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Summary

Tendons are often subject to age related degenerative
changes that coincide with a diminished regenerative
capacity. Torn tendons often heal by forming scar tis-
sue that is structurally weaker than healthy native ten-
don tissue, predisposing to mechanical failure. There
is increasing interest in providing biological stimuli
to increase the tendon reparative response. Stem
cells in particular are an exciting and promising
prospect as they have the potential to provide appro-
priate cellular signals to encourage neotendon forma-
tion during repair rather than scar tissue. Currently,
a number of issues need to be investigated further be-
fore it can be determined whether stem cells are an
effective and safe therapeutic option for encouraging
tendon repair. This review explores the in-vitro and in-
vivo evidence assessing the effect of stem cells on
tendon healing, as well as the potential clinical appli-
cations.
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Introduction

Failure of tendon regeneration following degeneration
and damage has encouraged the search for biological,
mechanical and surgical therapies to improve the strength
and structure of healing tendons. The aetiology of tendon
failure is multi-factorial. Mechanical factors have been
shown to contribute to tendon tears. Once the tendon
body is stretched beyond its elastic threshold, failure may
ensue with inflammation of the tendon sheath and/or ten-
don degeneration1. Tendon damage can also occur when
microtrauma forces are applied within the tendon’s phys-
iological threshold but the normal reparative mechanisms

are overwhelmed1. Many tendon tears are prone to heal
via scar tissue formation at the tendon-bone interface, re-
sulting in regenerated tissue is usually weaker and more
prone to failure2. Preceding degenerative changes play a
key role in the pathogenesis of tears, as degenerative ten-
dons are more likely to rupture than normal tendons dur-
ing physiological loading, and have a reduced reparative
potential3,4. Using rotator cuff tendons as a prime exam-
ple, the incidence of tears increases with age and
Nobuhara et al., examined a series of tendon biopsies
from patients aged 45 years and above, and reported that
81% of patients showed degeneration5. 
There is increasing interest in the application of stem
cells to enhance tendon healing. It is proposed that self-
renewing stem cells have the potential to recapitulate
the embryonic tendon developmental signaling milieu.
Ultimately this is thought to facilitate the regeneration of
healthy functional tendon tissue rather than the weak
scar tissue which normally forms during the tendon repar-
ative response seen in adults following any form of dam-
age or degeneration6. 
Despite some promising research, many questions re-
garding stem cells remain unanswered, such as its effi-
cacy and safety. This manuscript will examine current lit-
erature regarding the application of stem cells to tendon
healing in animals and in a clinical setting. Different
modalities for enhancing the efficacy of stem cell healing
will also be explored, such as growth factor, mechanical
and genetic modulation. 

