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Abstract: The objective of the Vehicle Routing Problem (VRP), in the meaning of this paper, is to find the 
best path for a vehicle, or the best paths for a fleet of vehicles, with the aim of visiting a set of targets. 
Possible applications of the vehicle routing problem include surveillance, exploration, logistic, 
transportation, relief systems, etc. A lot of research has been carried out so far, but the VRP remains a 
complex and computationally expensive combinatorial problem, leading to the difficulty to actually solve the 
problem on-line. This paper presents a technique based on the Cooperative Receding Horizon (CRH) 
approach proposed in [Li06], in which a sequence of optimization problems are computed over a planning 
horizon and the decisions are applied only over a shorter action horizon, in order to rapidly adapt to possible 
configuration changes (e.g., new targets appearance). Moreover, the proposed algorithm is able to 
dynamically adapt to the time-variable configuration of both vehicles and targets as well as to handle the 
discovery of unknown targets. Several proof of concept simulations show the enhancements of the proposed 
technique in comparison to the one in [Li06]. 
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1 Introduction	  
Recent developments in computer technology and wireless communications opened numerous possibilities 
for lining up networks of mobile vehicles capable of interacting with the environment to accomplish specific 
objectives. The possible applications to exploit such new capabilities cover several fields, such as 
surveillance, exploration, logistic, transportation, relief systems, etc. The vehicles should also be capable of 
cooperating to perform a mission with a common goal. 

The model used in this paper is the one defined in [Li06]. M vehicles operate in a limited two-
dimensional space and travel to cover a set of N targets. N and M can vary in time (e.g., new targets may 
appear or some vehicles may become unavailable). Each target is assigned with a value, representing the 
reward of covering the target, which decreases with time. The mission is characterized by the process to 
cover all the targets with the available set of vehicles. The objective is to accomplish the mission collecting 
the maximum reward. 

The algorithms solving this problem belong to the cooperative control framework. Receding Horizon 
Control (RHC) may be used to solve these problems. [Li06] proposed a control technique, in which a 
sequence of optimization problems is solved over a planning horizon and it is executed over a shorter action 
horizon: in this way, the vehicles are able to detect new events (e.g., the appearance of new targets) and, 
accordingly, to rapidly modify their trajectories on-line (edge-and-react method).Vehicles cooperate in the 
sense that the mission space is dynamically divided among them; a time-variable responsibility region of 
each vehicle is defined, which depends on the current targets and vehicles positions. As explained in [Li06], 
the optimization problem carried out at each time step does not attempt to make any explicit vehicle-to-target 
assignment, but only to determine headings which, at the end of the current planning horizon, will place 
vehicles at positions such that the total expected reward is maximized. The simulation results presented by 
the authors of [Li06] are very encouraging, since the algorithm is capable (i) to rapidly adapt to incoming 
events, and (ii) to divide the mission space among the vehicles achieving approximated Voronoi partitions 
[AURE91]. The main drawback reported by such algorithm is the inefficiency in case of clustered 
configurations (relatively both to vehicles and targets) and the lack of convergence in certain configurations 
(see also [CASS03] of the same authors).  

To overcome the intrinsic issues of the approach followed by [Li06] and to increase the efficiency of the 
algorithm, this work proposes an extension of the approach followed in [Li06]. 

1.1 State	  of	  the	  art	  and	  proposed	  innovation	  

The Vehicle Routing Problem (VRP) is a generalization of the classical Travel Salesman Problem (TSP), and 
it consists in finding the optimal (or near-optimal) path (according to specific objective functions – e.g., the 
shortest path) for a vehicle to visit a set of locations. If the distance between two locations is the Euclidean 
distance, the problem is referred as Euclidean VRP. The VRP has been firstly studied by Dantzig et al. 
[DANT59], and it is still a topic of research because of intrinsic hard combinatorial nature. Transportation, 
logistics, manufacturing, mobile robots systems, military and relief systems are examples of applications 
involving the solution of this particular kind of problem. Because of the magnitude of the fields of 
applications, during the years numerous variants of the classic VRP arose. Specific features and constraints 
have been added during the time to take into account: (i) the complexity of the new systems, e.g., fleets of 
vehicles covering a mission space; (ii) the requirements of the customers, e.g., time windows or multiple 
visits; (iii) the decision context, e.g., the change of the routes because of traffic congestion, etc. According to 
the taxonomy defined in [PILL11], VRP with all modifications can be grouped into four categories: 
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• Static and deterministic problems: this category groups the problems characterized by the complete 
knowledge of all the inputs and by the invariance of vehicle routes. There is a wide literature on this 
topic: recent reviews of exact and approximate methods are those of [CORD07] in the case of a 
single vehicle, [BALD07], [LAPO07], [LAPO09] and [TOTH02] in the case of multiple vehicles. 

• Static and stochastic problems: this category groups the problems characterized by the complete 
knowledge of all the inputs, as in the former case, but some or all of them are random variables, in 
the sense that they are realization of stochastic processes. This lead to the fact that, even if routes are 
still a-priori assigned, small changes in the routes are allowed. Uncertainty may concerns any of the 
input data: (i) stochastic customers, which need to be served with a given probability (e.g., 
[BERT88] for one or two vehicles and [WAT89] in the case of one vehicle); (ii) stochastic times, if 
the service or travel times are modeled by random variables (e.g.,[VERW03], for a single vehicle 
and [KENY03] and [LAPO92]f or multiple vehicles); stochastic demands (e.g., [LAPO02], 
[MEND10] and [MEND11] for a single vehicle case, [CHRI07], [DROR89], [SECO00] and 
[SECO09] for multiple vehicles case). 

• Dynamic and deterministic problems, in these problems, vehicles routes are redefined during their 
fulfillments, since new information may be available during the time (e.g. in case of new targets 
appearance). Technological support for real-time communication among the vehicles and with the 
control centers (e.g., through mobile phones and using the GPS) is obviously needed, because new 
input data are dynamically revealed during the planning or the execution of the routes. 

• Dynamic and stochastic problems: in these problems the variable nature of the dynamically revealed 
information is stochastic. 

This paper deals with dynamic Euclidean VRP in both deterministic and stochastic scenarios. For the time 
being, dynamic and deterministic routing problems have been proposed to be solved using exact or 
approximated methods (e.g. through specific heuristics).  

In the context of dynamic VRP in deterministic scenarios, solved with exact methods, [CHEN06] used a 
linear programming method to solve a dynamic Euclidean VRP with time windows (VRPTW) in a 
deterministic scenario. This problem is a generalization of the VRP in which each customer must be visited 
within a specified time interval, using a fleet of vehicles. In such cited work, a dynamic column generation 
algorithm (DYCOL) is developed, consisting of an iterative optimization which, at each time step, 
dynamically generates new feasible vehicle trips (new columns) starting from a reduced column set and the 
decision is applied for a fixed implementation epoch. During the epoch new events may verify and the 
algorithm is re-executed, potentially adding new columns to the problem. [BALD08] presented an exact 
algorithm to solve the Capacitated Vehicle Routing Problem (CVRP), which is the VRP with limited 
vehicles capacity, for a set of m identical vehicles. The algorithm of [BALD08] consists in the sequence of 
three heuristics to increase the quality of the solution: the first heuristic is based on the q-route relaxation of 
the set partitioning formulation of the CVRP; the second one combines Lagrangean relaxation, pricing and 
cut generation and the third attempts to reduce the gap left by the first two procedures using a classical 
pricing and cut generation technique. [ROBE12] proposed an exact method for solving the CVRP and the 
VRPTW, which generates a reduced problem by replacing the original route set with a smaller route set and 
solving the reduced problem with an integer programming (IP) solver. 

