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Summary

Quantitative ultrasounds (QUS) have been developed as an at-
tractive alternative to current radiation-based bone densitom-
etry techniques in the management of osteoporosis. Depend-
ing on the QUS devices investigated, various skeletal sites
have been studied. In this mini review we will mostly focus our
interest on the finger phalanx, the radius and the tibia.
Well established and validated normative reference curves, al-
lowing the monitoring of bone loss through age, exist. From
various studies, QUS seem to be an effective method in the
identification of “DXA osteoporosis”. Furthermore QUS are al-
so able to discriminate any type of osteoporotic fracture (e.g.
hip, vertebral and/or forearm fractures) from controls. Similar
results were found for the discrimination of patients with sec-
ondary osteoporosis. Very few prospective studies on fracture
were performed at the non-calcaneal skeletal sites.
Unfortunately, results are somehow contradictories. Promis-
ing results have been reported concerning the treatment mon-
itoring although mostly based on small open label studies.
Therefore use of ultrasounds can be advocated to obtain addi-
tional experience with regard to longitudinal measurements of
disease progression and impact of treatment.
In the face of current lack of consensual agreement on how
results of QUS devices should be interpreted in order to diag-
nose osteoporosis, it would be reasonable to consider QUS
parameters as an additional clinical factor to be taken into ac-
count in the management of osteoporosis. 

KEY WORDS: quantitative ultrasounds, phalanges, radius, osteoporosis,
fractures.

Introduction

Osteoporosis is a systemic skeletal disease characterized by a
reduction of bone mass and microarchitectural deterioration of
bone tissue resulting in a reduction in bone strength with a

consequent increase in bone fragility and susceptibility to frac-
ture (1). In the last 30 years, several non-invasive techniques
based on the attenuation of ionizing radiation, such as the
dual-energy X-ray absorptiometry (DXA), have been developed
to quantify Bone Mineral Density (BMD) in the skeleton. How-
ever, they provide only limited information on bone structure
and bone material properties (2). Quantitative ultrasounds
(QUS) have therefore been developed and are an attractive al-
ternative to current radiation-based bone densitometry tech-
niques as they are non-invasive, relatively inexpensive, trans-
portable and, most importantly, free of ionizing radiation. Fur-
thermore, information concerning bone structure as well as
density can be provided (3).
Many skeletal sites have been explored such as the calcaneus,
phalanx, radius, tibia, patella (4-7), metatarsus (8) and ulna (9,
10). However, most of these sites are not as yet used in a rou-
tine clinical setting but only for research purposes. In this mini-
review, we will mostly focus our interest on skeletal sites used
in clinical routine practice, except for the calcaneus which is
covered elsewhere. It is important to remember that perfor-
mance of one device cannot be extrapolated to another one
technically different. Therefore, the reader should be cautious
while interpreting the data. 

Clinically investigated sites

For an appropriate measurement with QUS it is important that
the skeletal sites investigated are easy to access, relatively
free of soft tissue, and clinically relevant. 

Finger phalanx

The finger phalanx measurement site is the distal metaphysis
of the first phalanx of the last four fingers. The mediolateral
surfaces are approximately parallel, thereby reducing ultra-
sound scattering. In the metaphysis, both cortical and trabecu-
lar (around 40%) bone are present (11, 12). The metaphysis of
the phalanx is also characterized by a high bone turnover
(bone tissue at the phalanx shows the highest sensitivity to
bone resorption occurring at the menopause) (13). 

Radius

Measurement sites have been restricted to the peripheral
skeleton due to the high attenuation nature of ultrasound. How-
ever, with the advent of axial transmission techniques, the ac-
cessible sites now include many others such as the radius with
cortical bone. The radius is studied by techniques of longitudi-
nal transmission of the ultrasound wave. This site was chosen,
amongst others, for its high reproducibility, that is, good preci-
sion, and the fact that forearm fractures are known to be osteo-
porotic fractures. 

Tibia

The mid-tibia is chosen due to its long, straight and smooth
surface. Furthermore, the overlying soft tissue is very thin
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thereby minimizing errors in the Speed Of Sound (SOS) mea-
surement (14). Since 80% of the skeleton is comprised of corti-
cal bone, which could be involved in osteoporotic fractures, it
may be of clinical interest to measure a weight bearing bone
cortical bone such as the tibia. In addition, cortical bone loss
may play an important role in determining whole-bone strength.
Measurement at this site is of the longitudinal ultrasound veloc-
ity along the anteromedial cortical border of the mid-tibia. Prop-
agation occurs mostly along the external surface of the bone,
and therefore provides information mainly on the cortical bone
tissue. Investigation of the tibia and radius is sensitive to phe-
nomena of endosteal resorption (15).