Types of stem cells

Stem cells can simply be defined as a cellular population
with the ability to self-replicate through mitosis to form
daughter cell lines, which have the potential to terminally
differentiate into a number of different cell lineages7. A
number of sources exist for obtaining stem cells and thus
stem cells can be classified based upon their tissue of ori-
gin. The most common stem cell sources are embryonic,
perinatal (from the umbilical cord or amniotic tissue) or so-
matic adult cells. A more novel source of stem cells are
induced pluripotent stem cells (IPSCs) which are initially
mature adult cells that have undergone in-vitro modula-
tion and obtained the characteristics of adult stem cells,
such as pluripotency8. 
The majority of orthopaedic related stem cell research to
date has focused upon adult stem cells rather than em-
bryonic or perinatal stem cells, as the latter are associated
with numerous regulatory and ethical constraints. IPSCs
are a relatively new field that has generated a great deal
of interest. Adult stem cells are predominantly either mes-
enchymal stem cells or haematopoietic stem cells. Dis-
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tinction between these different stem cell populations is
based upon their surface markers, although some over-
lap has been reported9. 
Mesenchymal stem cells (MSCs, which are sometimes
also referred to as mesenchymal stromal cells) are de-
fined by three specific characteristics. Firstly they are
multipotent cells that are capable of differentiating into a
number of daughter cell lines such as chondrocytes, os-
teocytes and adipocytes10. Secondly, MSCs are able to
adhere to plastic. Thirdly, they present stem cell specific
antigens on their surface. To date, no single stem cell spe-
cific marker has been identified, although panels of stem
cell positive have been reported such as CD 31, 34, 40,
49c, 53, 74, 90, 106, 133, 144, 163, cKit and Slams11. The
majority of such surface markers are associated with
stem cells but are not unique to stem cells. Importantly,
stem cells must display an absence of ‘negative markers’
that are used to identify other cell lineages, such as
haematopoeitic or endothelial cells, such as CD 14, 31,
34 and 4512,13. 
The majority of MSCs utilized for orthopaedic applications
are obtained from bone marrow tissue as these cells are
relatively easy to access and provide relatively high num-
bers of MSCs compared to other sources. The iliac crest
is the most common site for MSC harvesting, although a
number of other sources have been identified. MSCs
can be successfully aspirated while reaming long bones
using a reamer-irrigation-aspirator (RIA), with compara-
ble differentiation potential to iliac crest derived MSCs and
superior numbers of total cells and colony forming units14.
It is important to note that bone marrow aspirates provide
very low yields of actual MSCs, which are estimated to ac-
count for only 0.001-0.01% of all nucleated cells15. MSCs
can also be derived from other sources such as accessi-
ble adipose tissue which can also be relatively easily 
accessible, although these cells have an apparently re-
duced ability to differentiate into osteocytes and chondro-
cytes compared to bone marrow derived MSCs16. A num-
ber of alternative sources of stem cells have been
identified, such as muscle, tendon, cartilage, synovium,
blood, skin, testes, hair and scalp tissue although these
are less commonly utilized17-19. 

Tendon progenitor stem cells

A tendon progenitor stem cell (TPSC) population has
been identified in both humans and mice, with a greater
incidence in tendon microenvironments or ‘niches’ con-
taining tendon related growth factors such as fibromod-
ulin and biglycan18. TPSCs appear to be a distinct popu-
lation compared to tenocytes, and can be differentiated by
the presence of stem cell markers such as tenomodulin,
Oct-4 and SSEA-420. In addition to differentiating into
tenocytes, the TPSC population can differentiate into os-
teocytes, chondrocytes and adipocytes. A decrease in TP-
SCs with increasing age has been reported and may
contribute to the increase in rotator cuff tears and reduc-
tion in healing potential noted with increasing age21. Cul-
turing human tendon stem cells was enhanced when cul-
tured on highly aligned nanofibers rather than randomly
aligned nanofibers22. 

It has been proposed that delivering TPSCs to the sites
of tendon healing may stimulate further tendon regener-
ation and healing. Deriving stem cells from tendon ‘niches’
may be important for encouraging differentiation into
tenocytes rather than fibroblasts or cells of other lineages.
Mazzocca et al. identified stem cells with ‘tenogenic’ po-
tential from aspirates taken from the humeral head in a
small study of 23 patients23. The stem cell characteristics
were not extensively characterized and as the aspirated
stem cells were not reinjected, the repair potential of
these aspirated cells remains unknown.

