Article

The use of mouse ribs in organ culture improves the *in vitro* bone resorption assay

Roberto Zonefrati Annalisa Tanini Jacopo Bartaloni Isabella Tognarini Gianna Galli Annamaria Carossino Maria Luisa Brandi

Department of Internal Medicine, University of Florence, Florence, Italy

Address for correspondence: Maria Luisa Brandi, M.D., Ph.D. Department of Internal Medicine University of Florence Viale G. Pieraccini 6, 50139 Florence, Italy Ph. +39 055 4296585 Fax +39 055 4296586 E-mail: m.brandi@dmi.unifi.it

Summary

This study investigated in vitro bone resorption determining the calcium release in ribs, long bone and calvaria prelabelled with ⁴⁵Ca from 17 day mouse fetuses, both in the absence and in the presence of specific stimuli, such as parathyroid hormone and calcitonin. 10⁻⁷ M rat parathyroid hormone (1 34) (rPTH (1-34)) stimulated bone resorption (evaluated throus h the ratio treated ribs/control ribs) in 93% of the organ cultures, while lower success rate was obtained using calval and long bone from the same animals. In the absence of a st supstances, no differences were observed in pai ed rich from the same fetus, while corresponding ribs from lifferer fetuses showed considerable differences. Within every lingle hemythorax, bone resorption varies according to the rib position either in control ribs, or in those or .s reated .th rPTH (1-34). In the presence of rPTH (1-34), bone r sorption showed to be dose-dependent producing a ... axima r sponse at 10⁻⁶ M, a minimal response at 10 $^{\rm 8}$ M and . hall maximal response at 5x10⁻⁸ M. Salmon calcitor in (scT) he is no effect upon basal resorption, while it acted ... a pot nt inhibiting agent in PTH response. The conspicuous nur per of samples which can be obtained from a var vely usw number of mice, the reproducibility of results, togr .ner with the hormone sensitivity make the fet mouse is model an excellent tool for evaluating bone r sorption in vitro.

KEY V RDS. hone esorption, calcitonin, calcium release, parathyroid hor - mor, rib.

In. and action

Several *in vitro* models have been developed to evaluate the bone remodeling process both in normal as well as in pathological conditions (1,2). Usually, the effects of hormones and other substances on bone resorption are quantified by analyzing the

Clinical Cases in Mineral and Bone Metabolism 2005; 2(1): 47-51

mobilization of minerals from bones, either following the release of ⁴⁵Ca from prelabeled bones (3-6), or by determining the release of stable calcium and inorganic phosphate (7). Four main experimental systems are currently used in different is boratories: 1) fetal rat long bones (radius and ulna) in stational, cultures (3); 2) calvarial bones from mouse (5,8) and ra fetus es (9) in stationary cultures, from mouse newbor is but in stationary cultures (10-13) and in roller tubes (14), and fron a dult rats (15); 3) neonatal mouse vertebrae (16) and 1 bor e fragments incubated with isolated osteoclasts (17).

However, interpretation of the results of fine his been hampered by the considerable variability of calcium release observed in control cultures. This phenomer primay reflect differences in the rate of bone resorption, the animals at the time of dissection, possibly cause ' by tritable hormone concentrations retained by the extremes (1). In a similar fashion, other, as yet unidentified factors could cally influence the variability of the basal resorptive ctivity. In order to reduce the error due to biological variate 'ity concataneous mineral mobilization, it would be necr asary to increase the number of samples analyzed and this or all be achieved using either more fetuses or more bor as from the same fetus (i.e. vertebrae).

All the Le considerations prompted us to use 45 Ca prelabeled ribs com 17 'ay old mouse fetuses as a model to evaluate the invitro cosorptive activity of bone organ cultures.