Non calcaneus quantitative ultrasound devices

Manufacturers have released a great variety of commercial de-
vices for QUS assessment at peripheral measurement sites
(16-19). Mostly two non-calcaneus devices are commercially
available on the market for measurements: 
– The DBM Sonic 1200 or Bone Profiler - BP (IGEA, Carpi,

Italy). 
– The Omnisense® 7000S bone sonometer (Sunlight Medical

systems, Tel Aviv, Israel). 

The DBM Sonic Bone Profiler (Fig. 1): transverse transmission

This device performs Quantitative Bone Ultrasonography at the
(proximal finger) phalanges. It is the only ultrasound device
that applies the method of signal analysis in transmission
through phalanges. It uses a fixed-point transmission tech-
nique to measure amplitude-dependent ultrasound velocity
through the proximal phalanges of the last four fingers of the
hand. Two 12 mm diameter, 1.25 MHz transducers are assem-
bled on a high-precision caliper (± 0.01 mm) that measures the
distance between the probes. The probes are positioned on
the mediolateral surfaces of the distal metaphysis of the pha-
lanx using the phalanx condyle as reference point. Coupling is
achieved by using standard ultrasound gel. The investigated
parameters are the AD-SOS, the UBPI and the BTT (Fig. 1).
– AD-SOS: velocity can be measured using either the axial or

transverse transmission modes of propagation (20, 21).
When normal bone is tested, the amplitude of the first signal

received is above the predetermined threshold, but for osteo-
porotic bone, significant attenuation occurs and the Ampli-
tude of the first signal is not enough to trigger the reading.
The velocity thus measured is amplitude related, hence the
Amplitude-Dependent Speed Of Sound (AD-SOS). This en-
ables the differences in SOS measured between normal and
osteoporotic bone to be magnified. The SOS is expressed in
m/s.

– Fast wave amplitude (FWA, in mV) is the maximum ampli-
tude of the fastest peak of the received US signal.

– Signal dynamic (SDy, in mV/ms2) expresses the second de-
rivative of amplitude versus time of the fastest peak of the re-
ceived US signal and represents the sharpness of the peak
reflecting its frequency content.

– Bone transmission time (BTT, in ms) is the time width of the
US received signal and is calculated by subtracting the in-
stant corresponding to the arrival time of the fastest US re-
ceived signal from the time of transmission of a US pulse at
1700 m/s velocity.

These three latter parameters are combined into one index
named Ultrasound Bone Profile Index (UBPI) or Ultrasound Bone
Profile Score (UBPS) using the formula (20): UBPI = 1/[1+exp
((-0.00186 SDy(mV/m2)-0.0566FWA(mV)-1.14676BTT(ms)
+3.03)]. The UBPI can be considered first as a measure of the
quality of the trace (22). It also enables the quantification of the
modifications encountered by the ultrasound signal in passing
through normal and osteoporotic bone tissue. However, its clin-
ical role remains unclear.

The Omnisense® Bone Sonometer (Fig. 2): axial transmission

While most of the commercialized ultrasound devices measure
only single pre-defined peripheral skeletal sites with little over-
lying tissue (i.e., calcaneus, phalanx, or tibia), the Omnisense
ultrasonometer can measure bone at multiple skeletal sites, in-
cluding the distal 1/3 radius (forearm), phalanx (finger), tibia
(lower leg) and metatarsus (foot). Measurement at additional
skeletal sites enables testing of bones with different combina-
tions of cortical and cancellous bone content and weight-bear-
ing and non-weight-bearing bone, and thus provides a poten-
tially more comprehensive analysis of the skeleton. This device
measures the acoustic velocity (Speed Of Sound – SOS) in ax-
ial transmission mode along the cortex. SOS represents the
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Figure 1 - The principle of the DBM Sonic Bone Profiler and the measured parameters: transverse transmission.
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velocity of ultrasound transmission usually averaging over
paths through bone and soft tissue and is expressed in m/s. 
The Omnisense comprises a desktop unit and a family of
small, hand-held probes designed to measure various skeletal
sites (15, 23). Each probe contains a set of transducers
housed tightly together in a compact holder. The different
probes are designed to operate at different SOS ranges, under
different soft tissue thickness conditions, and to measure vari-
ous bone types. The hand-held probes are connected by a ca-
ble to the Omnisense main unit. During measurement, a probe
is applied directly to the skin at the measured site. A thin layer
of standard ultrasound gel is applied between the probe sur-
face and the skin to facilitate good acoustic coupling. Inaudible
high frequency acoustic waves, at a center frequency of 1.25
MHz, are produced by two transducers (called ultrasound sig-
nal generators or transmitters) in the probe. The ultrasound
waves are conducted along the bone and then detected by two
different transducers (called ultrasound signal detectors or re-
ceivers) in the same probe. 