With respect to heuristic approaches to solve the dynamic VRP in deterministic scenarios, several 
techniques were developed so far. Tabu search technique was applied to a dynamic deterministic Euclidean 
routing problem with multiple vehicles in [GEND99]. The main idea of their approach is to maintain a set of 
‘good’ solutions (that constitutes a sort of adaptive memory), which is used to generate initial solutions for a 
parallel tabu search. The parallel search is done by partitioning the routes of the current solution, and by 
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optimizing them independently. Whenever a new customer request arrives, it is checked against all the 
solutions from the adaptive memory to decide if it should be accepted or rejected. A two-phase heuristic 
algorithm was developed in [HSUE08] to solve the dynamic VRP in a deterministic scenario for relief 
logistic in natural disasters with fleets of vehicles: the first phase is characterized by routes construction, and 
in the second phase routes are improved. Another heuristic to solve the dynamic, multi-vehicle VRP in a 
deterministic scenario was proposed in [NALL09]. In this algorithm, the cities are clustered in subsets, using 
the k-means clustering algorithm, and each vehicle is assigned to a subset: a single VRP is then solved for 
each vehicle by a genetic algorithm. 

Dynamic problems in stochastic scenarios are solved with methods that analytically integrate the 
stochastic knowledge of input data in the used mathematical model: practically, the mathematical 
formulation of the problem explicitly considers the stochastic nature of some inputs data, such as stochastic 
times of demands, stochastic service times, etc. In [BERT92], for example, a policy able to serve demands 
over an infinite horizon minimizing the expected system time of the demands is presented for m identical 
vehicles with unlimited capacity. Other strategies used to solve dynamic VRP in stochastic scenarios are the 
so-called waiting strategies, in which a controller decides if a vehicle should wait for an amount of time after 
serving a request before heading towards the next customer: this strategy was implemented in various 
frameworks for dynamic VRP [BRAN05], and dynamic VRPTW [BRAN09], in both cases for a fleet of 
vehicles. Otherwise, a vehicle can be relocated to a strategic position, where new request are likely to arrive 
([LARS01]). This latter strategy is noteworthy since several heuristics, for instance serving emergency fleet 
deployment problems or emergency vehicle dispatching (or redeployment) problems, are based on this 
strategy (see for example [GEND01], and [HAGH07], both in the case of multiple vehicles). More recently, 
cooperative control arose in the context of team theory and was used for coordinating a team of vehicles that 
has a common objective (e. g., a set of vehicles aiming at visiting a set of targets [CASS10], or destination 
points in post-disaster response [CASS11]). These approaches enable on-line problem solving and avail of 
the amount of information which can be shared among vehicles to coordinate their activity. 

For the time being, the VRP remains a complex combinatorial problem and all the reported solution 
methods are computationally expensive, leading to the difficulty to actually solve the problem on-line. To 
develop fast controllers, suited also to uncertain environments, a new methodology was introduced in [LI06], 
referred to as Cooperative Receding Horizon control (CRH). This approach dynamically determines vehicles 
trajectories and at the same time takes into account possible uncertainties in the configuration scenario, such 
as new targets appearance or the elimination of one or more vehicles. As detailed in Section 2, the CRH 
control dynamically determines the vehicle trajectories by solving a sequence of optimization problems over 
a planning horizon and executing them over a shorter action horizon, thus managing uncertainty and reacting 
to future events as soon as they appear. In this respect, there is a difference with the other controller 
strategies, which re-plan the whole routes after the new information is arrived (both in the deterministic and 
in the stochastic cases). That is why this approach is called “hedge-and-react” as opposed to “estimate-and-
plan” methods ([CASS11]). In practice, this control scheme consists in an event-driven route planning, and it 
is particularly suited for stochastic scenarios. In its basic formulation, it is a centralized scheme: there is a 
controller with relevant computation and communication ability, which solves an optimization problem as a 
result of the detection of an event by a vehicle; in [LI05] a distributed version is proposed. Vehicles 
cooperate, in the sense that, based on vehicles actual position, for each vehicle a responsibility region can be 
identified (that is an area of competence of that vehicle). As analyzed in Section 2.3 of this paper, such 
approach presents severe limitations when particular scenarios are considered, for example if the targets are 
in some way clustered and symmetrically placed over the mission space. 
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In this paper, the CRH approach was modified by changing the point of view: the above mentioned 
responsibility regions are defined based on the target positions, leading to the definition of regions of 
attraction of the targets. The regions borders are dynamics due to the target births and deaths occurrences. 
This new algorithm, detailed in Section 3.1, is then referred to as target-oriented CRH (tCRH). The obtained 
routing algorithm has a sort of dual behavior with respect to the original one, and, as analyzed in Section 
3.1.3, its performance degrades as the targets become sparser. From the CRH and tCRH analyses, it turns out 
that they may complement each other. Therefore, in Section 3.2, a mixed strategy is proposed and in Section 
3.3 an adaptive strategy, which behaves as the CRH algorithm or as the tCRH algorithm depending on the 
current targets and vehicles distribution on the mission space. Comprehensive simulation results are 
presented in Section 4, whereas in Section 5 the conclusion are drawn and some future work is outlined. 

2 Cooperative	  Receding-‐Horizon	  (CRH)	  approach	  
This Section defines the vehicle routing problem described in [LI06], which, as already mentioned, is the 
basis of the algorithm proposed in Section 3. The interested reader is referred to [LI06]. 

2.1 Problem	  statement	  

The mission duration is T and the current mission time is denoted with t ∈ [0,T]. The mission space S is a 
two-dimensional area, with N target points, denoted with yi(t), i = 1,2,…,N(t), and collected in the set T, and 
M(t) vehicles, denoted with j, j = 1,2,…,M(t), and collected in the set A. The vehicle position at time t is 
denoted with xj(t), and the initial position at time t0 = 0 with xj0. For the sake of simplicity, the vehicles 
velocities are constant and equal to Vj. The position and velocity of vehicle j then defined by the following 
equation: 

0)0(  ,
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)( jj
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j
jj xx
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tu
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⎡
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where uj(t) ∈ [0,2π] is the vehicle heading at time t. 
The target yi has an associated reward function RiΦi(t), where Ri is the reward and Φi(t) is a discounting 

function, which describes how the reward decreases over time. An example of Φi(t) is given by the following 
equation: 

]1,0(1)( ∈−=Φ i
i

i t,  α
T
αt . (2.2) 

By properly modifying it, the discounting function may describe also deadlines and obstacles (e.g., with 
negative rewards). 

To capture possible differences in the vehicles capabilities, the capability factor of vehicle j with respect 
to target i is defined by the function pij(t), which expresses the probability that vehicle j collects the reward 
RiΦi(t) when it visits target i; the capability function may also decrease after the vehicle visit to a target. 
Target yi is considered as visited by vehicle xj if their relative distance is less than a threshold si: ||yi – xj|| < si. 

