
Introduction

Dengue fever (DF) is a major public health issue
around the tropical and subtropical part of the world
that can cause significant morbidity and mortality
(Kongsomboon et al., 2004). The infectious agent,
belonging to the Flaviviridae group of RNA-viruses,
exists as four serotypes (DEN 1, 2, 3 and 4) (Briseno
Garcia et al., 1996; Fakeeh and Zaki, 2003). Its main
vector is the Aedes aegypti mosquito (Gubler, 1997).
In recent years, the incidence of DF infection has
increased in Saudi Arabia, particularly in Jeddah. Over
the past 5 years, approximately 8,000 people have
been infected, and there is now a dire need to control
and prevent the DF. However, since neither
chemotherapy nor a vaccine exists, a different control
strategy is required.

Health-related, spatial studies have been used to
locate and define health catchment areas in Saudi
Arabia, evaluating the demand and supply of health
facilities. However, while the published literature indi-

cates limited application of geographical information
systems (GIS), remote sensing and spatial analysis for
mosquito-borne diseases in the country, this approach
should be useful with respect to DF epidemiology.
These techniques can be used to spatio-temporally
determine the endemic areas, including the hotspots,
e.g. spatial analysis can estimate the risk for DF across
affected areas and offer insight into the nature of DF
disease clusters (Bithell, 1999). For example, kernel
estimation was used to analyse the spatial pattern of
DF and its biological vector in Rio de Janeiro (Lagrotta
et al., 2008), and the results of this study demonstrat-
ed five specific areas of mosquito breeding sites char-
acterised by high and medium density of the Ae. aegyp-
ti vector. The authors highlighted small clusters with
high larval density and recommended this approach for
DF surveillance. GIS and spatial analysis techniques
have also been used to stratify a city for the occurrence
of hyper-endemic dengue hemorrhagic fever DHF, to
improve the application of surveillance and control
measures (Barrera et al., 2000). In Thailand (Sukhothai
province), Nakhapakorn and Jirakajohnkool (2006)
applied autocorrelation statistics such as Moran’s I to
map local risk areas, showing how spatial patterns
change from the past to the present, while
Tipayamonggghholgul and Lisakulruk (2011) used the
K-order nearest neighbour method to find social-geo-
graphical factors that influence the local vulnerability
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to DF. This study revealed a trend of increasing DF in
rural areas subjected to increasing urban influence as
compared to more remote areas. In general though,
researchers who turned to GIS for the identification
and visualization of disease clusters did not integrate
both spatial and temporal techniques for producing
accurate spatio-temporal map layers.

Mapping of DF hotspots, or patterns of uneven
events, often ignore the temporal kinetics. As a result,
without the temporal dimension, decision makers find
it difficult to assess whether or not a dengue epidemic
has broken out or how well existing DF transmission
has been controlled. Earnest et al. (2005) and Zeger et
al. (2006) used autoregressive integrated moving aver-
age (ARIMA) models to forecast the spread of uneven
cases and predict incidence values, but this and other
similar approaches had difficulties identifying the spa-
tial risk. Wen et al. (2006) proposed a spatio-temporal
risk approach to map uneven events based on tempo-
rally defined indices. In their study, three temporal risk
indices were introduced and a local spatial auto-corre-
lation index to identify areas at risk was proposed.
However, the dataset collected was limited, covering a
span of only 9 months, i.e. from April to December

2002. Galli and Neto (2008) used the approach pio-
neered by the previously mentioned authors to locate
high-risk DF areas in southeastern Brazil. However,
this study only involved annual classifications for
at-risk areas.

The aim of the present study was to demonstrate the
changing DF temporal risk based on monthly data for
an unusually long period (from January 2006 to
December 2010) with the view to provide documenta-
tion that could improve DF surveillance. 