Normative data

Monitoring changes in bone is an essential part of osteoporosis
management. Bone mass and bone strength increase through-
out childhood to a peak in mid-life. A decline in bone strength
follows, commencing at age 40, but picks up speed only later
on in life. Bone mass declines drastically after menopause with

the loss of the protective effect of estrogen on bone. To ex-
press these changes, QUS results can be expressed in ab-
solute values or in T and Z-scores thanks to well established
and validated normative reference curves (figures 3 and 4), al-
lowing bone loss to be followed with time (8, 24-28). Some
studies used these results to express bone loss through age,
and mostly through the menopause (8, 14, 25, 29-38).

What are we measuring? In vitro studies

Most of the studies have been conducted on the calcaneus or
trabecular bone. Although about 80% of the ultrasound para-
meters are explained by bone mineral density when site
matched comparison is performed (39-42), the remaining 20%
are related to bone quality and other bone properties (e.g. mi-
crostructure, elasticity, anisotropy, connectivity, porosity) (3,
16, 18, 24, 43-58). The combination of these parameters with
the bone density would estimate the overall bone strength
which is a crucial parameter in case of fragility fracture. It has
been proven that QUS are strongly related to bone strength
and are therefore a good predictor of osteoporotic fracture (45,
59-70). 
These considerations cannot be so easily extrapolated to the
phalanx, tibia and radius as the measurement and the bone
nature are different although similarities have been observed.
At the cortical site, SOS seems to be more influenced by min-
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Figure 3 - Reference data curves of the phalanges bone measured by
DBM Sonic showing AD-SOS value vs age.

Figure 4 - Reference data curves of the radius bone measured by Sun-
light Omnisense showing SOS value vs age. Different used curves
should be given per skeletal site, per gender and per ethnic origin. The
figure shows female results obtained in Israel, USA and China. The sol-
id horizontal lines indicate the T-score values of –1 and –2.5.

Figure 2 - The principle of the Sunlight’s Omnisense® Bone Sonometer: axial transmission. A) main unit and the 3 different probes for multi-site mea-
surements. B) illustration of Sunlight’s axial transmission technology which transmits ultrasound waves along the bone.
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eral density than the elastic characteristics of bone (45, 53, 57,
60, 71-74). However, QUS at these non-calcaneus sites are al-
so correlated to other bone properties. The bone architecture
of the phalanx influences the SOS, the form (number of peaks)
and the Fast Wave Amplitude of the ultrasound signal (12).
The SOS is also influenced by the cortical area, cortical porosi-
ty and density, while the amplitude of the QUS signal is influ-
enced mainly by the area of the medullar canal (12, 75-78).
Cortical thickness, an index of bone resistance, and relative
cortical area are known to be quantities of primary importance
in determining the moment of inertia and thus the load resis-
tance of the bone in question (79), and hence resistance to
fracture. Bone strength at the phalanges may not be as impor-
tant as that measured at a usual skeletal fracture site, but a
strong relationship between bone strength, elasticity and densi-
ty of the distal radius with QUS measurement of the phalanges
has been reported (37, 80). QUS performed in the tibia have
also been found to demonstrate the mechanically anisotropic
structure of bone, its modulus of elasticity, and bone strength
(81, 82).

Ability of QUS to discriminate osteoporotic patients from
controls

Most of the data reported in these sections are based on fe-
male studies although data exist on male osteoporosis (83-88).