The cooperation among vehicles is achieved by dynamic partitioning of the mission space. Let )(2 tBi  be 

the set of the 2 nearest vehicles to target i at time t, and let the relative distance function δij(t) be defined as 
follows: 
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The relative proximity function qij(t) is then defined as follows: 
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where Δ ∈ [0,0.5) is the capture radius. By observing that 1)()(
)(2
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, qij(t) is interpreted as 

the probability that target yi is assigned to vehicle j; note that if the relative distance δij(t) is less than Δ, 
qij(t) = 1 and target i is assigned to the sole vehicle j. The functions qij(t) determine areas of the mission 
space, named full responsibility regions Sj, where a subset of targets is assigned to a vehicle j only; if a target 
is outside of these areas (in the so-called cooperative regions Cj), it is assigned to two vehicles, with a 
‘strength’ which is proportional to the value of the relative distances. Note that if Δ = 0.5, the Voronoi 
tessellation is achieved, and 

Aj
jSS
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The CRH algorithm works by assigning the trajectories to the vehicles with the objective of maximizing 
the total reward. The trajectories are assigned by an event-based on-line controller, which assigns the 
vehicles headings at time instant tk by solving an optimization problem Pk, k = 0,1,… . 

The problem variable at time tk is then the vector uk = [u1(tk) … uM(tk)]. Let Hk be the planning horizon. 
Recalling equation (2.1), the planned positions of the vehicles at time tk + Hk associated to the solution uk is 
then: 

kkjkjkkj HtxtxHtx )()()( +=+ . (2.5) 

The planned horizon Hk is chosen as the minimum time occurring to a vehicle to reach a target: 
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Define τij(uk,tk) as the earliest time that vehicle can reach target i, starting from xj(tk + Hk): 

j
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If the vehicle reaches the target at time τij(uk,tk), the reward will be equal to RiΦi[τij(uk,tk)]. Accordingly, let 
us define the following quantities: 
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kkijikkij tt uu τΦ=Φ , (2.8) 

)],([),(~ kkijikkij tptp uu τ= , (2.9) 



 
8 
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The optimization problem Pk is then defined by introducing the following objective function JCRH: 

∑ ∑
= =

Φ=
)(

1

)(

1
),(~),(~),(~max),(max

k k

kk

tN

i

tM

j
kkijkkijkkijikkCRH tqtptRtJ uuuu

uu
. (2.11) 

The control action is implemented over an action horizon hk, determined either by an event occurrence (e.g., 
a vehicle reaches a target, a new target appears, …), by a constant value or by the following rule: 
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where r is such that r/Vj is a small distance from the target points, for all j ∈ A. 

2.2 CRH	  properties	  

In [LI06], some properties of the CRH algorithm are presented, as well as general conditions for the 
convergence of the trajectories. A vehicle trajectory is a stationary trajectory if the vehicle converges to a 
target in finite time. In the M-vehicles, N-targets case, a sufficient condition for the stationarity of the 
trajectories is given. Moreover, in the 1-vehicle, N-target case, a sufficient condition for stationary trajectory 
is given, as well as a necessary condition for non-stationary trajectory. Unfortunately, there are cases in 
which such conditions are not met, and the CRH controller generates trajectories exhibiting oscillatory 
behavior. Also, in some cases, the trajectory may be unstable (i.e., the convergence of the trajectories to the 
targets is not assured). Those conclusions were already achieved in [LI06] and in [CASS03]. Specifically, 
Theorem 4 of [LI06] defined conditions of stationary and non-stationary trajectories, in the particular 
scenario with one vehicle and N targets. In order to solve this problem, the same authors proposed in 
[CASS03] a direction change cost function which penalizes the change of direction caused by the 
oscillations. However, this function heavily depends on the choice of the C parameter (see [CASS03] for 
further details), which must be tuned according to the particular scenario. The following section shows an 
example of scenario configuration which proves the instability of the CRH and the corresponding lack of 
convergence. 

2.3 Analysis	  of	  the	  limitations	  of	  the	  CRH	  approach	  

The simple scenario depicted in Figure 1 shows the oscillatory behavior and the lack of convergence of the 
trajectories. Figure 1 a) shows a scenario with three targets at points {y1, y2, y3} = {(-3,0),(0,3),(3,0)}, with 

R1 = R2 = R3 = 1 and α 1 = α 2 = α3 = 1, and two vehicles {v1,v2}, with ))(( kjij tuc
ij ep τ−= , c= 0.01, and which, 

at time tk, are in points {x1(tk), x2(tk)} = {(0,1.5),(-8,8)}. The second vehicle is not shown in the figure since it 
is distant from the targets and from v1; in particular, it is sufficiently distant to let qi1(t) = 1 and qi2(t) = 0, 
i = 1,2,3, t = tk, tk+1, tk+2. The target y1 is the closest to the first vehicle v1, which is evenly distant from the 
other targets y2 and y3: ||y1 – x1(tk)|| < ||y2 – x1(tk)|| = ||y3 – x1(tk)||. Since only two vehicles are present, they 
appear in all the sets )(2 ki tB , i = 1,2,3, but, due to the distance of v2 from the targets, the optimal value of u1 

is independent of u2. In conclusion, the cost function (2.11) is written as 

∑∑
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Δ = 0.4, s = 0.2, r = 2 and V1 = V2 = 0.5. 
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Figure 1: Example of a scenario leading to oscillatory trajectories. 

 
At time tk, Hk is chosen according to equation (2.6), and is such that, at time tk + Hk, v1 would move to a 

point on the circle with radius ||y1 – x1(tk)||. The circle is highlighted in Figure 1 a), and the value of the cost 
function computed on the circle versus the values of u1 is shown in Figure 1 b). The figure clearly shows that 
there are two relative maximum values corresponding to the directions toward the targets y2 and y3, and that 
the absolute maximum is toward the nearest target y1, i.e., for u1 = 90°. By assuming that no events occur in 
the meantime, hk is then set equal to 0.5Hk (see equation (2.12)). The direction maximizing the problem Pk is 
towards y1, and is such that v1 moves to position x1(tk+1) = x1(tk + hk) = (0,2.25), as shown in Figure 1 c).  

As before, at time tk+1, Hk+1 is such that, at time tk+1 + Hk+1, v1 would move to a point on the circle with 
radius ||y1 – x1(tk+1)||, shown in Figure 1 c). This time, however, Figure 1 c) shows that the cost function over 
this circle is maximum when u1 = 270°: even if there is a relative maximum towards y1, the combined 
attraction of the other two targets is such that the vehicle will move towards them. Accordingly, considering 
hk+1 = 0.5Hk+1, v1 will move to position x1(tk+2) = (0,1.875): as shown in Figure 1 e), the vehicle now moved in 
the opposite direction with respect to the target 1.At time tk+2, the control action will lead the vehicle towards 
y1 again (as shown in Figure 1 f)). 
 

Another scenario which is problematic for the CRH algorithm is when the targets are somehow clustered 
and few new targets are generated in time. The following figure shows the initial configuration of 15 
vehicles and 30 clustered targets (Figure 2 a)) and the vehicle trajectories performed in 30 steps of simulation 
(Figure 2 b)). The simulation parameters are Δ = 0.4, s = 0.25, r = 2, Ri = 1, for i∈{1,2,…,30} and Vj = 0.5, 
for j∈{1,2,…,15}. The figures show that only one vehicle is attracted by the targets, whereas the other 

vehicles randomly look for other targets in the mission space. In fact, the sets )(2 tBi  of all the targets i∈T 

contain only two vehicles, and the targets are on the full responsibility region of only one vehicle, as 
approximated by the Voronoi partitions highlighted in Figure 2 a) (the Voronoi partitions are obtained with 



 
10 
 

Δ = 0.5 in (2.4)). Clearly, if the target cluster is conspicuous and few targets are present in the other areas of 
the mission space, the CRH algorithm is not efficient. In the example, only one vehicle is exploited, with a 
consequent mission completion delay, while the other vehicles explore the environment. Moreover, the one 
vehicle in question extremely suffers from the oscillations issue (as explained above), when entering into the 
cluster (in fact, after 30 steps, only few targets of the cluster are reached). This issue obviously delays the 
mission completion time and sometimes it even affects the algorithm convergence. See Section 4 for 
quantitative results showing the inefficiency of such approach. 
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Figure 2: Example of scenario with clustered targets: CRH produces poor performances. 
 
