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Summary

Tendon injuries represent even today a challenge as
repair may be exceedingly slow and incomplete. Re-
generative medicine and stem cell technology have
shown to be of great promise. Here, we will review the
current knowledge on the mechanisms of the regen-
erative potential of mesenchymal stem cells (MSCs)
obtained from different sources (bone marrow, fat,
cord blood, placenta). More specifically, we will devote
attention to the current use of MSCs that have been
used experimentally and in limited numbers of clinical
cases for the surgical treatment of subchondral-bone
cysts, bone-fracture repair and cartilage repair. Based
on the recently emerging role in regenerative mecha-
nisms of soluble factors and of extracellular vesicles,
we will discuss the potential of non-cellular therapies
in horse tendon injuries.
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Introduction

Stem cells have evoked considerable excitement in vet-
erinary medicine because of the promise that stem cell

technology could deliver tissue regeneration for injuries for
which natural repair mechanisms do not deliver func-
tional recovery and for which current therapeutic strate-
gies have minimal effectiveness. Tendon injuries have
represented an area of particular interest since conven-
tional treatments often lead to an unsatisfactory healing
process that usually results in a relatively high recur-
rence rate. In recent years, regenerative medicine has
emerged as an attractive field for new cellular and non-
cellular approaches to tissue repair. Here, we will review
the current knowledge on the mechanisms of the regen-
erative potential of mesenchymal stem cells (MSCs) ob-
tained from different sources (bone marrow, fat, cord
blood, placenta). More specifically, we will devote atten-
tion to the current use of MSCs that have been used ex-
perimentally and in limited numbers of clinical cases for
the surgical treatment of subchondral-bone cysts, bone-
fracture repair1 and cartilage repair2,3

.However, by far the
most frequent clinically use has been the treatment of
overstrain-induced injuries of tendons in horses. We will
discuss the hypothesis that also soluble factors and ex-
tracellular vesicles, also called microvesicles (MVs), re-
leased by MSCs may have a relevant regenerative poten-
tial and may open new therapeutic perspectives.

The paracrine effect of stem cells

Increasing experimental evidence indicate that the active
factors exert effects on neighbouring cells. Indeed, MSCs
express high levels of transcripts of hematopoietic stem
cells maintenance factors, including CXCL12 chemokine,
stem cell factor, angiopoietin-1 (Ang-1), interleukin-7,
vascular cell adhesion molecule 1 and osteopontin4. Sup-
port for the hypothesis of paracrine action of MSCs de-
rives from in vivo studies indicating that, although MSCs
exhibit multilineage differentiation potential and can mi-
grate to injured sites after systemic administration, the dif-
ferentiation of MSCs in cells of injured tissues contributed
little to their therapeutic benefits. A growing number of ev-
idence indicates that the in vivo effects of MSCs depend
primarily on their capacity to secrete bioactive soluble fac-
tors. This bioactive molecules may inhibit fibrosis and
apoptosis, enhance angiogenesis, stimulate mitosis
and/or differentiation of tissue-intrinsic progenitor/stem
cells5 and modulate the immune response6. 
In different pre-clinical animal models, MSCs administra-
tion have been shown to improve perfusion and restore
cardiac function after myocardial infarction7; MSCs accel-
erates recovery in acute kidney injury (AKI) induced by
toxic agents or ischemia reperfusion and induces func-
tional improvement in chronic kidney disease8-13. In addi-
tion, MSCs have been studied in several in vivo models
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of lung disease14,15. For example, in the bleomycin in-
duced lung injury and fibrosis, MSCs improve lung inflam-
mation and survival when given intravenously. These ef-
fects are not accounted to lung engraftment rates (< 5%)
but rather to a paracrine mechanism16. 
The beneficial effects of MSCs infusion in different animal
models are interpreted as not dependent on a direct sub-
stitution of injured cells, but rather on paracrine effectors
that facilitate endogenous repair processes. In this way,
a paracrine role of MSCs in renal tissue repair has been
supported by experiments showing that conditioned
medium (CM) from MSCs mimics the beneficial effects of
the cells of origin, when intra-peritoneal injected in mice
with cisplatin induced AKI17. Moreover, intravenous admin-
istration of CM from MSCs induces significant survival im-
provement in fulminant hepatic failure18,19. 
MSCs have been also investigated as a new therapeutic
strategy for graft-versus-host disease, Chron’s disease
and for the prevention of organ transplantation rejection.
The mechanism by which MSCs modulate the immune re-
sponse is still under investigation, but it is evident that it
involves also the release of soluble factors and not only
the cell-to-cell contact. MSCs may suppress several 
T-lymphocyte activities both in vitro and in vivo and may
alter the cytokine expression profile of dendritic cells
(DCs), naïve and effector T cells and natural killer cells
(NK) to induce a more anti-inflammatory or tolerant phe-
notype and to increase the proportion of regulatory T
(Treg) cells. Prostaglandin E2 (PGE2) is implicated in the
immunomodulatory effects of MSCs. Indeed, PGE2 pro-
duction is up-regulated after co-culture of human MSCs
with peripheral blood mononuclear cells20 and the in-
hibitors of PGE2 production diminish MSC-mediated im-
munomodulation in vitro21. Indoleamine 2, 3 deoxyge-
nase (IDO), PGE2 and TGF-?1 can represent relevant
mediators of MSC inhibition of NK functions21-23. MSCs
also secrete IL-6, that is involved in the reversion of mat-
uration of DCs to a less mature phenotype24. Blockade of
PGE2 synthesis in MSCs reverts the inhibitory effects on
DC differentiation and function. PGE2 and IL-6 can me-
diate the effects of MSCs on DCs, thus leading to T-cell
suppression25. 

