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ABSTRACT

In the presence of  conducting inhomogeneities in near-surface structures,
apparent resistivity data in magnetotelluric sounding can be severely
distorted. This is due to electric fields generated from boundary charges on
surficial inhomogeneities. Such distortion persists throughout the entire
recording range and is known as static shift in magnetotellurics. Frequency-
independent static shifts manifest as vertical, parallel shifts that occur in
plots of  the dual logarithmic scale of  apparent resistivity versus time
period. The phase of  magnetotelluric sounding data remains unaffected by
the static shift and can be used to remove the static shift to some extent.
However, individual inversion of  phase data yields highly nonunique
results, and alone it will not work to correctly remove the static shift.
Inversions of  uncorrected magnetotelluric data yield erroneous and
unreliable estimations, while static-shift-corrected magnetotelluric data
provide better and reliable estimations of  the resistivities and thicknesses
of  subsurface structures. In the present study, static shift (a frequency-
independent real constant) is also considered as one of  the model
parameters and is optimized together with other model parameters
(resistivity and thickness) using the very fast simulated annealing global
inversion technique. This implies that model parameters are determined
simultaneously with the estimate of  the static shift in the data. Synthetic
and noisy data generated for a number of  models are interpreted, to
demonstrate the efficacy of  the approach to yield reliable estimates of
subsurface structures when the apparent resistivity data are affected by
static shift. Individual inversions of  static-shift-affected apparent resistivity
data and phase data yield unreliable estimations of  the model parameters.
Furthermore, the estimated model parameters after individual data
inversions do not show any systematic correlations with the amount of
static shift in the data. The present study shows that only joint inversion
of  the apparent resistivity and phase data, without or with optimizing of
the static shift, yields models that show good fits between the observed and
the model data. Joint inversion results also reveal a systematic relationship
between the estimated model parameters and the static shift in the data.
The proposed approach also shows that estimated resistivities are ‘S’ (the
static shift parameter) times the actual resistivities, and that estimated
thicknesses are √S times the actual thicknesses without optimization of

the static shift. This result is in good agreement with the existing
relationship in the literature. Therefore, the global optimization procedure
developed can be effectively used to optimize the static shifts in data, to
obtain reliable estimations of  model parameters. Subsequently, joint
inversion of  the apparent resistivity and phase data, with optimization of
the static shift, is performed, which yields accurate estimates of  subsurface
structures. It is demonstrated that this approach can also be used when the
data is not affected by the static shift. In such cases, the estimated static
shift parameter ‘S’ will be close to unity. The efficacy of  the approach is
demonstrated with a field example from Singhbhum craton, eastern India,
by providing an accurate estimation of  the craton thickness and the
conducting structure that lies below the craton.

1. Introduction
The magnetotelluric method is an important

exploration technique for investigation of  deep resistivity
structures within the Earth [e.g., Swift 1967, Vozoff  1972,
Berdichevsky et al. 1980, Vanyan et al. 1983, Wannamaker et
al. 1984]. The magnetotelluric method involves the
measurement of  various components of  time-varying
electric and magnetic fields. The presence of  electric charges
on local surficial, or near-surface, lateral inhomogeneities
produces local electric fields, which in turn affect the actual
electric field at a regional scale. The horizontal components
of  the electric field of  the Earth that is of  regional interest are
perturbed due to the presence of  spurious local electric
fields, and hence in principle the disturbed electric field
components can be measured. Such perturbations in the
electric field cause a parallel shift of  the apparent resistivity
curve in the dual logarithmic scales of  the plot of  the
apparent resistivity versus frequency (or time period), and this
is known as static shift (multiplication by a frequency-
independent real constant) [Groom and Bailey 1989, Cerv et
al. 2010]. If  the static shift is not identified and not corrected
in the data, then inversion/interpretation of  these data yields
incorrect estimates of  the resistivity and thickness of
subsurface structures. Inversion of  magnetotelluric sounding
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data without the removal of  the static shift means that the
interpreted resistivities are multiplied by a factor equal to the
amount of  the parallel shift between the apparent resistivity
curves, and the interpreted thicknesses are multiplied by an
amount related to the square root of  this shift in the inverted
resistivity [e.g., Sternberg et al. 1988]. Therefore, the static
shift should be removed with greater accuracy for more
reliable interpretations of  magnetotelluric sounding data.