Moreover, by exploring the values of JCRH in the mission plane with different target spatial distributions, it is 
easy to verify that the stationarity conditions are easier met the more the targets are separated; as soon as a 
vehicle is surrounded by a cluster of targets, oscillatory phenomena arises with a high probability. 

3 Proposed	  Approach	  
The basic idea is that the partitioning of the mission space is now performed from the target point of view, 
instead of the vehicle point of view of [LI06]. For the sake of simplicity, this algorithm is referred to as 
target-oriented CRH, and denoted with tCRH. In fact, with the original CRH, the mission space is 
dynamically partitioned among the vehicles based on the vehicle positions; over-simplifying, each target is 
assigned to the nearest vehicle. In contrast, in the tCRH the mission space is partitioned among the targets; 
over-simplifying, each vehicle is assigned to the nearest target. The partitioning induced by the tCRH is still 
dynamic due to the fact that target may appear and disappear in time. 

As shown in Section 3.1, the two algorithms achieve different vehicle behavior: the basic difference is 
that, in practice, the CRH algorithm assures that each target is assigned to at least one vehicle, whereas the 
tCRH algorithm assures that each vehicle is assigned to at least one target. As shown in Sections 2.3 and 
3.1.3, depending on the scenario, either the former behavior or the latter is advantageous. On the ground of 
this consideration, in Section 3.1.3 an adaptive algorithm is conceived, which dynamically favors one 
behavior of the other one based on current mission developments. 
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3.1 Target-‐oriented	  CRH	  (tCRH)	  

3.1.1 Problem	  statement	  

The problem statement is very similar to the CRH one defined in Section 2.1. Let )(2 tBj  be the set of the 

two nearest targets to vehicle j at time t, and let the relative distance function )(tijδ  be defined now as 

follows: 

⎪
⎪
⎩

⎪⎪
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The relative proximity function )(tqij  is defined as in equation (2.4). By observing that 

1)()(
)(2

==∑∑
∈∈ Ni

ij
tBi
ij tqtq

j

, )(tqij  is interpreted as the probability that vehicle j is assigned to target i; note 

that if the relative distance )(tijδ  is less than Δ, 1)( =tqij  and vehicle j is assigned to the only target i. The 

functions )(tqij  determine areas of the mission space (named full responsibility regions) where the vehicles 

are assigned to one target only; if a vehicle is outside of these areas (in the so-called cooperative regions), it 
is assigned to two targets, with a ‘strength’ which is proportional to the value of the relative distances. 

As with the CRH algorithm, the tCRH algorithm works by assigning the trajectories to the vehicles with 
the objective of maximizing the total reward. The trajectories are assigned by an event-based on-line 
controller, which assign the vehicles headings at time instant tk by solving an optimization problem Pk, 
k = 0,1,… . 

The problem variable at time tk is again the vector uk = [u1(tk) … uM(tk)], and the planned positions of the 
vehicles at time tk + Hk associated to the solution uk is given by equation (2.5). The planned horizon Hk is 
again chosen as the minimum time occurring to a vehicle to reach a target (see equation (2.6)). The 
optimization problem is still given by equation (2.11), with the difference that the quantity ),(~ kkij tq u is 

substituted by the following quantity: 

)]([),(~
kkijijkk

tCRH
ij Htqtq += δu . (3.2) 

and the optimization problem Pk becomes (introducing the objective function JtCRH) as follows: 
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 (3.3) 

3.1.2 tCRH	  properties	  

This section introduces theoretical convergence results of the tCRH algorithm, in the particular case of 
R1 = R2 = … = RN = R. Specifically, this section is articulated in three main theorems. If N = 2 and the 
admissible solution space is the bi-dimensional space R2, Theorem 1 demonstrates a) that each minimization 
problem Jj, with j∈V, admits only global minima, b) that all global minima assume the same value and c) 
that each of them corresponds to the positioning of each vehicle j∈V over one of the targets i∈T. Theorem 2 
extends the results of Theorem 1 to the generic case N > 2. Theorem 3 proves that, if the control horizon Hk is 
chosen as in equation (2.6) (therefore the minimization problem related to vehicle j is computed over the 
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admissible solution space (3.1’’)), then the algorithm converges in a finite number of steps and guarantees 
that all the targets will be eventually visited. The following Lemma 0, Lemma 1 and Lemma 2 are used to 
provide intermediate results required to demonstrate the three main theorems. In the following, for the sake 

of clearness, the tk and uk arguments of (3.3) are omitted and we will write ij
tCRH
ij qq =~ , ijkkij t φ=Φ ),(~ u  

and ijkkij ptp =),(~ u . 

The following lemma transforms the tCRH maximization problem (3.1) in a more tractable formulation, 
useful for the subsequent demonstrations. 
 
Lemma0: Under the assumptions pij=1 and Vj=V, for all i∈T and j∈A, the maximization problem (3.3) at 
instant tk is equivalent to the following minimization problem: 
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Proof: The result is achieved by direct substitutions of the definition (2.8) of ijΦ~ : 
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Minimizing (3.4) is therefore equivalent to problem (3.3). ■ 

 

The admissible solution space of the problem (3.4) is the circumference: 

{ }kkjjj VHtxwwkF =−= )(:)( , Mj ,...,1=∀ . (3.4’’) 

This solution space is such that, at the instant 
KHkt + , each vehicle j must move of exactly VHk meters, 

starting from the position xj(tk) at the previous instant tk. Since qij is function of the position xj of the only 
vehicle j and of all the targets i∈T (and it does not depend on the position of the other vehicles k∈V, k ≠ j), 
the minimization problem (3.3) can be rewritten as: 
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where: 
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∑
=

−=
N

i
ijijj yxqJ

1

. (3.5) 

Equation (3.5) shows that the minimization (3.4) can be achieved by separately minimizing each 
objective function Jj, each one over its admissible solution space Fj (3.4’’), and the optimum value is the sum 
of the optimum values computed for all vehicles j∈V. 
 
Lemma 1: If the number of vehicles is M = 1 and the number of targets is N = 2, if q11 = 1 for target 1 and 
q21 = 0 for target 2 and if the admissible solution space for the vehicle is R2, then the minimization problem 
admits a global minimum which corresponds to the positioning of the vehicle over the target 1 (i.e. x1 = y1). 
 
Proof: Since M = 1 and N = 2, and since q11 = 1 and q21 = 0, the minimization problem (3.5) in R2 becomes: 

( ) 1121211111

2

1
111 2

1
2

1
2

1
2

1

minminminmin yxyxqyxqyxqJ
xxi

iixx
−=−+−=−=

∈∈=∈∈
∑

RRRR
 (3.6) 

Since the objective function (3.5) is linear with the distance between x1 and y1, the (global) minimum is 
x1 = y1. The minimum is global because, in the other region (corresponding to q11 > 0 for target 1 and q21 > 0 
for target 2), is impossible to obtain the value 0 in (3.5). ■ 
 
Lemma 1 shows that, if a vehicle is sufficiently close to a target, then the minimization problem drives the 
vehicle to the target. The following Lemma 2 handles the case in which both q11 and q21 are positive, and 
proves that no local minima are present in the corresponding region. 
 