Regenerative medicine and tendinopathies

Tendon repairs are often weak and susceptible to re-in-
jury. Given the frequency and increasing cost of these in-
juries, mainly in sport horse, as well as the relatively poor
result of surgical intervention, it is not surprising that new
and innovative strategies like tissue engineering have
become more appealing. 
Several lines of evidence suggest that multipotent stem
cells are present also in tendons and ligaments. First, both
human and mouse tendons develop fibrocartilage and os-
sification in response to injury26,27. Second, tendon-derived
immortalized cell lines or human tendon derived fibrob-
lasts express genes of adipogenic, osteogenic and chon-
drogenic differentiation pathways, suggesting that they
possess multiple differentiation capacities in vitro28,29. Fi-
nally, postnatal stem cells capable of differentiating into
adipocytes and osteoblastic cells have been identified in

human periodontal ligaments30 while human and mouse
tendons harbor a unique cell population, termed tendon
stem/progenitor cells (TSPCs), that has universal stem
cell characteristics such as clonogenicity, multipotency
and self-renewal capacity31. Recently, Lovati et al.32 iden-
tified TSPCs specifically in the horse SDFT with the abil-
ity to be highly clonogenic, to grow fast and to differenti-
ate in different induced cell lineages as well as bone
marrow derived progenitor cells (BM-MSCs). The hy-
pothesis that TSPCs possess a mesenchymal stem cell
behavior opens a new prospective for tendon regenera-
tive medicine approaches because TSPCs could repre-
sents an important tool to study basic tendon biology. The
exact site for TPSCs cells within tendon is not known, but
they are most likely to reside in the endotenon tissue be-
tween the collagen fascicles and adjacent to the vascu-
lature33. Although this might be true in young growing ten-
don, mature equine tendon, however, does not appear to
possess a substantial subpopulation of these cells capa-
ble of differentiating into multiple cell lines, as reported for
adult tissue34,35, and this may explain why this component
of the repair process is limited and hence natural repair
is inferior to normal tendon. 
During the repair process, there is a large influx of cells
into the lesion. Kajikawa et al.36 showed that at 24 h af-
ter the injury, the wound contained circulation-derived
cells but not tendon-derived cells. Tendon-derived cells
appeared in the injured area at 3 days after the wound,
and significantly increased in number with time and main-
tained a high level of proliferative activity until 7 days 
after the injury, whereas the circulation-derived cells de-
creased in number and are replaced by the tendon-de-
rived cells. These findings suggest that circulation-derived
and tendon-derived cells contribute to the healing of ten-
dons in different periods as part of a biphasic process but
that the cells mainly involved in the synthesis of new tis-
sue are believed to be tendon derived cells36,37. For this
reason some authors hypothesized that the implantation
of far greater numbers of progenitor stem cells, than are
present normally within tendon tissue, would have the
potential of regenerating or improving the repair of the
tendon. Fibroblasts derived from tendon or other
sources could be used38, but the removal of sections of
tendon to recover cells leads to the formation of a sec-
ondary lesion in the horse that is unacceptably. Alterna-
tive cell sources under investigation (Tab. 1) include
dermal fibroblasts, which were shown to be capable of
functionally bridging a tendon defect and to have simi-
lar histological and tensile properties to the tenocyte-
seeded scaffold39 although in vitro these cells behave
differently from tenocytes40. By contrast, an optimal in
vivo regenerative response could be accomplished by
MSCs of different sources (Tab. 1). 

Stem cell therapies in tendons

MSCs have been implanted into surgical defects in ten-
dons in multiple in vivo experiments in laboratory animals
with mostly positive outcomes. Most of these models
have used surgically created defects in rabbit or rat ten-
dons and have variously shown some improvement in
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Cell source Advantages Disadvantages Ref

EMBRYO Embryonic stem cells - pluripotent - teratoma formation [88]
(ESC)

EXTRA-FETAL Amnion-derived cells no invasive collection - strict surveillance [72]
TISSUED high plasticity and of parturition

proliferative capacity
high number of 
immediately available 
cells for therapy
well-tolerated by horses

MSCs from umbilical - no invasive collection - strict surveillance [89-90]
cord tissue - greater multipotent than of parturition

BM-MSCs
- possibility to obtain more 
rapidly proliferating cells 
by cell sorting 
- no immune response

ADULT TISSUES Concentrated bone - minimal manipulation invasive aspiration [91]
marrow aspirate (BMC) - no cell expansion procedure with risk of 

pneumopericaridium
no reports on the use 
of BMC on tendonitis

Stromal vascular fraction - minimal manipulation - invasive collection [92]
from adipose tissue - no cell expansion

- well-tolerated by horse

ADULT MSCs from bone - multipotenti - invasive aspiration [93-95]
STEM/PROGENITOR marrow (BM-MSCs) - no immune response procedure with risk of
CELLS pneumopericaridium

- limited potential than ESC 
in terms of expansion (delay 
of 2-4 weeks to obtain 
a sufficient number of cells 
to in vivo implant)

MSCs from adipose tissue - higher proliferative - invasive collection [94-97]
potential and less 
senescence of BM-MSCs
- multipotent

Tendon stem/progenitor - possible activation of this - invasive collection [31]
cells endogenous population (removal of sections of

- multipotent tendons leads to the 
formation of secondary lesion)
- mature equine tendon 
do not posses a substantial 
population of these cells 

ADULT  Tenocytes - appropriate tendon  - invasive collection [38]
DIFFERENTIATED matrix synthesis - age-related reduction 
CELLS in synthesis of matrix ability

Fibroblasts derived - appropriate tendon matrix - invasive collections [37]
from tendon synthesis

Dermal fibroblasts - easy to recover, with - different protein-matrix [39]
acceptable donor site lesion synthesis than tenocytes
- similar histological and 
tensile properties than 
tenocyte 