Materials and methods

Study site

The study was conducted in 111 districts (around
1,100 km²) in Jeddah county of Saudi Arabia (Fig. 1),
located on the coast of the Red Sea in the western part
of the country and home to about 3 million people.
Jeddah is the most important commercial city and the
main gateway to the two holiest cities in Islam (Mecca
and Al Medina). According to Jeddah Health Affairs,
this area contains the highest levels of DF mortality
and morbidity in Saudi Arabia.
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Fig. 1. Location of the study site with the positions (a) of the black hole traps.
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Human data 

The data on clinical cases of DF were obtained from
the Jeddah Health Affairs department. The depart-
ment keeps systemic records of confirmed cases of DF
since 2006. These records include age, sex, nationali-
ty, district, coordinates and the week of disease onset
for each case.

Entomological data

Daily mosquito samples for each district were
acquired using 504 black hole traps, considered to be
the most efficient for the study area (Aburas, 2007).
These traps capture mosquitoes by producing carbon
dioxide (CO2) that significantly increases the collec-
tion rate of Ae. aegypti (Russell, 2004). The traps were
returned to the mosquito laboratory for filtering and
sorting according to species, sex, date of collection,
location coordinates and number of mosquitoes for
each place. Since only female Ae. aegypti mosquitoes
can function as vector, this research and analysis are
based on female specimens only. Identification and
counting were done by the Jeddah Municipality mos-
quito laboratory. The black hole traps were distrib-
uted geographically based on population density and
environmental factors (Fig. 1a). The study took place
from January 2006 to December 2010, providing data
over a 5-year period.

Data organization and analysis

To assess the frequency of transmission per month in
each district, a frequency index (f) was adopted and
calculated weekly, monthly and then yearly for each
district. However, it was based on the number of cases
recorded daily as follows: for one or more confirmed
DF cases per day, the occurrence for that day would be
1, while it would be 0 if no cases were found (Giesecke,
2001, Wen et al., 2006). We defined the index as
ED/TD, where ED is the total number of days in which
one or more cases occurred during the period and TD
is the total number of days during the period (TD). For
example, if over one week, DF cases were reported on
three days, the occurrence would be 3, resulting in a
frequency index of 3/7. In this study, the index was cal-
culated on a weekly (AWFI), monthly (AMFI) and
annual (AYFI) basis. With the frequency index value
ranging from 0 to 1, values close to 1 indicate the pos-
sibility of disease occurrence being high, while values
close to 0 indicate the possibility of the disease occur-
rence being very low. We also carried out a similar

exercise using female Ae. aegypti mosquitoes instead of
DF cases, but did this only for January of each year.
Since the number of black hole traps differed from dis-
trict to district, the number of female mosquitoes was
divided by the number of traps for each district, thus
yielding the average number of vectors per trap.

The AMFI of each district was analysed spatially
using Getis-Ord Gi* statistic to model the monthly
risk levels in each district. This approach looks at each
feature within the context of neighbouring features. If
a feature value is high, and the values for all of its
neighbouring features are also high, the conclusion is
that it is part of a hot spot. Equation 1 below was
applied to examine the local level of monthly tempo-
ral risk in order to model districts, where values of the
DF frequency index and the numbers of mosquitoes
were extreme and geographically homogenous. This
study identified extreme index hotspots across the 111
districts in Jeddah. First, the spatial relationships relat-
ing case locations and female Ae. aegypti concentra-
tions in districts were conceptualised and calculated
using the fixed distance band. This included frequency
index of the DF cases and the number of mosquitoes
inside the boundary of the study area, but excluded
everything outside that boundary. This approach was
chosen as it has been shown to be generally more
appropriate than inverse distance conceptualisation
(Mitchell, 2005). Secondly, Euclidian distance was
used to give an output of a z-score and p-value for
each district in Jeddah. Districts with high z-scores
and small p-values indicated spatial clustering of a
high level of DF hotspots (a high temporal risk in a
given period). Districts with low z-scores and high P
values indicated a spatial clustering of a low level of
DF hotspots (a low temporal risk in the given period).
Based on the previous steps, one model was created
for each month of the 5-year period to identify the
areas of very low, low, medium and high infection
probability in recorded DF cases (Fig. 2). The areas
were classified based on z-score values: z-scores ≥3
indicating high risk areas, z-scores 2-3 indicating
medium risk areas, z-scores 1-2 indicating low risk
areas and z-scores ≤1 indicating very low risk areas.