Lemma 2: If the number of vehicles is M = 1 and the number of targets is N = 2, if q11 > 0 for target 1 and 
q21 > 0 for target 2, and if the admissible solution space for the vehicle is R2, then the cost function (3.5) 
admits one stationary point, corresponding to the midpoint 2/)( 21 yyx +=  of the segment between y1 and 

y2, and the point x is a saddle point. 
 
Proof: See the Appendix. ■ 
 
Theorem 1: If the number of targets is 2=N  and the admissible solution space for each vehicle j is R2, 
then the minimization problem of each vehicle j admits two global minima (with the same objective function 
value) corresponding to the positioning of each vehicle j either over the target 1or over the target 2 (i.e., xj = 
y1 or xj = y2). 
 
Proof: The proof can be easily obtained by combining Lemma 1 and Lemma 2. The global minimum can be 
reached only under the conditions of Lemma 1. Under the conditions of Lemma 2 no local minima are 
present (only one saddle point in the midpoint between the two targets) and the value of the Jj function 
(defined in (3.5)) over all xj belonging to the corresponding admissible solution space is positive. Therefore 
the minimization problem, over all the R2 admissible solution space, finds the global minimum under the 
conditions of Lemma 1, i.e., vehicle over the target 1 or, equivalently, over the target 2. The objective 
function value of (3.5) is 0 in both cases. ■ 
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Theorem2: If the number of targets is N > 2 and the admissible solution space for each vehicle j is R2, then 
the minimization problem of each vehicle j admits N global minima, each with the same objective function 
value, corresponding to the positioning of the vehicle j over one of the N targets. 
 
Proof: The main difference with the assumption of Theorem 1 (N = 2) is that the specific two closest targets 
of each vehicle j change depending on the position xj of the vehicle. Then Theorem 1 cannot be directly 
applied for N > 2, because the targets 1 and 2 change in function of xj. In order to exploit the results of 

Theorem 1, fixed the vehicle j, the admissible space R2 can be divided into a finite set of ⎟⎟⎠

⎞
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=
2
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m  

partitions m
jjj CCC ,...,, 21  (s.t. 221 .... R=∪∪∪ m

jjj CCC  and l
jC ∩ e

jC  = Ø, elmeml ≠≤≤∀ ,, ). Each 

couple of targets (h,k) induces one specific partition ),( kh
jC  defined as the continuous region of R2 such that, 

for all ),( kh
jj Cx ∈ , the two closest targets to vehicle j are the targets with positions yk and yh: 

{ } T,  and  },{\),(
hknnjhjnjkj

n
j

kh
j yyyyxyxyxyxRxC ∈−<−−<−∈=  (3.7) 

Notice that ),(),( hk
j

kh
j CC = . The minimization of the cost function over Rn, relatively to vehicle j, is then 

decomposed in m sub-problems, each one over the specific admissible set ),( kh
jC  and the final result is the 

minimum among the m minimization problems. 

( )kjkhjhCxTTkhjx
qyxqyxJ

kh
jjj

−+−=
∈×∈∈ ),(2
minminmin

),(R
 (3.8) 

Since each of the m minimization problems admits, as a consequence of Theorem 1, two global minima (in 
correspondence of the two targets) with objective function value 0, then the final result admit N global 
minima (with the same value 0), each one in correspondence of a specific target yi. ■ 
 
Theorem3: If the control horizon Hk is chosen as in equation (2.6), and the minimization problems are 

computed over the admissible solution space { }kkjjj VHtxwwkF =−= )(:)( , the tCRH algorithm 

converges in a finite time to a feasible solution and the solution guarantees that all targets are eventually 
visited by at least one vehicle. 
 
Proof: Theorem 2 assures that, if each vehicle j could move to a whatever position xj∈R2, then, minimizing 
Jj of equation (3.5), it would choose a target (indifferently among the N available targets). The condition for 
vehicle j to move to a target is that at least one target belongs to the vehicle j admissible solution space (as it 
occurs if the admissible space is R2). If at each timestep tk at least one vehicle minimizes Jj of equation (3.5) 
over an admissible space which contains at least one target, then at each timestep at least one target is 
guaranteed to be visited. The definition of Fj(k) satisfies this condition: since Hk, at each timestep tk, is 
chosen as the minimum time, among all vehicles, to visit a target, then at least one vehicle is able to visit a 
target during the Hk period of time (i.e., at each timestep). As the number of targets is finite, then the 
algorithm guarantees that all targets are visited in a finite amount of time. ■ 
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3.1.3 Analysis	  of	  the	  limitations	  of	  the	  tCRH	  approach	  

Section 2.3 illustrated the limitations of the CRH approach, i.e., (i) the oscillatory behavior in some scenario 
configurations, and (ii) the poor performances in presence of clusters of targets. 

The tCRH approach gives better results in presence of clusters of targets, since each target is capable of 
attracting more than one vehicle. This behavior is well illustrated in Figure 3, which shows the initial 
configuration of 10 randomly positioned vehicles and 40 clustered targets (Figure 3a)) and the vehicle 
trajectories performed in 25 steps of simulation (Figure 3 b)). The simulation parameters are Δ = 0.49, 
s = 0.25, r = 2, hk as defined in equation (4.1), Ri = 100, for i∈{1,2,…,30} and Vj = 2, for j∈{1,2,…,10}. The 
cluster will be reached by all the targets and the algorithm efficiency is increased, also in case of few 
vehicles, compared with the CRH approach (see Section 4 for quantitative simulation results). 

a) t0 b) t0+25

Vehicle
Target

-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
 

Figure 3: Example of scenario with clustered targets: tCRH produces good performances. 
 

The tCRH approach, moreover, may provide scarce results if the vehicles are clustered and the targets 
are relatively sparse. Figure 4 a) shows a configuration in which 5 vehicles are grouped in one cluster and 20 
targets are grouped in two clusters A and B: A is the closest cluster of targets to the set of vehicles. The 
simulation parameters are the same of the previous example. As illustrated in Figure 4 b) and Figure 4 c), the 
vehicles show a “greedy” behavior, i.e., all the vehicles firstly head to the first cluster of targets and then, 
after that all those targets are covered, head to the second cluster of targets. This behavior could be 
inefficient in particular configurations characterized by concentrated vehicles and, moreover, the algorithm 
does not provide an almost uniform coverage of the mission space, differently from the CRH case. See 
Section 4 for complete simulation results, showing the comparison among the different approaches. 
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Figure 4: Example of scenario with clustered vehicles and targets: tCRH greedy behavior. 
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3.2 MixedCRH	  (mCRH)	  

As previously analysed, the performances of the two approaches to the dynamic vehicle routing are 
efficient/inefficient in different scenario configurations: 

• the CRH algorithm gives better results if the targets and vehicles are sparse and in stochastic 
scenarios (i.e., the targets appear stochastically), where the vehicles which are not assigned to any 
targets are free to perform some exploration of the mission space; 

• if the targets are someway clustered, and in deterministic scenarios (the targets are already known at 
the mission start), the CRH algorithm performances are low since it may happen that only few 
vehicles are assigned to a large amount of target, while the other vehicles uselessly explore the 
mission space; 

• the tCRH algorithm gives better results if the targets are clustered and in deterministic scenarios, 
since each target is capable of attracting a vehicle, and the exploration of the mission space is not 
important; 

• if the targets are sparse and in stochastic scenarios, the tCRH algorithm performances are low since 
it may happen that a single target attracts more than one vehicle and only few vehicles explore the 
mission space. 