Table 1 - Sources for cell therapy of tendinopathies.
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structure and strength of defects implanted with MSCs in
a biodegradable scaffold (collagen gel, Vicryl knitted
mesh or fibrin glue) compared to controls implanted with
just the scaffold, as assessed by histology or simple bio-
chemical assays41-45. In other studies using a rat patellar
defect model, MSCs implantation has been associated
with both greater ultimate tensile stress and improved
quality of reparative tissue determined by an increased
collagen I/III ratio46,47. Thus, MSCs-seeded constructs
implanted in vivo have shown the ability to integrate into
the tissue and induce the synthesis of tissue-specific ex-
tracellular matrix. In the horse, tendon injuries are mostly
located in the superficial digital flexor tendon (SDFT),
which represents the strongest tendon in the equine body.
The SDFT displays several similarities to the human
Achilles tendon concerning anatomy, biomechanics and
pathogenesis of tendinopathy. In different species, path-
omorphology of tendinopathy differs in lesion size. In the
horse, one typical so-called “core lesion” is usually cen-
trally located within the tendon, extended in length and still
surrounded by intact tendon tissue. The equine SDFT in-
jury lends itself to cell therapy because provide many of
the additional elements required for tendon tissue engi-
neering. The lesion manifests within the central core of the
tissue provides a natural enclosure for implantation that,
at the time of stem cell implantation is filled of granulation
tissue, which acts as a scaffold (Fig. 1)48. This enables the
application of MSCs without any artificial scaffold mate-
rial, merely by injecting a cell suspension directly into the
lesion49; thereby, MSCs are exposed to a natural environ-
ment providing collagen fibers and growth factors. In ad-
dition, during rehabilitation with controlled exercise, there
is an ideal mechanical stimulation allowing the newly
created tissue to organize itself in the direction of the force
application, hence this approach can be referred to as “in
vivo tissue engineering”50. Unfortunately, in the horse,
the efficacy of these treatments is difficult to determine,
since the use of control animals is rarely reported and of-
ten the stem cell treatment is combined with other biolog-
ical factors, such as bone marrow supernatant, autolo-
gous serum, or platelet-rich plasma. In any case, since
this treatment regime was first published in 200349 there

have been several experimental and clinical studies with
encouraging results, giving evidence of the benefit and
safety of MSCs application for tendon regeneration. Fur-
thermore, unfortunately, it is still unclear whether the ma-
jor contribution of the MSCs to the healing process is to
differentiate into tenocytes and thus produce extracellu-
lar matrix molecules, whether it is rather to supply growth
factors and thus stimulate the residing cells within the ten-
don51,52 or whether a combination of the two mechanisms
occurs6,53. Mononuclear cells could represent an exo-
genic stimulus for induction of pro-inflammatory mediators
in tendon54. In addition, recent studies have suggested an
anti-inflammatory role of implanted stem cells. In this
context animal model studies have demonstrated that
MSCs are hypo-immunogenic and inhibit the activation of
T and B lymphocytes and NK cells55,56. The precise mech-
anism of the anti-inflammatory effect of these cells is
largely unknown. The role of soluble factors and extracel-
lular vesicles as effectors in paracrine effect is described
below. In essence, the paracrine effect results in the
combination of different, biological activities: anti-apopto-
sis, additional recruitment of resident multipotent stem
cells, stimulation of angiogenesis, and the release of
growth factors48.
The clinical and not experimental nature of the use of
MSCs for horse tendinopathies preclude the routine post
mortem analyses but some experimental works has been
carried out to monitor the fate of injected MSCs in horses
and the structural aspect of the healing. Guest et al.57

studied the fate of autologous and allogeneic MSCs trans-
fected with green fluorescent protein (GFP) following in-
jection into the SDFT and revealed that GFP labeled
cells located mainly within injected lesions, but with a
small proportion integrated into healthy tendon. Further-
more, the authors showed that both autologous and allo-
geneic MSCs may be used without stimulating an unde-
sirable cell mediated immune response from the host.
Other postmortem examinations have shown that MSCs
application improved the extracellular matrix structure of
damaged tendons. In histological sections of MSC-treated
tendon lesions, compared to non-treated tendon lesions,
increased tendon fiber densities, increased organization

Figure 1. Severe SDFT core lesion in a forelimb SDFT. Arrows show anechoic area in transverse (A) ultrasound scans, and slightly
ipoechoic area in transverse (B) ultrasound sections, respectively, in the same lesion 50 days after amniotic derived cells implant.



C. Tetta et al.

216 Muscles, Ligaments and Tendons Journal 2012; 2 (3): 212-221

of the collagen fibers and a reduced vascularity have
been found58-60. The beneficial effect of MSCs seems to
be due to the improvement of structural organization
rather than of matrix composition. However, it has been
shown that MSCs treatment can enhance expression
levels of cartilage oligomeric matrix protein (COMP)58,59,
a glycoprotein that is known to be important for tendon
elasticity and stiffness62. Ultrasonographic follow-up ex-
aminations showed significant improvements in fiber
alignment and echogenicity scores at 1, 3 and 6 months
after MSCs treatment63, supporting the histological find-
ings in the above-mentioned studies. In these studies, au-
tologous adult progenitor cells have been used, either ex-
panded bone marrow-derived MSCs60,64-66, or adipose
derived MSCs59,67 or adipose-derived mononuclear cells
(ADNCs)58,68. Furthermore, the effects of autologous bone
marrow derived expanded MSCs and bone marrow-de-
rived mononuclear cells on tendon healing have been
compared revealing a similar improvement, in both treat-
ment groups compared to the control group, which was
demonstrated by significantly improved ultrasonography
and histology scores, higher COMP expressions and rel-
atively lower type III collagen contents61,70. 
If stem cells are truly immunomodulatory, allogeneic trans-
plantations should be possible. Safe and efficacious ap-
plications of allogeneic stem cells would imply that off -
the-shelf stem cell products could be developed for
increased availability and rapid implementation of stem
cell therapies early in a disease course54. Indeed, not only
autologous progenitor cells but also allogeneic bone mar-
row-derived MSCs57, allogeneic adipose-derived MSCs67

and allogeneic amniotic derived MSCs72 have been ap-

plied for treatment of equine tendon injuries and no evi-
dence of immune rejection were detected.