h aterials and methods

Fetal mouse rib assay

Pregnant Swiss CD-1 mice on the 15th day of gestation (Charles River, Calco, Italy) were injected with 40 μCi of $^{45}\text{Ca}\text{-}$ Cl₂ (Hamersham, Arlington Heights, IL, USA). The mothers were killed on the 17th day of gestation and the fetuses were removed with a binocular dissecting microscope, the thoraxes were divided into two parts and individual ribs were separated and divided into right and left group, the former used as control group, the latter as treated group. Each of the two groups was composed by 12 individual ribs, which were identified by a serial number ranging 1 to 12. After the mineralized shafts of the ribs were dissected free of surrounding tissue and cartilage, each of the paired ribs was incubated in single wells of 48-well plate (Costar, Cambridge, MA, USA) using Coon's modified HAM F12 medium with 5% calf serum (Gibco Brl, Gaithersburg, MD, USA) for 24 h at 37°C in humidified atmosphere of 5% CO $_2$ and 95% air in order to allow the exchange of loosely complexed ⁴⁵Ca. Paired ribs were then transferred into fresh medium with and without test substances [rPTH (1-34) and sCT (Bachem, Bubendorf, Switzerland)] for 72 h. At the end of the incubation time the media were analysed for ⁴⁵Ca concentration. Bones were dissolved in 300 µl of 2 N HCl for 4 h at 90°C and ⁴⁵Ca was evaluated. The radioactivity in the medium and bone extracts was counted separately by a liquid scintillation counter using INSTA-GEL scintillation fluid (Packard, Groningen, The Netherlands). Results were expressed as the treated/control ratio and calculated using the following formulae:

⁴⁵Ca release (%) from a single rib =
$$\frac{45}{45}$$
Ca in medium + 45 Ca in bone × 100

A treated (T) to control (C) ratio was calculated and used as an index of stimulation, a ratio greater than 1.08 representing an increase of bone resorption, a ratio smaller than 0.92 representing an inhibition of bone resorption. A range of bone resorption of ± 0.08 has been chosen; this choice is based both on the statistical error, due to the total counts, and to a "casual systematic error", due to the manipulation procedures in the sample preparation. Assuming the same total counts for every ⁴⁵Ca determination, the statistical

error is (at 1 SD):
$$\frac{\left(\frac{T}{C}\right)}{\frac{T}{C}}$$
 2x $\frac{(\text{total count})}{\text{total count}} = 2x \frac{\frac{1}{\text{total count}}}{\text{total count}}$

Taking the equivalent of 2 SD we obtain 2x1%=2%. For the so called "systematic error" due to the manipulations in the sample preparation, a factor equal to 4 has been arbitrarily assumed. This gives 4x2%=8%.

Every T/C ratio was calculated using ⁴⁵Ca releases (%) from ribs with the same serial number. Ribs with the same serial number were defined as corresponding ribs.

T/C ratio =
$$\frac{{}^{45}Ca \text{ release (\%) from the treated rib}}{{}^{45}Ca \text{ release (\%) from the control rib}}$$

The mean T/C ratio for each experimental group of 12 pairs of corresponding ribs was calculated as the mean of the T/C ratios of the single pairs of corresponding ribs.

In the fetal mouse rib model the observations are represented by not independent sample, naturally paired samples (i.e. pair of corresponding ribs). So the comparisons were always carried out between pairs of data, reducing partly some of the sources of biological variability and allowing a more ex. + comparison. Statistical analysis was tested by paired Ctuder 's ttest of the differences between treated and corresponding control rib.

Fetal mouse long bone assay

Bone resorption was measured as pr viou.., described (3), with some modifications. Briefly $_{\rm P}$ egnal ' mice were injected on 15th day of gestation with <0 μ (i of $^{45}CaCl_2$. 48 hours later

Table I - Variability of basel value, related to hemithorax origin.

the shafts of the long bones were dissected out. Later, the long bones were treated in the same experimental conditions ad described in the fetal mouse rib assay. The paired long bones were used as control and as treated sample, respectively.

Fetal mouse calvaria assay

The bone-resorbing activity was measured as previously described (5), with some modifications. Briefly, pregnant mice were injected on 15th day with 40 μ Ci of ⁴⁵CaCl₂. 48 hours later the calvaria were excised and divided into paired halves. Later, the half-calvaria were treated in the same experiment conditions as described in the fetal mouse rib assay. The paired half-calvaria were used as control and as treate ' sample, respectively.

All animal experimentations here described were conducted in accordance with the highest standards of humane animal care.