Animal studies

Untreated Stem Cells
A number of studies have suggested that MSC treatment
may improve both the volume and quality of regenerated
tendons, with a greater propensity to heal via the gener-
ation of fibrocartilagenous tissue rather than scar tissue.
MSCs treatment for lower limb tendons have resulted in
improvements in a number of studies. Improved healing
of the Achilles tendon enthesis has been noted following
MSC treatment24. Achilles tendons injected with synovial
derived MSCs demonstrated improved collagen fiber
appearance as early as 1 week after treatment 25. Bone
marrow derived MSCs have been shown to improve the
histological and mechanical properties of patellar ten-
dons26. The histological improvement was limited to mat-
uration of collagen fibers and cells, as no improvement
was noted in the microstructure of MSC treated ten-
dons. MSC augmented semitendinosus tendons were
used to reconstruct ACLs and resulted in improved me-
chanical properties at 8 weeks, as measured by greater
failure loads and stiffness27. Similarly, another study of
MSC augmented tendons used to repair rabbit ACLs
demonstrated improved histological and failure and stiff-
ness properties at 8 weeks28. Some studies have sug-
gested that MSC mediated healing may have a tempo-
ral effect, with greatest efficacy demonstrated during
early phases of healing. Improved tendon mechanical
and histomorphometric properties following MSC injec-
tion into rabbit Achilles tendons was only noted at 3
rather than 6 weeks, even though MSCs were still noted
to be viable at 6 weeks29. 
MSC augmentation of rotator cuff repairs has also been
investigated. The effects of MSCs derived from bone
marrow, muscles and synovium on infraspinatus muscle
regeneration were investigated in an ovine model of de-
layed rotator cuff repair30. MSC injection following six
weeks of infraspinatus muscle retraction was found to
significantly increase the contraction force, muscle vas-
cularity and ratio of myocytes to adipocytes. Interestingly,
the cambium layer of periosteal tissue contains high
concentrations of MSCs and was sutured to rabbit infra-
spinatus defects, resulting in improved mechanical prop-
erties31. Amniotic derived MSCs have been seeded onto
bioprosthetic scaffolds and used to successfully aug-
ment the repair of partial diaphragmatic tendon tears by
improving the tensile strength and failure rates32. 
Treatment of racehorse tendinopathies with MSCs has re-
ceived a great deal of interest33. Successful isolation of
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MSCs from the sternum of racehorses has been demon-
strated and expanded MSCs have been injected under ul-
trasound guidance into equine superficialis flexor digito-
rum tendons (SFDT), which is analogous to the human
Achilles tendon34. In a small series, 9 out of 11 racehorses
were able to return to racing and MSC treatment was as-
sociated with a reduced tendon reinjury rate and im-
proved collagen fiber organization as measured by ultra-
sound35. A 2 year-follow up study of MSC therapy for
overstrain injuries of the SFDT reported a reduction in
reinjury rates in racehorses36. 
A concern with animal models of tendon damage is that
the tendons are usually healthy, even if a defect is artifi-
cially created. Schnabel et al. attempted to assess the ef-
fects of MSCs on damaged tendons by using an equine
model of collagenase induced tendinitis in SFDTs. While
an improvement in tendon histological scores was noted
in the MSC treated group, there was no difference in ex-
pression of ECM related proteins37.
Questions have been raised as to whether improved
tendon regeneration can be seen in the presence of any
cells, rather than specifically in the presence of MSCs.
Hankemeier et al., addressed this question by compar-
ing the effects of human MSCs and fibroblasts on a
patellar defect38. Histological improvements were seen in
the MSC treated group at 10 days only, but not at 20 days
and no effect was seen on the ultimate stress properties
of tendons. Increased collagen 1 and 3 mRNA production
was noted at 20 days in the MSC group but histological
and mechanical properties were unaffected. The effect of
MSCs on regeneration of mechanically damaged SDFTs
were compared to embryonic stem cells (ESCs)39. ESCs
showed greater survival and migration throughout the ten-
don compared to MSCs, suggesting that they may be a
more effective source of stem cells. However, given eth-
ical concerns surrounding ESCs, most research has
shied away from this area in favour of MSCs. 
While a number of animal studies have suggested that
stem cells can enhance tendon healing, many studies did
not measure tendon associated markers, making it diffi-
cult to characterize the true fate of any differentiated
cells. No consensus has emerged from animal data about
the ideal concentration or number of cells, or the most ef-
ficacious delivery modality. A number of in-vitro studies
have attempted to address such questions.

Delivery of Stem Cells with Scaffolds
Finding an ideal carrier that will facilitate MSC localization
and sustained function at sites of tendon damage may be
essential to facilitate effective function. A rat model was
used to study the effect of MSC delivery to rotator cuff de-
fects using a fibrin carrier40. Whilst MSCs were shown to
be viable in the rotator cuff, no improvement was detected
in tendon composition, structure or mechanical strength.
Fibrin glue has been used to coat allografts with MSCs
that were used to repair rabbit ACLs, ultimately resulting
in improved histological appearance and mechanical
properties41. As well as fibrin, collagen gel and sutures
have been studied as delivery vehicles for MSCs. Young
et al. suspended MSCs into a collagen gel that was con-
tracted onto pretensioned sutures and used these sutures
to repair a rabbit Achilles tendon defect42. While the re-