Extracellular vesicles released from MSCs as an
emerging paracrine mechanism 

Recent studies have shown that beside soluble factors
small vesicles released from cells, named extracellular
vesicles or MVs, are instrumental in cell-to-cell commu-
nication73,74 (Fig. 2). MVs are an heterogeneous popula-
tion of small vesicles constituted by a circular fragment of
membrane containing cytoplasm components which are
released by different cell types. The two major classes of
MVs released in the extracellular environment are the ex-
osomes and shedding vesicles75. Exosomes originate
from inward of endosomal membrane, accumulate within
multivesicular bodies, are secreted by a process of exo-
cytosis and exhibit a 30-120 nm size. At variance, shed-
ding vesicles take place from direct budding of plasma
membrane surface and are more heterogeneous in size
ranging from 80nm to <1mm depending from the cell of
origin and on stimuli75. The released MVs can be up-taken
by neighbouring cells either as result of surface receptor
mediated interaction or by a process of membrane fusion.
After interaction MVs can be internalized by the recipient
cells and deliver their content73,74. Therefore, MVs have
been uncovered as a new mechanism of inter-cellular
communication that involves direct receptor mediated
stimulation of the target cells and delivery of bio-active
lipids, proteins and nucleic acids. The content of MVs and
their biological action not only depends on the cell of ori-

Figure 2. Schematic representation of the potential anti-inflammatory action of microvesicles (MVs) released by mesenchymal stem
cells (MSC) on horse tendon. 
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gin, but also on the metabolic state of the cells. Therefore,
different stimuli may modify not only the amount of MVs
release, but also their content. One of the most exiting
findings is that MVs were found to be a vehicle for ex-
change of genetic information capable to induce transient
or permanent phenotypic changes in the recipient
cells73,74. This observation has deep implications in differ-
ent physiological and pathological conditions. In the con-
test of stem cell biology it has been suggested that sig-
nals shuttled by MVs are an integral component of the
stem cell niche and may be critical in the differentiation de-
cision of stem cells76. In particular, the signals between in-
jured cells and stem cells are bi-directional73. Indeed,
MVs derived from injured cells are able to induce tissue
specific differentiation of bone marrow cells and MVs de-
rived from stem cells are capable to activate regenerative
programs in cells survived to injury. The first possibility is
proved by the observation that MVs released from injured
lung cells induce expression of specific lung transcripts
and phenotypic changes in bone marrow cells77. The hor-
izontal transfer of genetic information from stem/progen-
itor cells to differentiated cells was firstly shown for MVs
derived from human endothelial progenitors (EPC). These
MVs shuttle mRNA to quiescent endothelial cells via in-
teraction with specific adhesion molecules (?4- and ?1-
integrins) and activate an angiogenic program78. The mo-
lecular analysis of mRNA indicate that MVs derived from
EPC contain specific subset of cellular mRNA, including
mRNA associated with pathways relevant for angiogen-
esis such as the PI3K/AKT and eNOS signalling path-
ways78. This mRNA are functional as are they are trans-
lated into proteins within the recipient cells. Besides
mRNA, MVs may transfer microRNAs (miRNAs) to target
cells79. Since miRNAs are naturally occurring regulators
of protein translation, this observation opens the possibil-
ity that stem cells can alter the expression of gene prod-
ucts in neighbouring cells by transferring miRNAs con-
tained in MVs80. 
Concerning the regenerative potential of MSC-derived
MVs experiments have been performed in different animal
models of tissue injury81-85. In models of acute renal injury
MSC-derived MVs were found to be able to mimic the
beneficial effects of the cells. In particular MVs acceler-
ate the recovery in models of toxic and ischemia-reperfu-
sion injury of the kidney and significantly enhance survival
in a lethal model of cisplatin induced acute renal in-
jury81,82. The mechanism was related to the delivery of
mRNA derived from the MSCs and to its translation in the
recipient cells. Through this mechanism MSC-derived
MVs can limit the injury by inhibiting apoptosis and stim-
ulate regeneration by inducing cycle re-entry of injured tu-
bular epithelial cells. Therefore, the recovery for acute re-
nal injury promoted by MSCs, mainly take place from the
renal resident cells that undergo transient de-differentia-
tion, proliferation to reconstitute the loss cell mass and fi-
nally re-differentiation. Similar results were observed in a
model of ischemic hearts treated with MVs derived from
embryonic MSCs84,85. 
Based on these observations, we can speculate that MVs
released from MSCs may act also in different context of
regenerative medicine such as the tendinopathies (Fig. 2).
MVs, released by MSCs, may interact with and stimulate

tendon-resident cells to initiate an anti-inflammatory, anti-
apoptotic and angiogenic response, and to reprogram so-
matic cells toward a regenerative response. In particular,
MVs derived from MSCs may counteract the action of in-
flammatory cells accumulated at the site of injury.