Osteoporosis defined by DXA

Many studies demonstrated the utility of calcaneus QUS in the
diagnosis of osteoporosis (57). Concerning our sites of inter-
est, the analysis of some of these large databases has enabled
the identification of appropriate diagnostic thresholds for osteo-
porosis, calculated on the basis of criteria selected by the
WHO but which may differ from the classical absolute T-score
value of -2.5 used in DXA. These values (20, 89-91) represent
an important starting point for the use of such devices in
screening of the postmenopausal female population. Apparent-
ly, from various studies, QUS seem to be an effective method
in the identification of “DXA osteoporosis” (31, 32, 92). For
screening osteoporosis in postmenopausal women, AD-SOS at
the phalanges has a similar diagnostic sensitivity in the group
of osteoporotic women over 50 years of age as DXA of the
lumbar spine and femoral neck (25, 93). In 2004, Gambacciani
et al. confirmed this potential. Performing a phalangeal QUS
examination and a DXA scan on women, they used an AD-
SOS T-score threshold equal to –2 (29). AD-SOS showed an
Area Under the receiver operating Curve (AUC) of 0.72±0.02 in
discriminating osteoporotic subjects from all other subjects at
the lumbar spine, and an AUC of 0.71±0.02 in identifying os-
teoporotic and osteopenic subjects from normal subjects at the
lumbar spine. In the same way, an AUC of 0.71±0.03 has been
determined for AD-SOS in discriminating osteoporotic subjects
from all the others at the femoral neck and an AUC of
0.65±0.02 in the discrimination of osteoporotic and osteopenic
subjects from normal subjects at femoral neck. The use of mul-
ti-site measurements also provides better measurement sensi-
tivity than those at a single site, increasing the likelihood of os-
teoporosis detection in the individual patient (15, 21, 94, 95).
Multi-site measurements found a significantly higher preva-
lence of women with an osteoporotic T-score (T-score <-2.5)
than measurements at any single site (8, 37).

Osteoporotic fracture

QUS at the calcaneus are good in discriminating patients with

osteoporotic fracture from normal subjects (2, 35, 57, 74, 92,
96-106). Indeed, many cross-sectional studies have shown
that patients with fractures have lower ultrasound values than
patients without fractures, and that the fracture risk discrimina-
tion by QUS is as strong as for absorptiometric techniques
such as Single-energy X-ray absorptiometry (SXA) and DXA
(102-109). Overall, axial and transverse transmission in cortical
bone show only minor performance compared to transverse
transmission in trabecular bone such as the calcaneus. How-
ever, this slight difference between the skeletal sites in a pa-
tient’s discrimination depends on the type of osteoporotic frac-
ture. 
Concerning the discrimination of any type of fracture, Bark-
mann et al. compared women who had previously suffered
from a fracture of the hip, spine, ankle, or forearm to healthy
women without fracture (15). They found that the sites showed
significant fracture discrimination with age-adjusted standard-
ized Odds Ratios (ORs) for the phalanx and radius which
ranged from 4.1 to 4.5 and AUCs from 0.88 to 0.89. Similarly,
Damilakis et al. studying the discriminative ability of the SOS
concerning fractures at the wrist, vertebrae, and ribs, found
that the phalangeal SOS provides good discrimination (110).
The OR was 1.47 for tibia, 1.69 for radius, and 2.69 for pha-
lanx. The AUC ranged from 0.611 to 0.741. Nguyen et al.
found that lower SOS at the distal radius, tibia, and phalanx
were associated with increased risk of fracture in women (111).
In a multivariate analysis, they determined that independent
predictors of fracture risk were the distal radius SOS (OR per
SD decrease = 1.8; 95% CI, 1.3-2.4), femoral neck BMD (OR
per SD decrease = 1.9; 95% CI, 1.4-2.4), and age (OR per 5
years decrease = 1.2; 95% CI, 1.0-1.5). Data suggest that SOS
at the distal radius was associated with fracture risk, indepen-
dent of BMD and age. 
Concerning hip fracture, the discrimination ability of QUS at the
phalanx, tibia and radius is only slightly less significant than
that of the calcaneus with an OR around 2 (20, 34, 57, 58, 86,
105, 109, 112-119). 
Hans et al. studied multiple bone sites (only distal 1/3 radius,
third phalanx and ultradistal radius are considered here) on the
discrimination of hip fractures (21). Discrimination with SOS at
all ultrasound sites was highly statistically significant (age and
BMI-adjusted ORs per SD decrease = 1.4-3.0; AUC ranged
from 0.77 to 0.92). Distal one-third radius measurement (OR
equal to 2.4, with the AUC equal to 0.92) was the best discrimi-
nator of hip fracture patients from controls, although results
were not statistically better than those of the other sites. 
Weiss et al. demonstrated the ability of the SOS at the radius
(distal 1/3 of the radius) to assess hip fracture risk in elderly
women (120). The OR per standard deviation (SD) decrease of
SOS was 2.16 (1.46-3.19) and the AUC of 0.79 (0.73 - 0.86).
In 2004, Damilakis et al. found, for the SOS at the phalanx, a
significant OR equal to 2.63 and an AUC equal to 0.740 which
was better than the results reported on the calcaneus in the
same study (121). On the contrary, Ekman found that QUS of
the fingers phalanges cannot discriminate hip fracture patients
from controls (113). Tibial QUS have proven to be reliable in
discriminating osteoporotic hip fracture risk at an early stage in
the adult population with diseases or pharmacologic treatments
influencing bone metabolism (122, 123). 
Studying vertebral fractures, Knapp et al. found that SOS at
the phalanx and radius (but not tibia) had a good discriminative
power (37). The OR per SD decrease in SOS was 2.0 (1.22 to
3.23) for the phalanx, 1.4 (1.03 to 1.99) for the radius and 1.2
(0.87 to 1.66) for the tibia. The PhOS study, performed on
10,000 women, also demonstrated the effectiveness of QUS at
the phalanx in discriminating women, obtaining an OR for AD-
SOS of 1.7 (C.I. 1.5-1.8) (20). The same conclusion was given
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by Guglielmi et al. with an age-adjusted standardized OR be
similar for AD-SOS at the phalanx (distal metaphysis of the
proximal phalanx) and DXA (OR= 1.8 and 1.5 respectively)
(124). They later found that the age and BMI-adjusted OR
ranged from 2.0 (AD-SOS) to 3.1 (UBPI), compared to 4.1 for
BMD by DXA (77). The Basel Osteoporosis Study demonstrat-
ed that the discriminative performances of the phalanx was
comparable with the results obtained with axial DXA (89). How-
ever, in a study, only UBPI (and not AD-SOS) was found to be
able to discriminate patients (125).
The use of phalangeal QUS may predict risk of fracture of the
adjacent forearm, extending the use of QUS in predicting risk
of fracture of the hip based on measurement of the calcaneus
and the tibia (118, 122, 126, 127). Knapp et al. shown that se-
mi-reflection ultrasound measurements in cortical bone at the
phalanx and radius (but not tibia), using the SOS, were able to
discriminate Colles-fractured women, although the ORs were
lower than with lumbar spine and proximal femur BMD by DXA
(128). The age-adjusted ORs were 1.50 (95% CI 1.07-2.10) for
the radius, 1.23 (0.86-1.76) for the tibia and 1.85 (1.06-3.23)
for the phalanx. 