 
Thus, the idea is to use the CRH algorithm or the tCRH algorithm depending on current mission conditions, 
i.e., to adapt the algorithm behavior to the mission current situation. To this extent, the objective functions 
(2.11) and (3.3) of the two problems are simultaneously used in a multi-objective optimization fashion: 

),()](1[),()(),( kktCRHkkkCRHkkkmCRH tJttJttJ uuu γγ −+=  (3.9) 

where the real-valued parameter γ(tk)∈[0,1] determines whether the current algorithm behavior is more like 
the CRH (γ(tk) = 1) or the tCRH (γ(tk) = 0). 

Simulations were performed in two particular scenarios, aimed at highlighting the different impact of the 
two behaviors. In the first scenario, 10 vehicles, are positioned in a cluster in the center of the mission space 
(a square with sides of length 20m), and 20 targets are randomly positioned on the mission space. The 
second scenario is characterized by the presence of three randomly positioned vehicles and 30 clustered 
targets, in the center of the mission space. The simulation parameters are Δ = 0.4, s = 0.25, r = 2, Ri = 1, βi = 
5, Di = 100, for i∈{1,2,…,30} and Vj = 0.5, for j∈{1,2,3} or j∈{1,2,..,10}. As illustrated in Figure 5, large 
values of γ(tk) (i.e., the CRH behavior) are preferable in scenarios in which the vehicles are clustered, in 
order to increase the exploration of the mission space; on the contrary, small values of γ(tk) (i.e., the tCRH 
behavior) are preferable in scenarios in which the targets are clustered, to make the vehicles jointly head to 
the targets. The results related to the value γ(tk)= 1 are not presented since oscillations verify and, thus, the 
average duration time is the highest in both scenarios. 
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a) Clustered vehicles, random targets b) Clustered targets, random vehicles 
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Figure 5: Mixed CRH (mCRH): mission duration time against variable weight. 
 
On the ground of the shown example and of many other simulation results, the mixed CRH algorithm, 

hereafter referred to as mCRH, was defined by setting γ(tk) = γ = 0.5, for each tk. 

3.3 Adaptive	  CRH	  (aCRH)	  

As shown in the previous Section, the two CRH and tCRH approaches seem to be complementary, in the 
sense that the CRH algorithm makes the vehicles explore the mission space and the tCRH makes the vehicles 
head directly to the targets. The aim of this Section is then to introduce an adaptive approach able to exploit 
both the approaches, according to the current targets and vehicles configurations.  

Section 2.3 showed that the CRH approach strongly suffers the presence of a conspicuous number of 
targets surrounding a vehicle. As clearly exemplified by Figure 1 with reference to a triangle targets 
configuration, the (weighted) center of gravity of the targets included in the responsibility region of a 
vehicle, formally defined as: 

∑

∑

∈

∈=

j

j

Si
i

Si
ii

j R

yR
c , (3.10) 

appears to be a critical point of the mission space: if a vehicle is situated close to this point, it starts 
oscillating. The first idea is to make the algorithm be aware of the existence of this critical point and act as a 
consequence. The idea of taking into account the critical point allows the algorithm to detect a possible point 
which could generate oscillations and to act to handle this situation, by switching to the tCRH approach. The 
algorithm is then aimed at setting γ(tk) to a small valueγ0if the distance between a vehicle position xj and its 
center of gravity cj is below a given threshold c, corresponding to favouring the tCRH ‘greedy’ behaviour, 
which allows vehicles to head directly to the targets, and at setting γ(tk) to a large value γ1 otherwise, 
corresponding to favouring the CRH behaviour. 

The second idea aims at increasing the performances of the algorithm, especially in the case of clustered 
vehicles, when the tCRH produces poor results, by designing a vehicle routing control strategy based on two 
principal steps: (i) if the vehicles are grouped, use a large value of γ(tk), i.e., give more importance to the 
CRH behavior, in order to make the vehicles explore the mission space and distribute onto the mission space; 
(ii) when the vehicles are sparse on the mission space, use a small value of γ(tk), i.e., give more importance to 
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the tCRH and let the vehicles directly head to the closest targets. This approach is a sort of divide et impera 
strategy: once the vehicles are correctly positioned onto the mission space, let the vehicles directly head to 
the targets. The main information that must be known, in the most precise way possible, is when to declare 
that the vehicles are sufficiently sparse. 

In conclusion, the adaptive algorithm behavior is as follows: 

⎩
⎨
⎧ <−∃∈∧∈∈∃∈∀=

                                            otherwise                                            ,
or   if  ,

1

22
0 :)()(:)(),()(
γ
γγ ccxjtBitBjtTitAjt jjkjkikk

k , (3.11) 

Equation (3.11) states that: 

1. γ(tk) is set to a small value γ0, at time tk, if one of the following conditions hold: 
• the Euclidean distance between a vehicle j and the related center of gravity cj is less than c; 
• for all vehicles j, there exists a target i for which the vehicle j is the closest vehicle in 

)(2 ki tB  and the target i is the closest target in )(2 kj tB ; 

2. otherwise γ(tk) = γ1, where γ1 is close to 1, to favour the exploring behaviour of the CRH algorithm. 
The parameter γ(tk) is a dynamic factor, since it is computed at each time step tk. The algorithm is adaptive in 
the sense that it is able to dynamically analyze the current vehicles positions to switch between the 
“exploring” CRH and the “greedy” tCRH strategies. 

Section 4 evaluates this adaptive CRH algorithm, referred to as aCRH.  

4 Simulations	  
The algorithms illustrated in Section 2 and Section 3 were implemented in MATLAB using the pattern 
search algorithm for the solution of non-linear optimization problems (see [HOOK61] for further details). 
The algorithms illustrated in Section 2 and Section 3 were tested indifferent configurations, characterized by 
different placements of targets and vehicles in the mission space. The mission space is a square with sides of 
length 20m. The simulation parameters are constant, unless differently specified, and shown in the following 
table: 
 

 

Table 1: Simulations parameters 
 

Attribute Value 
  
Ri, i∈{1,2,...,20} 100 
αi, i∈{1,2,...,20} 0.5 
βi, i∈{1,2,...,20} 0.1 
Di, i∈{1,2,...,20} 100 
si, i∈{1,2,...,20} 0.25 
Vj, j∈{1,2,...,10} 2 
b 2 
Δ 0.49 
r 2 
γ0 0 
γ1 0.9 
c 1 
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All the vehicles j∈{1,2,...,10} are moving at constant velocity Vj= V = 1 ms-1. All targets are 
characterized by the same fixed parameters, as defined in Table 1. si (equal, in the simulations, to a fixed 
value s for each target i) represents the i-th target size (the target i-th is considered captured by j-th vehicle at 

time t if iij stytx ≤− )()( ). The planning horizon Hk is given by (2.6) and the action horizon hk is set as 

follows: 

⎩
⎨
⎧ ≤

=
otherwise   ,5.0

 if  , sHH
h kk
k  (4.1) 

The action horizon is set, if the vehicles are not close to any target, to a small value in order (i) to rapidly 
adapt to changes in the scenario (e.g. in the dynamic of the unknown scenarios) and (ii) to be reliable against 
eventual errors committed by the non-linear optimization solver used in the simulation.  