Perspectives

In recent years, regenerative medicine has emerged as
an attractive field for new cellular and non-cellular ap-
proaches to tissue repair. The current knowledge on the
mechanisms of the regenerative potential of MSCs put at-
tention on the role of soluble components released by
cells in the conditioned media. Soluble components, or
growth factors, are used indirectly in equine medicine, as
before discussed, in cases where stem cells are com-
bined with platelet rich plasma, bone marrow supernatant,
or autologous serum.
Growth factors are peptide signaling molecules that reg-
ulate many aspects of cellular metabolism including the
cell cycle, cell growth and differentiation, and the produc-
tion and destruction of extracellular matrix products. Their
effects are mediated primarily via autocrine and paracrine
mechanisms, which provides the rationale for local admin-
istration of exogenous growth factors to influence cellu-
lar metabolism59. Of the growth factors influencing tendon
metabolism, platelet derived growth factor, insulin-like
growth factor-I (IGF-I), and transforming growth factor β
show the most promise for enhancing tendon healing86.
Although exogenous IGF-I has been shown to stimulate
tendon healing in vivo in an equine model86 it has a short
half-life, which necessitates repeated dosing, making
clinical application challenging and costly. For this reason
Schnabel et al.59 examined the effects of MSCs, as well
as IGF-I gene enhanced MSCs (AdIGF-MSC) on tendon
healing in vivo showing that both MSC and AdIGF-MSC
injection resulted in significant histological tendon healing
with minimal added value of IGF-I gene-enhanced MSC
implantation compared to native MSC injection. This min-
imum added value would confirm the hypothesis that in it-
self the stem cells secrete growth factors and that the
therapeutic effects of MSCs are mediated by paracrine
factors secreted by the cells to stimulate the residing
cells within the injured tissue rather than differentiate
themselves. These paracrine factors could be exploited
to extend the therapeutic possibilities of MSCs for the
treatment of a variety of diseases. In this context MVs
have a potential therapeutic application, as they mimic
several of the biological actions of stem cells and may limit
the concern of using of active replicating cells that may
undergo mal-differentiation or mutation. In addition, MVs
may be engineered to express and deliver molecules
that favor reprogramming of resident cells toward regen-
eration. 

Conclusions

Use of the cells and technologies presented here in the
horse are likely to continue and expand in the near future.
The horse has been advocated as an animal model of



tendon and ligament injuries, since many of the sponta-
neous injuries seen in horses are similar to those seen in
human athletes but other equine tissues and diseases,
such as recurrent airway obstruction (asthma) and vari-
ous hypoxic ischemic injuries, seem like straightforward
candidates for equine stem cell research.
It is hoped that experience gained from treating naturally-
occurring tendon injury in horses will provide sufficient
supportive data to encourage the translation of this tech-
nology into the human field where large randomized con-
trolled trials will lead to a higher level of clinical evi-
dence87.

References

1. Kraus KH, Kirker-Head C. Mesenchymal stem cells
and bone regeneration. Vet Surg 2006;35:232-242.

2. Brehm W, Aklin B, Yamashita T et al. Repair of super-
ficial osteochondral defects with an autologous scaf-
fold-free cartilage construct in a caprine model: im-
plantation method and short-term results.
Osteoarthritis Cartilage 2006;14:1214-1226.

3. Wilke MM, Nydam DV, Nixon AJ. Enhanced early
chondrogenesis in articular defects following arthro-
scopic mesenchymal stem cell implantation in an
equine model. J Orthop Res 2007;25:913-925.

4. Méndez-Ferrer S, Michurina TV, Ferraro F et al.
Mesenchymal and haematopoietic stem cells form a
unique bone marrow niche. Nature 2010;466:829-
834.

5. Caplan AI, Dennis JE. Mesenchymal stem cells as
trophic mediators. J Cell Biochem 2006;98:1076-
1084.

6. Yagi H, Soto-Gutierrez A, Parekkadan B et al. Mes-
enchymal stem cells: Mechanisms of immunomodu-
lation and homing. Cell Transplant 2010;19:667-679.

7. Amado LC, Saliaris AP, Schuleri KH et al. Cardiac re-
pair with intramyocardial injection of allogeneic mes-
enchymal stem cells after myocardial infarction. Proc
Natl Acad Sci U S A 2005;102:11474-11279.

8. Morigi M, Imberti B, Zoja C et al. Mesenchymal stem
cells are renotropic, helping to repair the kidney and
improve function in acute renal failure. J Am Soc
Nephrol 2004;15:1794-1804.

9. Morigi M, Introna M, Imberti B et al. Human bone
marrow mesenchymal stem cells accelerate recovery
of acute renal injury and prolong survival in mice.
Stem Cells 2008;26:2075-2082.

10. Herrera MB, Bussolati B, Bruno S, Fonsato V, Ro-
manazzi GM, Camussi G. Mesenchymal stem cells
contribute to the renal repair of acute tubular epithe-
lial injury. Int J Mol Med 2004;14:1035-1041.

11. Herrera MB, Bussolati B, Bruno S et al. Exogenous
mesenchymal stem cells localize to the kidney by
means of CD44 following acute tubular injury. Kidney
Int 2007;72:430-441.

12. Duffield JS, Park KM, Hsiao LL et al. Restoration of
tubular epithelial cells during repair of the postis-
chemic kidney occurs independently of bone marrow-
derived stem cells. J Clin Invest 2005;115:1743-
1755.

13. Choi S, Park M, Kim J, Hwang S, Park S, Lee Y. The
role of mesenchymal stem cells in the functional im-
provement of chronic renal failure. Stem Cells Dev
2009;18:521-529.

14. Yamada M, Kubo H, Kobayashi S et al. Bone mar-
row-derived progenitor cells are important for lung re-
pair after lipopolysaccharide-induced lung injury. J
Immunol 2004;172:1266-1272.

15. Rojas M, Xu J, Xu J et al. Bone marrow-derived
mesenchymal stem cells in repair of the injured lung.
Am J Respir Cell Mol Biol 2005;33:145-152.

16. Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 re-
ceptor antagonist mediates the antiinflammatory and
antifibrotic effect of mesenchymal stem cells during
lung injury. Proc Natl Acad Sci U S A
2007;104:11002-11007.

17. Bi B, Ehirchiou D, Kilts TM et al. Stromal cells protect
against acute tubular injury via an endocrine effect.
J Am Soc Nephrol 2007;18:2486-2496.

18. Parekkadan B, van Poll D, Suganuma K et al. Mes-
enchymal stem cell-derived molecules reverse fulmi-
nant hepatic failure. PLoS One 2007;2:e941

19. van Poll D, Parekkadan B, Cho CH et al. Mesenchy-
mal stem cell-derived molecules directly modulate
hepatocellular death and regeneration in vitro and in
vivo. Hepatology 2008;47:1634-1643.

