potential complimentary power in
using both approaches to inform public health and
veterinary management. For example, the ecological
niche models can be used to identify the larger area of
Kazakhstan where B. anthracis may persist, which can
be used to identify where passive surveillance should
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include diagnostics for anthrax. In contrast, active
control areas can be better defined by the cluster
analyses and the logistic modelling approach. 

In comparing the distribution of clusters from both
techniques with the logistic model, AMOEBA identi-
fied a greater number of clusters within areas designa-
ted as of high risk compared to Gi*. Clusters, howe-
ver, were present across methodologies in the south of
Kazakhstan indicating the possibility of an increased
burden of disease there. Agreement between clustering
methodologies across areas defined as being of high
risk may illustrate spatial differences between endemic
and sporadic areas. In this case endemic areas would
be signified by greater agreement. Although cluster
analyses were performed independently of the logistic
model, the AMOEBA clusters showed a higher level of
agreement with statistically significant areas classified
as high risk for anthrax in large ruminants. This may
be due to the ability of the AMOEBA algorithm to
detect arbitrarily shaped hotspots; however, additional
experiments are needed to confirm this. 

AMOEBA was able to detect more irregular cluster
patterns compared to Gi*, yet there is no definitive
answer as to which methodology is the more robust
one. The interpretation of Gi* as a tool for delimiting
the extent of local spatial autocorrelation is clearer in
the literature (Ord and Getis, 1995; Getis et al., 2003;
Getis and Aldstadt, 2004), while the use of multiple
distances in the application of AMOEBA is not well
defined. Additionally, while AMOEBA has the ability
to more accurately describe the shape of clusters its
computational time limits its utility. Recently the
intensive computational time of AMOEBA has been
recognised and potential solutions may make AMOE-
BA a more viable option in the future (Duque et al.,
2010). Given the potential strengths between metho-
dologies, employing the use of more than one spatial
modelling approach, may provide a better indication
of the status of a disease (Jacquez and Greiling, 2003).
For example, researchers can use Gi* to identify the
maximum extent of local spatial autocorrelation and
then incorporate that information to specify the wei-
ghts matrix in a subsequent AMEOBA analysis of clu-
ster morphology. 

Implementing spatial clustering in the investigation
of health events may provide information on irregular
spatial patterns of disease as well as aid in the identifi-
cation of environmental factors associated with the
presence of a disease. Clustering can also be used to
target specific areas with an elevated presence or poten-
tial presence for a disease to allow for a more efficient
distribution of control measures such as vaccines (Eisen

and Eisen, 2008). Areas in this study identified as being
of high risk within a livestock group could be conside-
red for active control measures, or priority areas for
vaccine delivery, particularly if recent cases have been
reported. However, it is noted that the investigation of
disease occurrence is a complex, multifaceted problem.
Population data on livestock were not available for this
study, which is a major limitation in interpreting the
proportion of disease in relation to animal densities
and changes in population spatially over time. Despite
the lack of population data, the raw outbreak numbers
in this study may be useful for illustrating areas of
increased disease presence. Future analyses should exa-
mine the level of statistical power for AMOEBA in
addition to investigating clustering of anthrax at higher
spatial resolution while investigating the effects of
distance thresholds. 
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