The algorithm was simulated in the following scenarios, characterized by different targets and vehicles 
positions in the mission space: 

1. Targets and vehicles randomly distributed throughout the mission space (Section 4.1). 
2. Targets randomly distributed throughout the mission space and clustered vehicles (Section 4.2). 
3. Targets grouped in two clusters and vehicles grouped in one cluster (Section 4.3). 
4. Targets placed on a circle of radius 8m and vehicles concentrated in its centre (Section 4.4). 
5. Targets and vehicles randomly distributed in the mission space, with 5 targets whose positions are 

unknown to the vehicles (Section 4.5). 
6. Dynamic scenario (Section 4.6) 
Each scenario was simulated by means of 25 simulation runs with different seeds. The algorithms 

proposed in this paper were simulated: the CRH (see Section 2), the tCRH (see Section 3.1), the mCRH (see 
Section 3.2) and the aCRH (see Section 3.3). In some of the simulations, the results of the CRH algorithm 
are not shown, since the amount of oscillations during the simulation was so high that the mission was rarely 
successfully accomplished. For each simulated scenario and algorithm, the average and the standard 
deviation values of mission duration time are computed and reported to evaluate the performances of the 
proposed algorithms. 

4.1 Random	  distribution	  of	  targets	  and	  vehicles	  

The scenario of this simulation is characterized by a random distribution of 20 targets and 10 vehicles 
throughout the mission space (a square with sides of length 20m). The following figure shows an example of 
random distribution of both vehicles and targets. 
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Figure 6: Random distribution of vehicles and targets: example scenario. 



 
20 
 

 
The average values of the mission duration time are reported in the following figure, for each algorithm 
presented in this paper. 
 

	   	  
Figure 7: Random distribution of vehicles and targets: mission duration time (average and standard deviation), 
in seconds. 
 
The figure shows that similar results are obtained by all the algorithms. In this scenario, the CRH does not 
produce oscillations in the vehicles trajectories in the majority of simulation runs, since the number of 
vehicles is comparable with the number of targets and everything is fairly distributed in the mission space. 
The tCRH makes the vehicles head to the closest targets as both are randomly distributed. The mCRH and 
the aCRH exploit the advantages of both the algorithms and the aCRH achieves the best results (the decrease 
in mission duration time, compared to the CRH approach, is about 17%). Regarding the standard deviation 
results, similar considerations hold: the standard deviation of the CRH is the largest since, sometimes, small 
oscillations happen, depending on the particular configuration scenario. 

4.2 Random	  distribution	  of	  targets	  and	  clustered	  vehicles	  

The scenario of this simulation is characterized by a random distribution of 30 targets on the mission space 
and 3 vehicles starts from the top left of the mission space (they are clustered). The following figure shows 
an example of random distribution of both vehicles and targets. 
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Figure 8: Random distribution of targets and clustered vehicles: example scenario. 
 
The average values of the mission duration time are reported in the following figure, for each algorithm 
presented in this paper. 
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Figure 9: Random distribution of targets and clustered vehicles: mission duration time (average and standard 
deviation), in seconds. 
 

The CRH results are not shown because in most of the simulation runs the CRH algorithm fails to 
accomplish the targets covering within the mission time. Figure 9 confirms, as expected, that the tCRH 
average mission duration time is large. In fact, the tCRH is characterized by a “greedy” behaviour and, since 
the vehicles are initially clustered, they follow almost the same trajectory. An exploration behaviour must be 
introduced in the algorithm to achieve better results. The mCRH is not able to achieve better results since 
oscillations verify when the algorithm sets γ = γ1, with the effect of delaying the mission accomplishment. 
Much better results are instead obtained by using the aCRH. With the aCRH algorithm, the vehicles initially 
explore the mission space, since the algorithms sets γ = γ1, and they aim at the closest targets with a ‘greedy’ 
behaviour as the aCRH sets γ = γ0. The average mission duration time is decreased, compared to the tCRH, of 
about 27%. Moreover, the standard deviation results of Figure 9 show that the adaptive strategy is able to 
produce more consistent results, compared to the tCRH and the mCRH. 

4.3 One	  cluster	  of	  targets	  and	  random	  vehicles	  

The scenario of this simulation is characterized by (i) a set of 30 targets concentrated within a 4m-by-4m 
rectangle positioned in the center of the mission space and (ii) 3 randomly positioned vehicles. Figure 10 
shows an instance of the simulated scenario: 
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Figure 10: One cluster of targets and randomly positioned vehicles: example scenario. 
 
The average values of the mission duration time are reported in Figure 11, for each algorithm presented in 
this paper. 
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Figure 11: One cluster of targets and randomly positioned vehicles: mission duration time (average and standard 
deviation), in seconds. 
 
Figure 11 clearly illustrates that, in the presence of clustered targets but random vehicles, the adaptive aCRH 
strategy achieves better results with respect to the tCRH one, and that the mCRH algorithm is the worst one. 
Since the targets are clustered, no exploration is needed and the greedy component of the three approaches 
guarantees a fast convergence. The mCRH suffered from small oscillations occurring as the vehicle reach the 
target cluster. 

4.4 Two	  clusters	  of	  targets	  and	  one	  cluster	  of	  vehicles	  

The scenario of this simulation is characterized by (i) a set of 3 vehicles placed in the top right of the mission 
space and (ii) two clusters of 15 targets, located in the bottom right and the bottom left of the mission space. 
The clusters of targets are distributed in 2m-by-2m squares. The following figure shows an instance of the 
simulated scenario: 
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Figure 12: Two clusters of targets and one cluster of vehicles: example scenario. 
 
The average values of the mission duration time are reported in Figure 13, for each algorithm presented in 
this paper. 
In presence of two clusters of targets and one cluster of vehicles, the best result is again obtained by the 
aCRH (the average mission duration time decrease is of about 11% with respect to the tCRH): in this 
simulations, initially the algorithm sets a exploring behaviour achieving a repartition of the vehicles among 
the targets, and it sets a greedy behaviour which lead the vehicles to the targets. As predictable, the worst 
results are achieved by the tCRH, which makes the vehicles jointly head to the first cluster of targets and 
then to the second one. The mixed strategy produces intermediate results, again due to small oscillations 
occurring as the vehicles approach the target clusters. 
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Figure 13: Two clusters of targets and one cluster of vehicles: mission duration time (average and standard 
deviation), in seconds. 

4.5 Targets	  in	  circle	  

The scenario of this simulation is characterized by (i) a set of 30 targets placed on a circle of radius 8m, and 
(ii) M vehicles concentrated in a region close to its center. The following figure shows an instance of the 
simulated scenario with M = 3. 
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Figure 14: Targets in circle, vehicles close to the center: example scenario with M = 3. 
 
The average values of the mission duration time are reported in Figure 15, for each algorithm presented in 
this paper, for M = {3,6}. Figure 15 (a) shows that, in case of a small set of vehicles, the best results are 
produced by the tCRH approach: the algorithm is often able to lead each vehicle to a different part of the 
circle of targets. However, the standard deviation of the tCRH is the highest because, sometimes, all the 
vehicles follow the same path, without any mission space division, whereas the aCRH performance are close 
to the tCRH one in terms of average mission time and better in terms of standard deviation. The mCRH 
performance is the worst, since the symmetry of the scenario generates several oscillations. In case of six 
vehicles, the tCRH becomes the worst (the average mission duration time is almost the same of Figure 
15(a)), since it is unable to take advantage to the larger set of vehicles and chooses almost the same path for 
all the vehicles. In this case, the mCRH is the best one since the larger number of vehicles reduces 
oscillations: the aCRH, anyway, is able to produce results very similar to the mCRH, showing the capability 
of the algorithm to adapt to both configurations. 
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(a) M =3 (b) M = 6 

	   	  
Figure 15: Targets in circle, vehicles close to the center: mission duration time (average and standard deviation), 
in seconds. 