Secondary osteoporosis 

QUS are also able to discriminate patients with secondary os-
teoporosis compared to controls in the case of osteoporosis in-
duced by thyroid disease (129), primary hyperparathyroidism
(130-135), glucocorticoid excess (136, 137), lactose intoler-
ance (138), rheumatoid arthritis (139-143), osteoarthritis (144),
psoriatic arthritis (145), osteomalacia (146), hemodialysis (147-
150), epilepsy (151, 152), osteogenesis imperfecta (153),
Cushing’s syndrome (136), bone medullary transplantation
(154), calcium stone disease (155) and diabetes mellitus (156).

Ability of QUS to predict osteoporotic fracture

Many prospective studies have shown that fractured patients
have lower calcaneal ultrasound values than normal patients
and that QUS parameters are consistently predictive of osteo-
porotic fractures (5, 100, 101, 157). It is accepted that cal-
caneal SOS, BUA or stiffness double the hip fracture risk for
each decrease in standard deviation (100, 101, 103, 157-160).
Very few prospective studies were performed at the non calca-
neus skeletal sites. Mele et al. found values of relative risk of
1.5 (C.I. 1.1-1.7) for AD-SOS in evaluating low-energy periph-
eral fractures (92). However, the number of fractured patients
was very few (8). The prospective Osteoporosis and Ultra-
sound Study (OPUS), performed on more than 2,000 post-
menopausal women, revealed that AD-SOS and UBPI mea-
surements at the phalanges predict clinical low trauma frac-
tures as well as measurements by central DXA (161). These
results have not been confirmed for the prediction of hip frac-
ture in a large cohort such as the SEMOF (more than 7,000 el-
derly women). Indeed, a non-significant relative risk of hip frac-
ture prediction has been reported (162). However, the study
has been performed on the first ultrasound generation system,
the DBM 1200, and it has been made known that the cause of
the negative outcome could be due to technical problems
linked to the ultrasound trace analysis. This is now corrected in
the new IGEA Bone Profiler system. Similarly, the prospective
Basel Osteoporosis Study (BOS) study reported negative re-
sults concerning the prediction of vertebral fracture by the pha-
langeal ultrasound (163). So far, no prospective studies have
been reported for the radius and the tibia.