where xj is the attribute value for feature j, wi,j the spa-
tial weight between i and j and n equal to the total
number of features.
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Results

Monthly spatio-temporal models 2006 to 2010

The results are presented on a monthly basis for 60
months (January 2006 to December 2010) with Fig. 3
indicating the locations of hotspots with significantly
high frequency index findings.  The spatio-temporal
monthly hotspots shown in Fig. 3 were distributed in
most of districts in central Jeddah, in particular in the
districts of Old Jeddah (marked as 1) and the Alsafa
district (marked as 2), areas identified for high or
medium risk in most study months (red circles). Fig. 3
also shows that the pattern of risk changes with time,
e.g. for the month of January (from an annual point of
view), the Burman district (marked as 3) was identi-
fied as a low-risk area in 2006, a high-risk area in
2007, medium risk in 2008, very low risk in 2009 and
low risk in 2010. Looking at the pattern changes over
the span of a year instead, choosing 2010 as example,
a very low risk was found in June, July, September,
October, November and December, a low risk in
January, March, April, May and August, and a high
risk in February (marked with a red star in Fig. 3).

During some months, e.g. January and February in
2009, hotspot patterns and high-risk areas display a
shift to new districts, not identified in previous years.
In addition, the risk of DF increased during
November, December and January (Fig. 3).

Overall spatio-temporal model based on monthly risk
models over the 5-year study period

The average monthly risk over the 5-year period
shows most of the hotspots in central Jeddah. Based
on average 5-year DF frequencies, most of old Jeddah
was identified as carrying a high risk for most
months, while all northern and southern districts
were identified as very low risk areas (Fig. 4). The risk
levels also changed from one month to another. For
example, the districts within the red circle in Fig. 4
(three in all) were identified as having low, medium
and high risk levels, respectively, in January and very
low, low and medium risk levels, respectively in
February and the risk levels continued to change for
the remaining months. This finding provides a good
understanding of the temporal risk variations during
the year. 
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Fig. 2. Schematic representation of the study framework.
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The percentage of districts with low- to high- risk
ranged from 12% to 18% in most months, and those
with very low risk from 48% to 61% (Fig. 5). Outliers
were observed in the percentage of high risk, showing
a decrease during February and December and, with
respect to medium and low risk, an increase in
September. 

Impact of the vector on the monthly change in the DF
numbers

Fig. 6 shows an example of the impact of the
Ae. aegypti levels on the monthly changes in DF risk.
Generally, most DF hotspots were also the vector
hotspots, with some differences in the risk level pat-
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Fig. 3. Spatio-temporal monthly risk models of the study districts from 2006 to 2010. The red circles and stars are examples show-
ing risk changes with time.

Fig. 4. Overall spatio-temporal model of monthly temporal risk over the 5-year epidemic period.
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terns. Forty-eight Jeddah districts (43%) were identi-
fied as hotspots for DF incidence (Figure 6a), and 59
Jeddah districts (54%) were identified as Ae. aegypti
hotspots (Figure 6b). The former figure shows that
approximately 14% of Jeddah districts were at high
risk for DF, while the latter shows that approximately
10% of the districts were at high risk with regard to
the vector. Fifteen percent of the districts were identi-
fied as medium risk and 13% as low risk for DF
(Figure 6a), while 22% were identified as medium risk
for Ae. aegypti and 24% at low risk (Figure 6b). The
figure also shows areas (marked with red circles)
where a high DF risk was associated with a medium
mosquito risk (marked as 1) and areas with medium
DF risk associated with medium mosquito risk
(marked as 2).  

Discussion

The approach chosen to map DF temporal risk char-
acteristics and model monthly risk areas was the appli-
cation of Getis-Ord Gi* statistic, a type of analysis
particularly helpful for resource allocation and deci-
sion making, combined with a frequency index, which
has not been used together before for mapping DF
temporal risk characteristics and modeling monthly
risk changes. This study is also the first to attempt
modeling areas for the monthly risk levels of the dis-
ease over a long term (5 years) based on daily data on
DF occurrence, while previous studies are based on
short-term data.