Sternberg et al. [1988] have reviewed a number of
methods to overcome this static shift problem, such as: (a)
spatial filtering using closely spaced magnetotelluric sites;
(b) theoretical calculations of  the static shift from buried
surface inhomogeneities; (c) theoretical calculations of  the
static shift from surface topographic effects; (d)
interpretation based on known geology; and (e) use of
independent measurements. The use of  transient
electromagnetic sounding together with magnetotelluric
sounding for removal of  the static shift was described by
Sternberg et al. [1988]. As the static shift is caused by
boundary charges that mainly affect the electric field,
measurement of  magnetic fields will overcome this problem.
The apparent resistivity of  the Earth can also be determined
from a single measurement of  the magnetic field, using a
controlled-source method. Sternberg et al. [1988] used the
Geonics EM37 time-domain recording system to make
central-loop induction soundings. They showed that
transient electromagnetic soundings can be compared to
magnetotelluric data by shifting the time scale of  the
transient electromagnetic soundings by a factor, and hence
they estimated the static shift in magnetotelluric data.

Jones [1988] applied a parameter constraint method to
remove the static shift from magnetotelluric sounding data.
This method proposed by Jones [1988] assumes that one of
the layers in the sequence, say the ith layer, can be represented
in a parametric fashion, and estimations of  the resistivity
given by ti(x, y) at any point (x, y) vary about the true value
in a statistical manner. de Groot-Hedlin [1991] presented a
regularized inversion for the removal of  static shift, where a
method for jointly handling the static shift and the model
parameters was discussed. Various other studies that have
dealt with static-shift removal have been discussed in the
literature [e. g., Larsen 1977, Pellerin and Hohmann 1990,
Beamish and Travassos 1992, Wang et al. 1997, Macnae et al.
1998]. Bahr [1991] also reviewed a number of  approaches
used to remove the static shift from magnetotelluric
sounding data in various studies.

As shown by Sternberg et al. [1988] and de Groot-Hedlin
[1991], the optimization of  the static shift with the other
model parameters can solve the problem of  static shift and
yield reliable model parameters. Since solutions using
linearized inversion converge in the vicinity of  the initial
guesses, optimization of  the static shift along with the other
model parameters using linearized inversion will yield a

model that fits the observed data for any value of  static shift.
Hence, estimation of  model parameters using linearised
inversions might not be reliable. As any value of  static shift
can fit the data equally well, this can still give inaccurate
estimations of  resistivity and thickness.

Global optimization methods that are free from bias of
the initial model might represent the correct approach to
finding the correct value of  the static shift, as compared to
linearized inversion. Therefore, in the present study, the
static shift is considered as one of  the model parameters and
it is optimized along with the other model parameters
(resistivities and thicknesses) using very fast simulated
annealing (VFSA) global optimization. As global inversion
yields a number of  solutions in a predefined model space, to
obtain a more accurate solution, a statistical mean model is
computed from all of  the solutions. A number of  models
depicting different geological conditions are studied. The
efficacy of  the approach is also demonstrated with the help
of  field data, as this will yield better results than linearized
inversion approaches.

2. Theoretical background

2.1. Magnetotelluric sounding
Spurious electric fields caused by near-surface

inhomogeneities affect actual electric fields generated by the
electromagnetic induction phenomena in the Earth
subsurface. The apparent resistivities at various time periods
are affected by a multiplicative error (multiplication by a
frequency-independent real constant) [Groom and Bailey
1989], which is denoted by ‘S’. The static shift in the dual
logarithmic scale will be log(S), as shown in Figure 1. This
galvanic distortion can be modeled precisely in two
dimensions and three dimensions by considering the local
inhomogeneities causing the static shift [Bahr 1991].
However, also using a one-dimensional (1-D) formulation,
the static shift can be modeled as a constant real number that
is basically the shift in the apparent resistivity data.