20. Tse WT, Pendleton JD, Beyer WM, Egalka MC,
Guinan EC. Suppression of allogeneic T-cell prolifer-
ation by human marrow stromal cells: implications in
transplantation. Transplantation 2003;75:389-397.

21. Aggarwal S, Pittenger MF. Human mesenchymal
stem cells modulate allogeneic immune cell re-
sponses. Blood 2005;105:1815-1822.

22. Di Nicola M, Carlo-Stella C, Magni M et al. Human
bone marrow stromal cells suppress T-lymphocyte
proliferation induced by cellular or nonspecific mito-
genic stimuli. Blood 2002;99:3838-3843.

23. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W,
Dilloo D. Human bone marrow stromal cells inhibit al-
logeneic T-cell responses by indoleamine 2,3-dioxy-
genase-mediated tryptophan degradation. Blood
2004;103:4619-4621.

24. Djouad F, Charbonnier LM, Bouffi C et al. Mesenchy-
mal stem cells inhibit the differentiation of dendritic
cells through an interleukin-6-dependent mecha-
nism. Stem Cells 2007;25:2025-2032.

25. Chen L, Zhang W, Yue H et al. Effects of human mes-
enchymal stem cells on the differentiation of dendritic
cells from CD34+ cells. Stem Cells Dev 2007;16:719-
731.

26. Oliva F, Giai Via A, Maffulli N. Physiopathology of in-
tratendinous calcific deposition. BMC Med 2012;
23;10:95.

27. Fenwick Sea. Endochondral ossification in Achilles
and patella tendinopathy. Rheumatology 2002;41:474-
476.

28. Salingcarnboriboon R, Yoshitake H, Tsuji K et al.
Establishment of tendon-derived cell lines exhibiting
pluripotent mesenchymal stem cell-like property. Exp
Cell Res 2003;287:289-300.

29. de Mos M, Koevoet WJ, Jahr H et al. Intrinsic differ-
entiation potential of adolescent human tendon tis-

C. Tetta et al.

218 Muscles, Ligaments and Tendons Journal 2012; 2 (3): 212-221



The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?

Muscles, Ligaments and Tendons Journal 2012; 2 (3): 212-221 219

sue: an in-vitro cell differentiation study. BMC Mus-
culoskelet Disord 2007;8:16.

30. Seo BM, Miura M, Gronthos S et al. Investigation of
multipotent postnatal stem cells from human peri-
odontal ligament. Lancet 2004;364:149-155.

31. Bi Y, Ehirchiou D, Kilts TM et al. Identification of ten-
don stem/progenitor cells and the role of the extracel-
lular matrix in their niche. Nat Med 2007;13:1219-
1227.

32. Lovati AB, Corradetti B, Lange Consiglio A et al.
Characterization and differentiation of equine tendon-
derived progenitor cells. J Biol Regul Homeost
Agents 2011;25:S75-84.

33. da Silva Meirelles L, Chagastelles PC, Nardi NB.
Mesenchymal stem cells reside in virtually all post-
natal organs and tissues. J Cell Sci 2006;119:2204-
2213.

34. Hunter W. Of the structure and disease of articulat-
ing cartilages. 1743. Clin Orthop Relat Res
1995;(317):3-6.

35. Muraglia A, Cancedda R, Quarto R. Clonal mes-
enchymal progenitors from human bone marrow dif-
ferentiate in vitro according to a hierarchical model.
J Cell Sci 2000;113:1161-1166.

36. Kajikawa Y, Morihara T, Watanabe N et al. GFP
chimeric models exhibited a biphasic pattern of mes-
enchymal cell invasion in tendon healing. J Cell
Physiol 2007;210:684-691.

37. Williams IF, Heaton A, McCullagh KG. Cell morphol-
ogy and collagen types in equine tendon scar. Res
Vet Sci 1980;28:302-310.

38. Kryger GS, Chong AK, Costa M, Pham H, Bates SJ,
Chang J. A comparison of tenocytes and mesenchy-
mal stem cells for use in flexor tendon tissue engi-
neering. J Hand Surg Am 2007;32:597-605.

39. Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair
of tendon defect with dermal fibroblast engineered
tendon in a porcine model. Tissue Eng 2006;12:775-
788.

40. Evans CE, Trail IA. An in vitro comparison of human
flexor and extensor tendon cells. J Hand Surg Br
2001;26:307-313.

41. Young RG, Butler DL, Weber W, Caplan AI, Gordon
SL, Fink DJ. Use of mesenchymal stem cells in a col-
lagen matrix for Achilles tendon repair. J Orthop Res
1998;16:406-413.

42. Awad HA, Butler DL, Boivin GP et al. Autologous
mesenchymal stem cell-mediated repair of tendon.
Tissue Eng 1999;5:267-277.

43. Awad HA, Boivin GP, Dressler MR, Smith FN, Young
RG, Butler DL. Repair of patellar tendon injuries us-
ing a cell-collagen composite. J Orthop Res
2003;21:420-431.

44. Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nir-
malanandhan VS, Butler DL. Mechanical stimula-
tion increases collagen type I and collagen type III
gene expression of stem cell-collagen sponge con-
structs for patellar tendon repair. Tissue Eng
2007;13:1219-1226.

45. Butler DL, Juncosa-Melvin N, Boivin GP et al. Func-
tional tissue engineering for tendon repair: A multidis-
ciplinary strategy using mesenchymal stem cells,

bioscaffolds, and mechanical stimulation. J Orthop
Res 2008;26:1-9.

46. Hankemeier S, Keus M, Zeichen J et al. Modulation
of proliferation and differentiation of human bone
marrow stromal cells by fibroblast growth factor 2: po-
tential implications for tissue engineering of tendons
and ligaments. Tissue Eng 2005;11:41-49.