This study identified extreme index hotspots across
the 111 districts in Jeddah using a frequency index for
identifying the spatio-temporal risk to improve visual-
ization of the progress of epidemics. The results indi-
cate that epidemiologists can identify case clusters
when factoring in temporal properties such as the
number of DF cases occurring within a specific time.
The spatio-temporal risk details presented in this
research confirm that the temporal risk model, based
on a daily frequency index, produces a better under-
standing of the changes, compared with previous year-
ly-based studies. This should provide insights for
improving the DF surveillance system and leading to
better DF control interventions in Jeddah. 

Monthly hotspot patterns of DF were similar for
most months based on the average monthly frequency
index of each month during the 5-year period (Fig. 3).
However, changes in the risk level patterns occurred.
Most high and medium risk areas during the 60 months
studied were mainly concentrated in the central districts
of Jeddah.  Most of these districts have limited access to
water supply, which forces residents to use water stor-
age containers. Bisset et al. (2006) reported that imma-
ture stages of Aedes were found in 70 containers, and
the pupae of this species were observed in 52 containers
out of the total sample they used (around 1,000). They
also found that 74% of the pupae were collected from
ground level water storage tanks and that 19% were
found in miscellaneous small containers.

There is a reasonable assumption that population
and population density directly influence the risk of
DF outbreaks. Khormi and Kumar (2011) previously
found that areas in Jeddah with a low risk for DF also
have a low mean population density (2,107 per km²),
whereas areas of medium risk have a medium popula-
tion density (12,880 per km²) and areas that carry the
highest risk have a very high population density
(19,728 per km²). This is borne out in this study as

Fig. 5. Variation of risk by calendar month, i.e. the percentages
of districts at each level of risk (high, medium, low and very
low) based on the five-year average.

Fig. 6. Districts at risk of DF incidence (a) and at risk for
Ae. aegypti intensity levels (b) in January. The red circles rep-
resent various associations between DF incidence and presence
of Aedes mosquitoes.
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many districts in Jeddah have a population above
6,345 per km² (Fig. 7) and the results are also corrob-
orated by other reports (Honorio et al., 2003;
Lagrotta et al., 2008; Siqueira et al., 2008).

One of the reasons behind the continued DF occur-
rences, shifts and changes between districts reported in
this study is probably the failure of current control
approaches (that have been in use since 2006) to limit
the spread of DF in spite of achieving reduced trans-
mission. Other, possible reasons are that mosquito
breeding sites may have been overlooked or may not
have been identified as risk areas. In addition, the cur-
rent strategy may be based on cumulative DF inci-
dence alone, which would explain the frequent week-
ly occurrences of the disease due to the presence of
Ae. aegypti.

There is an increased risk of DF during November,
December and January due to climate conditions such
as rainfall, relative humidity and temperature changes,
which are known to change from 20-25 ºC in the win-
ter to 30-40 ºC in the summer. Rain creates puddles or
swamps that serve as suitable breeding sites and this
stagnant water also increases humidity, which
enhances Ae. aegypti mosquito survival as reported by
Kuno (1997) and Hales et al. (2002) who found that
high relative humidity with high temperatures and
heavy rainfall positively affect the survival and breed-
ing conditions of the mosquitoes. 

Conclusions 

The GIS approach and the spatio-temporal analysis
techniques reported here were found to be useful for
mapping, analysing and understanding DF risk, a tech-

nique that also lends itself for the study of other vec-
tor-borne diseases. The application of average weekly
frequency indices makes it possible to recognize
monthly disease patterns, which facilitates the assess-
ment of the strengths and weaknesses of current con-
trol measures.

We propose a simple, inexpensive technique, based
on case notification data, for early warning, catego-
rization and identification of at-risk areas that can be
incorporated into the routine monitoring by the health
authorities. The approach prevents DF prevalence,
helps monitoring Ae. aegypti population levels and
can also be used to identify mosquito hotspots for the
elimination of mosquito breeding sites. DF presence
detected in relatively unpopulated areas should also be
occasionally monitored for the presence and density of
the Ae. aegypti vector.
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