4.6 Unknown	  targets	  

The scenario of this simulation is characterized by 20 targets and 10 vehicles which are randomly distributed 
in the mission space, with 10 targets in unknown positions: the targets may be detected by a vehicle if it is 
close enough, in the so-called “sensor detection area”. The sensor detection area was chosen as a circle of 
radius 3.333m. Figure 16 shows an instance of the simulated scenario. 
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Figure 16: Unknown targets: example scenario. 
 
The average values of the mission duration time are reported in the following figure, for each algorithm 
presented in this paper. 
 

	   	  
Figure 17: Unknown targets: mission duration time (average and standard deviation), in seconds. 
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Similarly to the simulation of Section 4.1, the results of the different algorithms are similar (between 6.5s 
and 7.2s), since the vehicles are already distributed on the mission space and the number of the vehicles is 
high (at least comparable to the number of targets, which reduces the occurrences of the oscillating 
behaviour). The 10 unknown targets are discovered and covered in the 100% of the mCRH and aCRH 
algorithms simulations and in the 96% of the CRH and the tCRH simulations. 

4.7 Dynamic	  scenario	  

This final scenario aims at demonstrating that the adaptive approach is able to outperform the tCRH and the 
mCRH in a time-varying environment. The variability consists in the appearance of new sub-sets of targets, 
appearing in different configurations. The transition times and related configurations are detailed in the 
following table. The number of vehicles is fixed, M = 3, and they are initially randomly deployed on the 
mission space. 
 

Time step Number of 
new targets 

Configuration of new targets 

t0 = 0s 15 Random targets 
t1 = 6.5s 10 One cluster of targets in the top right of 

the mission space. 
t2 = 15s 10 Two clusters of targets, similarly to 

Figure 12 
Table 2: Dynamic scenario: list of events. 
 
The average values of the mission duration time are reported in the following figure, for each algorithm 
presented in this paper. 
 

	   	  
Figure 18: Dynamic scenario: mission duration time (average and standard deviation), in seconds. 
 
The previous figure shows that the aCRH produces very the best results, especially regarding the average 
mission duration time (the performances enhancement, compared to tCRH, is of about 15%). The mCRH is 
still affected by oscillation paths. Finally, the standard deviation results are the worst for the tCRH, since the 
“greedy” approach could favour certain random configuration compared to other ones. 

5 Conclusions	  and	  Future	  Work	  
This paper introduced an innovative cooperative vehicle routing algorithm with the aim of covering a set of 
targets distributed onto the mission space. The approach is to dynamically re-compute the routing by means 
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of a receding horizon strategy, able to adapt to changes in the environment configuration (for instance in case 
of unknown targets and possible new targets appearance). The work developed in [LI06] has been studied: it 
guarantees the coordination of the agents without any ad-hoc vehicle-target assignment and is capable to 
uniformly explore the mission space in order to cover the regions belonging to the mission space and rapidly 
cover eventual unknown targets. The weaknesses of this approach were identified, in particular concerning 
vehicle oscillations and poor performance in specific, but common, scenario configurations (e.g. clustered). 
A new strategy has been proposed, which is able to guarantee convergence in the sense that all targets will be 
eventually covered, but it produces poor performances in sparse or un-clustered environments. The two 
strategies have been combined, in an adaptive way, to take advantage of the good aspects of both and 
simulation results shown the goodness of the proposed approach. 

The authors are willing to develop further and interesting extensions or integrations of the proposed 
approach. research directions under investigation are i) dynamic clustering of the targets to better distribute 
the workload among the vehicles; ii) different metrics for the dynamic partitioning to account for the spatial 
density of the targets on the mission space; iii) distributed approach with possible partial communications 
among vehicles (e.g., information about the positions can be shared only among dynamic sub-sets of 
vehicles); iv) new ‘local’ rules for the adaptive algorithm, i.e., the value of  the parameter gamma in equation 
(3.11) may be different for the different vehicles, depending on their position in the mission space. On 
another research perspective, the authors are working on a discrete version of the adaptive algorithm 
presented in this paper, deployable in real urban environments, using a proper distance function different 
from the Euclidean distance, and simulated using city maps; a distributed discrete algorithm may be 
envisaged for a solution to be used in real urban and communication-constrained environments. 
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Appendix	  
 
Proof of Lemma 2: The proof is divided in two parts: (1) the first part demonstrates that only one stationary 

point exists for 2211 yxqyxqJ jjjjj −+−=  and the point is the midpoint 2/)( 21 yyx j += of the 

segment between y1 and y2; (2) the second part proves that the point is a saddle point. The objective function 
Jj can be written in the following way, by using the explicit expression of qij in equation (3.5). 
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Using those functions, the stationary point condition can be written as: 
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With such a variable substitution in (A.1), the objective function Jj can be rewritten as: 
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which represents an equality relationship between two vectors. Two vectors are equal if and only if they 
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The previous equation imposes distance constraints on the xj position with respect to targets y1 and y2. 
The direction constraint is given by the equation (A.3), which imposes that the two versors
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 must have the same direction but inverted verses. The only way 

to satisfy both the constraints is in the midpoint 2/)( 21 yyx j +=  between targets positionsy1 and y2. □ 

 
(2) To prove that the point 2/)( 21 yyx j +=  is a saddle point, instead of computing the second derivative 

and evaluate the Hessian matrix, the definition of saddle point is utilized in this paper: a stationary point 
which admits both ascent and descent directions. Thus, the proof can be translated into finding at least 
one ascent and one descent direction from the point 2/)( 21 yyx j += .  

Let define 2
21
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,

2
yyyDyyyD −+=−+=  as the two distances between the stationary point 

and the two targets. It follows that: D1 = D2 = D. In the stationary point the objective function of 
equation (A.1) assumes the following value: 
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, (A.5) 

Regarding the ascent direction, let consider a point jx̂ situated on the equidistant straight line ρ  but not 

situated on the segment connecting y1 and y2 (see the following figure). 
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Figure 19: Example of point on the equidistant straight line between target y1 and y2. 
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The objective is to show that moving of a small ε> 0 along the straight line, the objective function Jj 
increases. It is easily understandable that, if the point moves along such straight line, both distances D1 

and D2 increase: they become DDDD >+== 22
21 εεε 

. By substituting 1
εD


 and 2
εD


 into 
equation (A.1), and noticing that, since the new point belongs to the equidistant straight line, also for 

1
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 and 2
εD


 the relationship εεε DDD


== 21  holds: 
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Then the direction along the equidistant straight line is an ascent direction. □ 
 
Regarding the descent direction, let consider a point situated on the segment connecting the midpoint 

2/)( 21 yyx j +=  and the target position y2, at distance ε from the midpoint. This implies that the 

distances of the point from the two targets become εε += DD 1


 and εε −= DD 2


, respectively. By 

substituting the 1
εD


 and 2
εD


 into equation (A.1): 
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, (A.6) 

Equation (A.6) holds for each ε> 0. Such a direction is a descent direction. ■ 
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