generated tissue varied from native tendon as it pre-
dominantly consisted of fibroblasts rather than tenocytes,
it did result in improved mechanical load properties, ten-
don cross sectional area and collagen fiber alignment at
12 weeks. A similar study by Awad et al. delivered MSCs
onto collagen matrices and contracted sutures, which re-
sulted in improved mechanical properties and larger tis-
sue volumes but no difference in histological appear-
ance43. Poly (lactic-co-glycolic acid) (PLGA) coated with
fibroblast growth factor has been shown to stimulate
tenogenic differentiation of seeded MSCs44. MSCs
seeded onto polyglycolic acid (PGA) sheets were used to
repair rotator cuff defects in a rabbit model of infraspina-
tus tears ad produced superior histological, collagen 1
and mechanical properties compared to PGA sheets
alone45. Yao et al. studied the effects of adding MSCs to
sutures coated with intercellular cell adhesion molecule
1 and poly-L-lysine, in a rat Achilles tendon repair model.
MSC enhanced sutures produced an early improvement
in repair strength at 7 and 10 days, but this improvement
did not last at later stages46.
The scaffold material and surface properties may influ-
ence stem cell differentiation. MSCs were shown to pref-
erentially differentiate into tendon stem cell precursors in
the presence of collagen, whereas fibronectin scaffolds
encouraged osteogenic differentiation47. A highly organ-
ized topographical surface reportedly enhances the ex-
pression of tendon-specific markers rather than os-
teogenic-specific markers48. Cryopreserved tendon
allografts have been used as scaffold for culturing MSCs,
and were successfully used to augment patella tendon
defects in a rabbit model. Viable MSCs and improved
histological properties were measured at 8 weeks. A
number of synthetic materials have been trialed as de-
livery vehicles for stem cells, such as PGA, PGLA and
PLA49-51.

Direct Modulation of Stem Cells through Gene therapy
Mesenchymal progenitor cells can be manipulated to
encourage a tenogenic fate. Plasmids encoding SMAD-
8 and bone morphogenetic protein-2 (BMP-2) signaling
proteins were injected into partially torn Achilles tendons
in a rat model and resulted in improved tendon formation
and healing52. Smad8/BMP-2 genetically engineered
MSCs have also been used to repair Achilles tendon
defects in mice. They produced a variable effect on me-
chanical properties by producing a significant increase in
stiffness and elastic modulus, but no effect on ultimate
load or maximum stress53.
Identifying the appropriate key genes and the optimal de-
livery timing may be a key determinant of successful
stem cell-mediated tendon healing. Attempts to recapit-
ulate signals present during embryonic tendon formation
have resulted in some promising results. Injection into the
rotator cuff of MSCs transduced with scleraxis and mem-
brane type 1- matrix metalloproteinase (MT1-MMP) im-
proved the histomorphometric and mechanical properties
of tendons after four weeks54,55. In contrast, injection of
MSCs transduced with BMP-13 did not produce any im-
provement in regenerating tendons, which further sup-
ports the need to find provide appropriate cell signals in
addition to stem cells56.
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Indirect modulation of Stem Cells via Growth Factors 
In order to enhance the efficacy of stem cell use, there
may be a role for modulation of stem cells with cytokines
and cell signals, particularly as stem cell differentiation
and ultimate fate is affected by culturing conditions and
exposure to appropriate signals. Co-culturing bone mar-
row stromal cells with tenogenic substrates (postulated
to be type-1 collagen of moderate rigidity, 30-50kPa) re-
portedly increased tenogenic differentiation57. The au-
thors postulated that paracrine signaling between stromal
cell populations was mediated by BMP-2 and the tran-
scription factor Smad-8. MSCs can differentiate into
tenocytes in the presence of the appropriate culturing
conditions and exposure to cell signals and cytokines
such as BMP-2, transforming growth factor β3 (TGF-β3),
prostaglandin E2 (PGE2) and platelet rich plasma (PRP)
releasate58-61. PRP specifically has been shown to in-
crease the size and length of tenocytes, as well as in-
creasing the proliferation rate and production of collagen
types I and III60. However, selection and delivery of key
growth factors at appropriate times may play a key role
in determining their effectiveness in enhancing stem cell
mediated effects on tendons. This was supported by re-
sults from a study by Martinello et al. which found that the
combined use of blood derived MSCs and PRP did not
have a synergistic effect on tendon healing in sheep,
compared to MSC treatment alone62. The optimal com-
bination of stem cells with growth factors and their appro-
priate doses still need to be determined for enhancing
tendon healing. 