Results

The effect of 10^{-7} M rPTH (1-34) on bone m sorption, measured as release of 45 Ca in treated compare d to control bones, was evaluated in the fetal mouse r, r, c an and long bone models as reported in Fig. 1. Results a eleganized in three groups: a) PTH-stimulated bone measured in three groups: a) PTH-stimulated bone measured bone resorption between -8% and +8% above control (92 eT/C < 1.08); b) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (92 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (192 eT/C < 1.08); and c) PTH-stimulated bone resorption between -8% and +8% above control (10 eT/C < 0.92). The esuits showed that 47% of femures, 58% of tibiae show at 1/2 ratio 1 /8. Conversely, when the effect of 10-7 M rP. H(1, 34) was evaluated in the fetal mouse rib assay, 93% of risc sprese ted a T/C ratio >1.08 (Fig. 1).

	Total comparisons	Comparisons with no significant differences	Comparisons with significant differences 0.01 <p<0.05 p<0.01<="" th=""></p<0.05>	
Comparisons between hemithoraxes from				
a same fetus ^a	20	20	_	_
C_mpail, ons ' etween hemithoraxes of different 'etus, s from a same pregnant mouse ^b	232	189	34	9
Compations between hemithoraxes of different feture as from different pregnant mice ^c	528	326	67	135

The fetuses were obtained from 3 mothers: 6 fetuses from mother number 1, 6 fetuses from mother number 2, 8 fetuses from mother number 3. Every single comparison was carried out comparing of two hemithoraxes those ribs having the same serial number. Student's *E*test for paired samples was used to evaluate the paired ribs' significant differences.

^a Every hemithorax in one fetus was compared with the other one from the same fetus.

^b Every hemithorax in one fetus was compared with every hemithorax from all the other fetuses from the same mother.

^c Every hemithorax in one fetus was compared with every hemithorax from all the fetuses from the other mothers.

The release of ⁴⁵Ca in the absence of tested substances in paired ribs of the same fetus did not show significant differences. In contrast, significant differences were observed in ⁴⁵Ca release from corresponding ribs from different fetuses, either from the same or different mothers (Table I).

When basal bone resorption was compared in ribs from a single hemithorax, significant differences were found with respect to the position of the rib (Fig. 2 A and B). Similarly, when the effects of two different doses of rPTH(1-34) were evaluated among ribs from a single hemithorax, the differences in bone resorption as a function of rib position were even more evident (Fig. 2 A and B).

Figure 2 - 45 Ca percent release as function of serial number of the . hs in a control hemithorax and 45 Ca percent release as function (* seria number of the ribs in a hemithorax after stimulus with $5x10^{-8}$ M rP. 4(1-34) (A) and with 10^{-6} M rPTH(1-34) (B).

The effects of different concentrations or $PTh_1 \rightarrow 0$ n bone resorption of fetal mouse ribs were value ad in paired ribs from 9 fetuses from the same mother. A dose dependent relationship of bone resorption was demonstrated, with maximal response at 10⁻⁶ M PTH, minima deter value response at 10-9 M, and half-maximal response at $5x10^{-8}$ M (Fig. 3). Similar results were obtained with ribs of fetuses derived from 5 different mothers.

In fetal mouse ribs sCT had no effect on basal bone resorption at any of the doses tested from 10^{-11} M to 10^{-5} M. However, a potent inhibitory effect on PTH-stimulated bone resorption was evident at sCT concentrations between 10^{-10} M and 10^{-5} M (Fig. 4).

, foure 4 - Effect of 10 nM and 10 μM sCT on rPTH (1-34) stimulated bone resulption.

Discussion

In order to compare the results from the models described in the existing literature, with the one we describe in the present report, ⁴⁵Ca release from fetal mouse long bones, fetal mouse calvaria and fetal mouse ribs in fetuses from different mothers were compared.

The choice of fetuses instead of newborn mice is due to the fact that the sterile removal of ribs can be carried out only in fe-

Table II - Effect of 10 ⁻⁷ M rP1, '(1-',4)	on bone resorption in fetal mouse calvaria, long bones and rit
---	--

Bone	Total cases	Cases with T/C>1.08	% Total	Cases with T/C>0.92 T/C<1.08	% Total	Cases with T/C<0.92	% Tota
Calvari	43	20	47	4	9	19	44
F'amerus	43	18	42	9	21	16	37
Ilna	43	20	47	8	18	15	35
R. dius	43	17	40	10	23	16	37
Femur	43	20	47	11	25	12	28
Tibia	43	25	58	4	9	14	33
Rib	276	257	93	8	3	11	4

Calvaria and long bones were prepared from 43 fetuses. Ribs were prepared from 23 fetuses.