Now the static shift ‘S’ is also considered as one of  the
model parameters and is optimized along with the other
model parameters using global optimization. Static
distortions of  the magnetotelluric impedance tensor due to
shallow 3-D electrical inhomogeneities were formally
described by Cerv et al. [2010], as: 

where Adist (r) is a frequency-independent distortion tensor,
and Zobs (r, T) and Zreg (r, T) are the observed and regional
impedance tensors, respectively, at location r and for period
T. Although the actual expression for the static-shift-affected
data is complex [Bahr 1991] for 2-D and 3-D structures, a
formal expression in 1-D for the static-shift-affected apparent
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resistivity can be written in the following form
(multiplication by a frequency-independent real constant)
[Groom and Bailey 1989]:

(1)

Taking the log of  both sides yields: 

(2)

(3)

However, the phase is not affected by the static shift and
can be written as:

(4)

The apparent resistivity and phase over the 1-D multi-
layered Earth is computed using the recursive relation for
impedance, Z0, given by Vozoff  and Jupp [1975]:

where                                               f is the frequency, and ti and
hi are the resistivity and thickness of  the various layers.

3. The very fast simulated
annealing nonlinear optimization method

3.1. Basic concept
Global optimization methods such as simulated

annealing, genetic algorithms and artificial neural networks
have been applied in multiparametric optimization of
various geophysical datasets [e.g., Rothman 1985, Rothman
1986, Dosso and Oldenburg 1991, Sen et al. 1993, Sen and
Stoffa 1995, Sharma and Kaikkonen 1998, Sharma and
Kaikkonen 1999, Vedanti et al. 2005, Juan et al. 2010]. In the
present study, VFSA optimization is used as it is more
efficient and it takes less computing time in comparison to
other global optimization algorithms [Sen and Stoffa 1995,
p. 267]. Global optimization techniques require minimum
and maximum limits (search range) for each model
parameter. These limits are selected carefully. Measured
apparent resistivity data is analyzed to decide on the number

of  layers and approximate resistivity of  each layer. As
resistivity varies over a large range, initially a large search
range for resistivity is selected. The thickness variation is
estimated from the inflection points on apparent
resistivity sounding curves. Limits for the static shift can be
set by a-priori information about the top-layer resistivity
(either geological information or direct current resistivity
measurements) in the study area, and comparing it with the
field magnetotelluric apparent resistivity data. Correct
estimations of  the search range become more crucial when
modeling static-shift-affected magnetotelluric data, because
the actual resistivity and the measured apparent resistivity
can be very far apart for static-shift-affected data. Therefore,
the initial resistivity and the thickness search range is kept
quite large. After a test run, the search limits can be modified
to obtain better solutions. The optimization process tries to
find the best-fit models in the selected model space. The
objective function and governing equations of  the VFSA
processes are presented systematically below.

Initially, a model Pj is selected randomly in the model
space Pj

min ≤ Pj ≤ Pj
max (j=1…M), where M is the total number

of  model parameters, an L-layer model consists of  L
resistivity parameters (tl, l = 1…L) and L-1 thickness
parameters (hl, l=1…L-1), and the last model parameter PM

represents the static shift and is a real constant ‘S’, thus the
total number of  model parameters M= L+ (L-1) + 1= 2L).
The following objective function (misfit-error) f is calculated:

(5)

where, are the ith observed and model responses,
respectively, which represent the apparent resistivity.            

are the ith observed and model responses, respectively,
which represent the phase. N is the number of  observation
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Figure 1. Example of  static-shift-affected apparent resistivity data.
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points. While doing individual inversions, the objective
function dealing with corresponding terms in Equation (5)
are considered.

The parameters and the objective function of  the above-
computed model are kept in memory and each parameter is
perturbed according to the Cauchy probability distribution.
The updating factor yj for the jth parameter is computed from
the equation:

(6)

such that yj varies between −1 and +1. In the above equation,
uj is a random number and varies between 0 and 1, Tj is the
temperature, which can be the same or different for various
parameters, depending on the nature of  the problem. Each
parameter Pj is updated by the equation:

(7)

where Pj
kk+1 is the new model parameter computed with

respect to its previous value Pj
kk (kk represents successive

movement in the model space). Hence, a new model is
obtained. Now the objective function for the new model is
calculated and compared with the previous model. If  the
misfit-error of  the new model is less than the misfit-error for
the previous model, then the new model is selected with the
probability exp(−Df/T), where Df is the difference for the
objective functions of  both models. When the misfit-error
of  the new model is higher than that of  the previous model,
then a random number is drawn and compared with the
probability. If  the probability is greater than the random
number drawn, then also the new model is accepted with the
same probability, otherwise this new model is rejected,
keeping the previous model and its objective function in
memory. Next, the desired number of  moves is made at the
same temperature level by accepting and rejecting the new
models according to above-mentioned criterion, and this
completes a single iteration. Movement in the model space
at one temperature level produces an improved model. After
completing the desired number of  moves at the particular
temperature, the temperature is reduced to a lower level
according to the following cooling schedule:

(8)

where k is the number of  iterations, cj is a problem-
dependant constant that can vary for different model
parameters. T0j is the initial temperature that can also be
different for various parameters and its initial value depends
on the nature of  the objective function considered for the
optimization. M is the number of  model parameters. In the
present study, cj = 1 and the initial temperature T0j = 0.1 is
selected. The final temperature in the simulated annealing

should be lowered by 4–5 orders of  magnitude with respect
to the initial temperature. If  we use 1/M according to the
number of  model parameters, then the process takes a very
long time to reach the final temperature. To avoid this, 1/M
is replaced by a suitable fraction, so that within 500–1000
iterations the desired lower temperature is reached [Sharma
and Kaikkonen 1998]. The factor 0.4 is suitable for the
individual and joint optimization of  the apparent resistivity
and phase data.

After lowering the temperature, the desired number of
moves with the selection criterion described above is
repeated at the lower temperature level. Subsequently, the
temperature is reduced gradually using Equation (8), to a
sufficiently low value, to obtain better and better models at
each temperature level. After completion of  the desired
iterations (say 500 or 1000), a single solution is obtained.

Once a solution is obtained, we compare the
estimated model parameters with the minimum and
maximum limits for each model parameter. If  any model
parameter is located on the boundary of  the search range,
then the search range of  that parameter is modified
accordingly. If  the resistivity of  a layer is optimized as 50
Xm and lower limit of  that layer is also set at 50 Xm, for
example, this means that the actual value of  resistivity
might be lower than 50 Xm and hence the lower limit
should be decreased. In the same way for all of  the
parameters, the optimized model parameter is checked to
see that it lies within the minimum and maximum limits
defined for each mode parameter. After a satisfactory
solution is obtained, the VFSA procedure is repeated a
number of  times. The search range can also be restricted
after this test run.

The whole procedure is repeated a number of  times to
obtain more solutions, and every time the process is
initialized at different randomly selected locations in the
predefined model space. It is important to mention that at
the initially higher temperatures, the accepted model
parameters vary over a large range. This is because in a
highly complex multidimensional error (misfit) surface the
probability density function is also as complex as the misfit
surface. However, as the temperature decreases, the
probability density function becomes smoother and shows
sharper peaks. Hence, the accepted model parameters
become localized near the well-defined peaks and have a
tendency to cluster around the minima. At sufficiently low
temperatures, the algorithm accepts models in the vicinity
of  the global minima, where the probability density function
has a sharp peak and other local minima are absolutely
invisible in the probability density function.

It should be emphasized here that static shifts evaluated
in various solutions can be different, although they will
cluster around a point. The mean of  all of  these values will
be very close to the actual static shift in the data.
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3.2. Mean model, covariance and correlations
A single run of  global converging algorithms is not

sufficient to find the global solution [e.g., Sen and Stoffa
1995]. However, the model parameters obtained through
several runs can differ from each other. Therefore, a
statistical mean model is computed. Computation of  the
mean model is based on the assumption that the models
obtained by various VFSA runs will lie in close proximity
and will have a Gaussian distribution. The mean model       is
computed from various solutions to obtain the global model,
using the formulation [e. g., Tarantola 1987]:

(9)

where NR is the number of  runs performed, and fk is the misfit-
error obtained at the kth run. Subsequently, the covariance and
correlation matrices are also computed by the equations:

(10)

and

(11)

In Equations (10) and (11), i and j vary from 1 to M. Ten
VFSA runs are performed for a single model, and thus the
model parameters obtained are used to compute the mean
model, and the covariance and correlation matrices. The
square roots of  the diagonal elements of  the covariance
matrix represent the uncertainties in the mean-model
parameters; hence, the covariance matrix can be used to find
the uncertainties in the mean model. The correlation matrix
computed from the covariance matrix expresses the relationship
between the parameters and the associated physics.