Indirect Modulation of Stem Cells with Mechanical Loading
Mechanical loading of tendons at low strain rates has
been proposed to encourage tendon healing63. Simi-
larly, tendon derived stem cells have been shown to be
respond to tensile loading by increasing BMP-2 expres-
sion as well as cellular alignment along the mechani-
cal loading axis64,65. Furthermore, differentiation of
tenocyte stem cells is reportedly influenced by the
magnitude and direction of applied mechanical load66.
A tenogenic fate was demonstrated for tendon stem
cells following the application of low strain rates
whereas higher strain rates encouraged stem cell dif-
ferentiation down osteogenic, adipogenic and chondro-
genic lineages67.
These findings were replicated in a rat study of animals
subjected to a treadmill running protocol68 wherein Zhang
et al. measured higher tendon stem cell proliferation and
collagen production rates. The mechanical environment
during culturing can also affect differentiation, as more
rigid mechanical culturing substrates were found to favour
osteogenic rather than tenogenic differentiation57. 
The relationship between mechanical loading and stem
cells is likely to be a complicated one, as both intensity,
magnitude and duration of loading are likely to influence
differentiation. The length of refractory periods between
loading of MSCs, as well as intensity and magnitude
were shown to vary the balance between differentiation
down either osteogenic or adipogenic fates69. Further
research is required to try to delineate the effects of
these variables and to determine an optimal loading
schedule. 

Clinical Application of Stem Cells To Tendon 
Healing

Despite wide spread interest in the application of stem
cells to clinical settings, only a limited number of or-
thopaedic studies investigated the use of MSCs have
been published to date. The most common application
has focused on the effect of stem cells on encouraging
bone regeneration. Stem cells have also been utilized dur-
ing spinal surgery and for foot and ankle surgery with
varying levels of success70-72. 
Few studies to date have studied the effects of MSCs on
clinical tendon healing. MSCs were shown to improve pa-
tient related outcome scores and ultrasound tendon ap-
pearance following treatment of 12 subjects with refrac-
tory elbow epicondylitis73. 60 patients with patellar
tendinopathy were treated with either skin derived teno-
cyte-like cells (N=33) or plasma (N=27)74. A significant im-
provement in clinical scores was reported by the group
treated with stem cells, as measured by Victorian Institute
of Sport Assessment (VISA) scores, in addition to a sig-
nificant reduction in tendon thickness. Both treatment
groups reported improvements in tendon hypoechogenic-
ity and tear size.
The ideal source of stem cells for clinical applications re-
mains undetermined. Local harvesting may avoid the
need for donor site morbidity that is associated with iliac
crest harvesting. Microfracturing local bone by drilling
multiple burr holes may potentially release sufficient stem
cells. This principle could be applied to the greater
tuberosity during rotator cuff repairs. Similarly acromio-
plasties may release stem cells and may contribute to the
fact that fewer rotator cuff tears are seen up to fifteen
years following this procedure75. Alternatively, local tissue
which is relatively easy to access may be used for har-
vesting stem cells, such as the synovium or adipose tis-
sue19. 
No clinical studies to date have replicated the promis-
ing efficacy of stem cell mediated tendon healing re-
ported in animal models. Many animal studies have
cultured and expanded MSCs prior to reimplantation
due to the low number of viable MSCs aspirated from
bone marrows. Replicating this process for clinical use
raises a number of significant concerns as the cells
may undergo mutations and phenotypic drift, or poten-
tially transmit zoonotic infections due to the culture
medium utilized. MSC isolation techniques that do not
require cell expansion are optimal. Such techniques
are available in clinical practice already, wherein cells
are aspirated and then concentrated within the operat-
ing theatre and then reimplanted within the same pro-
cedure76. 
A number of commercially available systems are now
marketed as ‘one-stop’ cell isolation techniques. How-
ever, without adequate characterization of the im-
planted cells by measuring stem cell specific surface
markers, or colony forming units, it is difficult to quan-
tify whether these systems are producing effective
numbers of MSCs. There is a need for an adequately
powered randomized controlled trial to address
whether stem cells are an effective treatment option for
augmenting tendon healing.
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Future questions to be addressed