Clinical Cases in Mineral and Bone Metabolism 2005; 2(1): 47-51

Table III - Effects of different concentrations of rPTH(1-34) on bone resorption of fetal mouse ribs.

Concentration	Mean T/C Ratio	Significance
10 ⁻⁵ M	2.09	P<0.01
10 ⁻⁶ M	2.03	P<0.01
10 ⁻⁷ M	1.88	P<0.01
5x10 ⁻⁸ M	1.51	P<0.01
2.5x10 ⁻⁸ M	1.40	P<0.01
10 ⁻⁸ M	1.31	P<0.02
10 ⁻⁹ M	1.13	P<0.05
10 ⁻¹⁰ M	1.03	N.S.
10 ⁻¹¹ M	1.05	N.S.

A dose-response curve from a representative experiment. Each mean T/C ratio was calculated as the mean of the T/C ratios of the 12 pairs of corresponding ribs. The significance was calculated using Student's *t*-test for paired samples.

Table IV - Effect of 10⁻⁸ M and 10⁻⁵ M sCT on rPTH(1-34) stimulated bone resorption.

Treatment	Mean % Release	Mean T/C Ratio	Significance	
Control	14.39	0.07	NS	
sCT 10 ⁻⁸ M	13.95	0.97	N.S.	
Control	11.83	0.05		
sCT 10 ⁻⁵ M	11.27	0.95	N.S.	
rPTH(1-34) 5x10 ⁻⁸ M	24.3			
rPTH(1-34) 5x10 ⁻⁸ M + sCT 10 ⁻⁸ M	14.5	0.6	P<0.01	
rPTH(1-34) 5x10 ⁻⁸ M	28.41			
rPTH(1-34) 5x10 ⁻⁸ M + sCT 10 ⁻⁵ M	18.07	0.64	P<0.01	

The mean % release was evaluated as m an of 45 Ca percent release of 12 ribs of a hemithorax. Each mean $^{-7}$ C ratio v as alculated as the mean of the T/C ratios of the 12 pairs of corresponding tips. The significance was calculated using Student's *t*-test for paired significance was calculated using Student's *t*-test for paired significance.

tuses. In fact, the vicinity of the ribs to the bronchial tree can cause contamination of the ribs removed from newborn mice.

PTH i a powerful stimulus of bone resorption (3,18). In our str dy, hore than 90% of the ribs we processed showed a positive esponse to PTH stimulation, while this percentage lowered w on the other bone models were analyzed. Our results put in evidence that ribs are a highly responsive model to evaluat, the processes involved in bone resorption.

⁴⁰Ca release in control ribs, and after stimulation with 10⁻⁷ M rPTH (1-34), was evaluated as function of the fetus age. The best results were obtained using 17 day old fetuses (data not showed).

Comparing the ⁴⁵Ca release basal values obtained in the two

hemithoraxes from the same fetus with those recorded with hemithoraxes from different fetuses of the same mother, the biological variability increased. This variability became drammatically higher when comparison was made between hemithoraxes explanted from fetuses of different mothers. These results may be probably due to the evident different embryo growth degree, despite the same duration of their gestation. To minimize the biological variability, in our experiments we always calculated T/C ratios using corresponding bones from the same fetus.

When bone resorption was stimulated by PTH, the group composed by ribs from 1 through 3 and that from 10 throug proved to be more responsive than that from 4 through 9. The significant differences taken in PTH response as to the Lip polition were probably due to the different degree of being rome deling among the different ribs.

In our model the least concentration of PTH able 1. produce a significant increase in bone resorption was 0^{-9} M. his sensitivity to PTH was of the same magniture on the context those obtained with other experimental mode! (4,1,16,18).

In mouse calvarial bone resorption a stay, e potent inhibitory effect of sCT on basal level of ${}^{45}Ca$ r lease has been demonstrated (3,12,15). In our expressments s \sim failed to inhibit basal level of bone resorption, but 'was very effective in inhibiting the effects of PTH , in accordance with results in other models (3, 16, 19).

It is important to note that nom a technical viewpoint rib explants do not ir volve mole difficulties than those encountered in the long bone or set in models.