47. Hankemeier S, van Griensven M, Ezechieli M et al.
Tissue engineering of tendons and ligaments by hu-
man bone marrow stromal cells in a liquid fibrin ma-
trix in immunodeficient rats: results of a histologic
study. Arch Orthop Trauma Surg 2007;127:815-821.

48. Alves AGL, Stewart AA, Dudhia J, Kasashima Y,
Goodship AE, Smith RKW. Cell-based therapies for
tendon and ligament injuries. Vet Clin North Am
Equine Pract 2011;27:315-333.

49. Smith RK, Korda M, Blunn GW, Goodship AE. Isola-
tion and implantation of autologous equine mes-
enchymal stem cells from bone marrow into the su-
perficial digital flexor tendon as a potential novel
treatment. Equine Vet J 2003;35:99-102.

50. Brehm W, Burk J, Delling U, Gittel C, Ribitsch I.
Stem cell-based tissue engineering in veterinary or-
thopaedics. Cell Tissue Res 2012;347:677-688.

51. Richardson LE, Dudhia J, Clegg PD, Smith R. Stem
cells in veterinary medicine—attempts at regenerat-
ing equine tendon after injury. Trends Biotechnol
2007;25:409-416.

52. Chong AK, Chang J, Go JC. Mesenchymal stem
cells and tendon healing. Front Biosci 2009;14:4598-
4605.

53. Fortier LA, Travis AJ. Stem cells in veterinary medi-
cine. Stem Cell Res Ther 2011;2:9.

54. Al-Sadi O, Schulze-Tanzil G, Kohl B et al. Tenocytes,
pro-inflammatory cytokines and leukocytes: a rela-
tionship? MLTJ 2011;1:68-76.

55. Herrero C, Pérez-Simón JA. Immunomodulatory ef-
fect of mesenchymal stem cells. Braz J Med Biol Res
2010;43:425-430.

56. Ren G, Zhang L, Zhao X et al. Mesenchymal stem
cell-mediated immunosuppression occurs via con-
certed action of chemokines and nitric oxide. Cell
Stem Cell 2008;2:141-150.

57. Guest DJ, Smith MR, Allen WR. Monitoring the fate
of autologous and allogeneic mesenchymal progen-
itor cells injected into the superficial digital flexor
tendon of horses: preliminary study. Equine Vet J
2008;40:178-181.

58. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward
DL. Effect of adipose-derived nucleated cell frac-
tions on tendon repair in horses with collagenase-in-
duced tendinitis. Am J Vet Res 2008;69:928-937.

59. Schnabel LV, Lynch ME, van der Meulen MC, Yeager
AE, Kornatowski MA, Nixon AJ. Mesenchymal stem
cells and insulin-like growth factor-I gene-enhanced
mesenchymal stem cells improve structural aspects
of healing in equine flexor digitorum superficialis ten-
dons. J Orthop Res 2009;27:1392-1398.

60. Smith R, Young N, Dudhia J, Kasashima Y, Clegg P,
Goodship A. Effectiveness of bone-marrow-derived
mesenchymal progenitor cells for naturally occurring
tendinopathy in the horse. Regen Med 2009;4:S25-26.



61. Crovace A, Lacitignola L, Rossi G, Francioso E.
Histological and immunohistochemical evaluation
of autologous cultured bone marrow mesenchymal
stem cells and bone marrow mononucleated cells in
collagenase-induced tendinitis of equine superficial
digital flexor tendon. Vet Med Int 2010;2010:250978.

62. Smith RK, Zunino L, Webbon PM, Heinegård D. The
distribution of cartilage oligomeric matrix protein
(COMP) in tendon and its variation with tendon site,
age and load. Matrix Biol 1997;16:255-271.

63. Leppänen M, Miettinen S, Mäkinen S et al. Manage-
ment of equine tendon & ligament injuries with ex-
panded autologous adipose-derived mesenchymal
stem cells: a clinical study, Regen Med 2009b;4: S21.

64. Pacini S, Spinabella S, Trombi L et al. Suspension of
bone marrow-derived undifferentiated mesenchymal
stromal cells for repair of superficial digital flexor
tendon in race horses. Tissue Eng 2007;13:2949-
2955.

65. Smith RK. Mesenchymal stem cell therapy for equine
tendinopathy. Disabil Rehabil 2008;30:1752-1758.

66. Burk J, Brehm W. Stammzellentherapie von Sehnen-
verletzungen - klinische Ergebnisse von 98 Fällen.
Pferdeheilkunde 2011;153-161.

67. Del Bue M, Ricco S, Ramoni R et al. Equine adipose-
tissue derived mesenchymal stem cells and platelet
concentrates: their association in vitro and in vivo. Vet
Res Commun 2008;Suppl1:S51-S55.

68. Dahlgren LA. Fat-derived mesenchymal stem cells
for equine tendon repair. Regen Med 2009;4Suppl.
2: S14.

69. Leppänen M, Heikkilä P, Katiskalahti T, Tulamo RM.
Followup of recovery of equine tendon & ligament in-
juries 18-24 months after treatment with enriched au-
tologous adipose-derived mesenchymal stem cells:
a clinical study. Reg Med 2009a;4:S21-22.

70. Crovace A, Lacitignola L, De Siena R et al. Cell ther-
apy for tendon repair in horses: an experimental
study. Vet Res Commun 2007;31 Suppl 1:281-283.

71. Lacitignola L, Crovace A, Rossi G, Francioso E. Cell
therapy for tendinitis, experimental and clinical report.
Vet Res Commun 2008;S33-S38.

72. Lange-Consiglio A, Corradetti B, Bizzaro D et al.
Characterization and potential applications of progen-
itor-like cells isolated from horse amniotic mem-
brane. J Tissue Eng Regen Med 2012;6:622-635.

73. Ratajczak J, Wysoczynski M, Hayek F, Janowska-
Wieczorek A, Ratajczak MZ. Membrane-derived mi-
crovesicles: important and underappreciated media-
tors of cell-to-cell communication. Leukemia
2006;20:1487-1495.