Treatment effect and monitoring

Cross-sectional studies demonstrated that QUS can differenti-
ate between subjects using HRT and age-matched controls,
and between subjects suffering from bone-affecting diseases
and age-matched controls. Women undergoing HRT had high-
er SOS, AD-SOS or SOS values at multiple skeletal sites than
age-matched controls, although only the radius and tibia SOS
reached statistical significance; a clear effect of the duration of
HRT use was seen for the phalanx measurements, the differ-
ences being less marked elsewhere for these subjects and
demonstrating the protective effect of ERT on bone (22, 36, 38,
93, 164, 165).
The fact that QUS can also monitor the effect of osteotrophic
treatments has been repeatedly demonstrated in small open
label prospective studies for measurements at the phalanx and
the radius. Large double-blind placebo-controlled studies are,
however, lacking. QUS were shown to be effective in longitudi-
nal monitoring of postmenopausal bone status and in the follow
up of pharmacological and non-pharmacological osteotrophic
therapies (166-170). A positive effect on bone due to treatment
with Alendronate over a 12-month period was detected by
QUS. The treatment group showed a significant increase in T-
scores at two out of four skeletal sites measured prior to and
following the commencement of treatment (171). Due to their
characteristics of high long-term stability and independence on
amplitude and soft tissue quantities, BTT and pure Speed Of
Sound (pSOS) have shown better performances in monitoring
of osteotrophic treatments such as Alendronate, HRT and
Risedronate (172) (170) (173). Similar results were found at
the tibia (174). Indeed, post-menopausal women with T-scores
of -2 or less at one site were recruited and treated with Alen-
dronate for at least 1 year. QUS values increased significantly
(0.21 ± 0.09 T-score, p = 0.02 with (0.03, 0.39)) after 12
months; a significant increase in mean T-scores was also
demonstrated at all sites assessed according to baseline T-
score of -2 or less. 

Conclusion

Over the past 15 years, a substantial body of knowledge re-
garding the performance of QUS techniques has been gath-
ered. To date, less prospective evidence supports the use of
non-calcaneum QUS techniques for the prediction of fracture
risk in elderly women. However, cross-sectional studies have
demonstrated close associations between QUS parameters
and osteoporotic status. Therefore, one can foresee that ultra-
sound techniques may have the potential for preventive
screening for osteoporosis. Unfortunately, due to the ambigui-
ties in assessing accuracy of QUS, currently there is no con-
sensual agreement on how results of QUS devices should be
interpreted in order to diagnose osteoporosis. Nevertheless,
the recommendation prone by the British National Osteoporo-
sis Society (NOS) (175) seems to be reasonable and ade-
quate:
– A low QUS value constitutes an independent risk factor for

osteoporotic fracture in postmenopausal women.
– A low QUS value constitutes an indicator of low bone mass

more important than clinical risk factors. 
– Patients with low QUS values can be prescribed a further

BMD test or a therapeutic regimen if other clinical risk factors
are present.

Due to limited experience, monitoring of skeletal changes sole-
ly by means of QUS cannot as yet be recommended. Depend-
ing on the devices and the skeletal sites, the time periods to
follow individual subjects would apparently exceed those re-
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quired for bone densitometry. However, it is important to note
that when using the standardized precisions, difference be-
tween DXA and QUS are smoothed. 
The overall performance, mostly based on the values of ORs
of non calcaneus QUS devices is not as good as the one re-
ported for certain calcaneus QUS devices. However, these
ORs do not take into account the biological range of the de-
vice. Maybe by standardizing the OR as we do for the preci-
sion would give us a different regard on the results of non cal-
caneus QUS devices. This should be further investigated.
Limited longitudinal sensitivity is a lesser issue for studies on
groups of subjects in research settings. Here, use of ultra-
sound can be advocated to obtain additional experience with
regard to longitudinal measurements of disease progression
and impact of treatment, and potentially differential changes
between BMD and QUS parameters.
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