In conclusion, the model we propose represents a real improvement in the *in vitro* bone resorption assay when compare with ups previously used, making possible to reduce the number of animal sacrificed and to obtain more reproauble delta.

ferences الا

- Reynolds JJ. Skeletal tissue in culture. In: Bourne GH (ed), The Biochemistry and Physiology of Bone, 2nd ed. Academic Press, New York, USA, pp. 70-120, 1972.
- Stern PH, Raisz LG. Organ culture of bone. In: Simmons DJ, Kunin AS (eds), Skeletal Research-An Experimental Approach. Academic Press, New York, USA, pp. 21-59, 1979.
- Raisz LG, Niemann I. Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology. 1969;85:446-452.
- Simmons HA, Raisz LG. Effects of acid and basic fibroblast growth factor and heparin on resorption of cultured fetal rat long bones. J Bone Miner Res. 1991;6:1301-5.
- Shiina Y, Yamaguchi A, Yamana H, Abe E, Yoshiki S, Suda T. Comparison of the mechanism of bone resorption induced by 1,25-dihydroxyvitamin D₃ and lipopolysaccharides. Calcif Tissue Int. 1986;39:28-34
- Divieti P, John MR, Juppner H, Bringhurst FR. Human PTH-(7-84) inhibits bone resorption in vitro via actions independent of the type 1 PTH/PTHrP receptor. Endocrinology. 2002;143(1):171-176.
- Fried RM, Voelkel EF, Rice RH, Levine LM, Tashjian AH Jr. Evidence for multiple bone resorption-stimulating factors produced by normal human keratinocytes in culture. Endocrinology. 1988; 122:2467-2475.
- Imamura K, Ozawa H, Hiraide T, Takahashi N, Shibasaki Y, Fukuhara T, Suda T. Continuously applied compressive pressure induces bone resorption by a mechanism involving prostaglandin E₂ synthesis. J Cell Physiol. 1990;144:222-228.
- Hurley MM, Gronowicz G, Kream BE, Raisz LG. Effect of eparin on bone formation in cultured fetal rat calvaria. Calcif Tissue Int. 1990;46:183-188.
- 10. Reynolds JJ. Organ cultures of bone: studies on the physiology

Clinical Cases in Mineral and Bone Metabolism 2005; 2(1): 47-51

and pathology of resorption. In: Balls M, Monnickendam M (eds) Organ culture in biomedical research. Cambridge University Press, pp. 335-366, 1976.

- Lerner UH. Modifications of the mouse calvarial technique improve the responsiveness to stimulators of bone resorption. J Bone Min Res. 1987;5:375-383.
- 12. Crisp AJ, Wright JK, Hazleman BL. Effects of heparin, histamine, and salmon calcitonin on mouse calvarial bone resorption. Ann Rheum Dis. 1986;45:422-427.
- Gowen M, Mundy GR. Actions of recombinant interleukin 1, interleukin 2, and interferon- on bone resorption in vitro. J Immunol. 1986;136:2478-2482.
- Tashjian AH Jr, Voelkel EF, Levine L, Golhaber P. Evidence that the bone resorption-stimulating factor produced by mouse fibrosarcoma cells is prostaglandin E₂: a new model for the hypercalcemia of cancer. J Exp Med. 1972;136:1329-1343.
- Johnston CC Jr, Deiss WP Jr. An inhibitory effect of thyrocalcitonin on calcium release in vivo and on bone metabolism in vitro. Endocrinology. 1966;78:1139-1143.
- Stewart PJ, Stern PH. Vertebral bone resorption in vitro: effects of parathyroid hormone, calcitonin, 1,25 dihydroxyvitamin D₃, Epidermal Growth Factor, prostaglandin E₂, and estrogen. Calcif Tissue Int. 1987;40:21-26.
- Blair HC, Arnold JK, Crouch EC, Jeffrey JJ, Teitelbaum SL. Isolated osteoclasts resorb the organic components of bone. J Cell Biol. 1986;102:1164-1172.
- Al-Humidan A, Ralston SH, Hughes DE, Chapman K, Aarden L, Russell GG, Gowen M. Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. J Bone Min Res. 1991;6. 3-7.
- Friedman J, Au WJW, Raisz LG. Responses of fetal rat bone to thyrocalcitonin in tissue culture. Endocrinology. 1968;82: 1'9-1...

Clinical Cases in Mineral and Bone Metabolism 2005; 2(1): 47-51