The future of tendon repairs is already seeing an increas-
ing interest in augmentation, whether it be through the use
of biological therapies such as stem cells and growth
factors, or with mechanical augmentation of repairs with
patches. 
A number of questions remain unanswered regarding
the optimal source of stem cells, the concentration and
delivery method. Different techniques for stem cell aspi-
ration have been shown to affect the number and viabil-
ity of harvested MSCs77. The correlation between in-
creased concentrations of stem cells and tendon healing
remain undetermined. Using higher concentrations has
been shown to affect the effectiveness of bone heal-
ing76,77. Hernigou et al. have suggested that the total
number of stem cells and their concentration plays an im-
portant role in achieving bone union, and similar principles
are likely to apply to tendon healing. Ideal recommended
stem cell numbers include a minimum concentration of
1000 cells per cm3, although 100,000 cells per cm3 is op-
timal in addition to a minimum total of at least 30,000 pro-
genitor cells77. Awad et al. investigated whether impreg-
nating sutures with different MSC densities would affect
the repair of rabbit patellar tendon defects, and reported
that no effect of cell density were noted on outcomes sug-
gesting that higher cell concentrations do not always
translate to superior healing43. Similarly, another study by
Juncosa-Melvin et al. found no difference in seeding high
or low concentrations of MSC densities onto repair con-
structs to augment patellar tendon defects in a rabbit
model78. It will also be interesting to study the effects of
current surgical and biological treatments on tendon stem
cell populations. For example, in-vitro studies have sug-
gested that commonly used dexamethasone impairs
tenogenic differentiation of tendon stem cells79. 
The long term clinical safety of stem cell use remains un-
proven. Stem cells have the potential to exhibit tumour-
like growth, differentiate into undesirable lineages, en-
courage ectopic tissue deposition or to modulate the
immune system. One animal study reported that 28% of
patellar tendons treated with MSCs resulted in ectopic
bone formation, causing concern43. The addition of ten-
don derived stem cells with BMP-2 was shown to result
in ectopic calcification64. One clinical study injected cul-
tured autologous MSCs into peripheral joints (N=213) or
intervertebral discs (N=13)80. No malignant transforma-
tions were noted at an average follow up time of 10.6
months, although 1 patient did develop cancer, which the
authors stated was ‘certainly unrelated’. Short term MRI
follow-up in 45 patients at approximately 2 years did not
reveal any tumour formation, although longer-term follow-
up is required to confirm that MSC therapy is a safe pro-
cedure. Furthermore, during MSC culturing there is the
potential for stem cells to undergo mutations or genetic
drift, and the use of fetal bovine serum may result in
transmission of zoonotic infections. Important clinical
questions remain unanswered regarding clinical MSC
use. Long term clinical follow up following MSC treatment
is required to determine safety, and level I randomized
control studies are required to address efficacy over
other treatments.

Conclusion

Poor regeneration of tendons following damage and de-
generation has encouraged the search for biological ther-
apies to augment tendon healing. Stem cells therapies for
enhancing tendon healing are an exciting new area of re-
search. It is hoped that stem cells may help to recapitu-
late the appropriate signaling environment to produce
regeneration of tendons rather than scar formation during
healing. A number of regulatory, ethical and safety con-
cerns have limited the use of stem cells to MSCs rather
than more promising embryonic stem cells, although in-
duced pluripotent stem cells are also being investigated.
Achieving optimal stem cell efficacy may lie in direct and
indirect modulation of stem cells through addition of cy-
tokines and mechanical loading, or via genetic transfec-
tion with signals such as scleraxis or BMPs. Despite
some promising preliminary animal and clinical studies,
further research is required to determine whether stem
cell therapies are actually an effective treatment option.
Furthermore, a number of questions need to be ad-
dressed regarding the safety, optimal source, concentra-
tion and delivery vehicle for stem cells.
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