74. Camussi G, Deregibus MC, Bruno S, Cantaluppi V,
Biancone L. Exosomes/microvesicles as a mecha-
nism of cell-to-cell communication. Kidney Int
2010;78:838-848.

75. Cocucci E, Racchetti G, Meldolesi J. Shedding mi-
crovesicles: artefacts no more. Trends Cell Biol
2009;19:43-51.

76. Quesenberry PJ, Aliotta JM. The paradoxical dy-
namism of marrow stem cells: considerations of stem
cells, niches, and microvesicles. Stem Cell Rev 2008;
4:137-147.

77. Aliotta JM, Pereira M, Johnson KW, et al. Microvesi-
cle entry into marrow cells mediates tissue-specific
changes in mRNA by direct delivery of mRNA and in-
duction of transcription. Exp Hematol 2010; 38:233-
245.

78. Deregibus MC, Cantaluppi V, Calogero R et al. En-
dothelial progenitor cell derived microvesicles acti-
vate an angiogenic program in endothelial cells by a
horizontal transfer of mRNA. Blood. 2007; 110:2440-
2448.

79. Collino F, Deregibus MC, Bruno S et al. Microvesicles
derived from adult human bone marrow and tissue
specific mesenchymal stem cells shuttle selected pat-
tern of miRNAs. PLoS One. 2010, 27;5(7):e11803.

80. Collino F, Bruno S, Deregibus MC, Tetta C, Camussi
G. MicroRNAs and mesenchymal stem cells. Vitam
Horm. 2011;87:291-320.

81. Bruno S, Grange C, Deregibus MC et al. Mesenchy-
mal stem cell-derived microvesicles protect against
acute tubular injury. J Am Soc Nephrol 2009;20:1053-
1067.

82. Gatti S, Bruno S, Deregibus MC et al. Microvesicles
derived from human adult mesenchymal stem cells
protect against ischaemia-reperfusion-induced acute
and chronic kidney injury. Nephrol Dial Transplant
2011;26:1474-1483.

83. Bruno S, Grange C, Collino F et al. Microvesicles de-
rived from mesenchymal stem cells enhance survival
in a lethal model of acute kidney injury. PLoS One.
2012;7:e33115.

84. Lai RC, Arslan F, Lee MM et al. Exosome secreted
by MSC reduces myocardial ischemia/reperfusion
injury. Stem Cell Res 2010;4:214-222.

85. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma
JJ. Activated platelets release two types of mem-
brane vesicles: microvesicles by surface shedding
and exosomes derived from exocytosis of multivesic-
ular bodies and alpha-granules. Blood 1999;94:3791-
3799.

86. Dahlgren LA, van der Meulen MC, Bertram JE, Star-
rak GS, Nixon AJ. Insulin-like growth factor-I im-
proves cellular and molecular aspects of healing in
a collagenase-induced model of flexor tendinitis. J
Orthop Res 2002;20:910-919.

87. Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith
RK. Implantation of bone marrow-derived mesenchy-
mal stem cells demonstrates improved outcome in
horses with overstrain injury of the superficial digital
flexor tendon. Equine Vet J 2012;44:25-32.

88. Paris DB, Stout TA. Equine embryos and embryonic
stem cells: defining reliable markers of pluripotency.
Theriogenology 2010;74:516-524.

89. Corradetti B, Lange-Consiglio A, Barucca M, Cre-
monesi F, Bizzaro D. Size-sieved subpopulations of
mesenchymal stem cells from intervascular and
perivascular equine umbilical cord matrix. Cell Pro-
lif 2011;44:330-342.

90. Carrade DD, Owens SD, Galuppo LD et al. Clinico-
pathologic findings following intra-articular injection of
autologous and allogeneic placentally derived equine
mesenchymal stem cells in horses. Cytotherapy
2011;13:419-430.

C. Tetta et al.

220 Muscles, Ligaments and Tendons Journal 2012; 2 (3): 212-221



The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair?

Muscles, Ligaments and Tendons Journal 2012; 2 (3): 212-221 221

91. Fortier LA, Potter HG, Rickey EJ et al. Concentrated
bone marrow aspirate improves full-thickness carti-
lage repair compared with microfracture in the equine
model. J Bone Joint Surg Am 2010;92:1927-1937.

92. Alderman D, Alexander RW. Advancements in stem
cell therapy: application to veterinary medicine. To-
day’s Veterinary Practice July/August 2011.

93. Durando MM, Zarucco L, Schaer TP, Ros, M, Reef
VB. Pneumopericardium in a horse secondary to
sternal bone marrow aspiration. Equine vet Educ
2006;18:75-79.

94. Vidal MA, Kilroy GE, Lopez MJ et al. Characteriza-
tion of equine adipose tissue-derived stromal cells:
adipogenic and osteogenic capacity and comparison
with bone marrow-derived mesenchymal stromal
cells. Vet Surg 2007;36:613-622.

95. Vidal MA, Walker NJ, Napoli E, Borjesson DL. Eval-
uation of senescence in mesenchymal stem cells
isolated from equine bone marrow, adipose tissue,
and umbilical cord tissue. Stem Cells Dev
2012;21:273-283.

96. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore
RM, Gimble JM. Characterization of equine adipose
tissue-derived stromal cells: adipogenic and os-
teogenic capacity and comparison with bone marrow-
derived mesenchymal stromal cells. Vet Surg
2007;36:613-622.

97. Colleoni S, Bottani E, Tessaro I et al. Isolation, growth
and differentiation of equine mesenchymal stem
cells: effect of donor, source, amount of tissue and
supplementation with basic fibroblast growth factor.
Vet Res Commun 2009;33:811-821.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ITA (Compatibile per Acrobat 4 e Colori convetrtiti in Quadricromia)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