4. Results
Initially, synthetic and noisy datasets with different

magnitudes of  static shift are generated using Equation (1)
for a number of  models. These datasets are optimized using

VFSA global optimization, to retrieve the model parameters
and the static shift that was introduced to generate the data.
For any particular model, three-types of  inversions are
performed. First, the apparent resistivity data are used in the
inversion. Next, the phase data are inverted, and finally, joint
inversions of  the apparent resistivity and phase data are
performed. Initially, the static-shift-affected data are inverted
without optimizing the static shift. Subsequently, the same
data are inverted considering the static shift as a model
parameter in the global optimization. The resistivity and
thickness of  the various layers obtained from the inversions
are compared with the actual model parameters, and an analysis
is presented to obtain accurate estimations of  the model
parameters from the static-shift-affected magnetotelluric
data. In the absence of  static shift, the value of  ‘S’ will be
unity. If  ‘S’ is substituted by 1 in Equation (1), then it changes
to the conventional equation for the apparent resistivity in
the magnetotelluric method. Even if  there is no static shift in
the data, the proposed approach can still be used to optimize
the static shift. The estimated value of  ‘S’ under such
conditions will be close to unity.

In the inversions demonstrated below, the static-shift-
affected data are used for all of  the models, except model 4,
in which a different situation has been modeled.

4.1. Model 1
The first model shows a three-layer structure with a

sandwiched conductive layer. The static shift factor S = 5 is
used to generate the static-shift-affected data. Table 1 shows
the true model, the search range for each model parameter,
and the estimated model parameter (for each inversion),
without optimizing the static shift. Through analysis of  the
model parameters shown in Table 1 (and especially t1) and
the apparent resistivity data shown in Figure 2a, the role of
the static shift parameter in affecting the data generated can
be easily understood.

Figure 2a shows the fit between the observed and
model data after the individual inversion of  the apparent
resistivity data without optimization of  the static-shift

ESTIMATION OF STATIC SHIFT IN MT

 

Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 500 100-5000 3651.4±1955 1756.3±727 2575.8±960 

!2("m) 50 10-500 248.5±8.7 175.9±74.5 250.4±15.5 

!3("m) 1500 1000-10000 7498.4±19.6 5282.7±2250 7496.4±590 

h1(m) 1000 500-5000 2252.35±250 1835.51±409 2227.7±150 

h2(m) 3000 1000-10000 6665.43±392 5499.3±1172 6725.2±600 

S 5 - - - - 

Misfit error - - 1.14!10-5 9.31!10-5 2.30!10-8 

 
Table 1.Model 1: inversion results without optimization of  static shift.
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parameter. The mean model obtained after this individual
inversion of  the apparent resistivity data is also used to
compute the corresponding phase data, and it is compared
to the observed phase data in Figure 2b. It is evident from
Figure 2a, b that even though the observed data are affected
by static shift, the mean model generated without
optimization of  the static shift fits very well with the
observed data. Although the phase data is not used in this
inversion, the mean model obtained after the inversion of
the apparent resistivity data also fits the observed phase data
very well. The model parameters estimated from individual
inversions of  the apparent resistivity data yield erroneous
results, as expected (Table 1).

Figure 2d shows the corresponding fits between the
observed and the model data after the individual inversion
of  the phase data. The models obtained after inversion of  the
phase data are used to compute the apparent resistivity data.
The computed apparent resistivity data are compared with
the observed apparent resistivity data. It is evident from
Figure 2c that the model responses do not fit with the
observed apparent resistivity data. A parallel shift is clearly
evident in Figure 2c. Comparison of  the inverted model
parameters obtained after the individual inversion of  the
phase and apparent resistivity data shown in Table 1 suggests
that individual inversions of  phase data yield better
estimations of  the model parameters than the individual
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Figure 2. Comparisons between observed data (solid symbols) and model data (lines) for model 1 after inversion of  the apparent resistivity data (a, b),
the phase data (c, d) and both sets of  data (e, f ).
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inversions of  the apparent resistivity data. However, due to
nonuniqueness, the model parameters obtained after
individual inversions of  the phase data are far from the actual
model. Hence, even though the individual inversion of  phase
data can predict the presence of  static shift, it cannot yield
an accurate estimation of  the model parameters. If  we
remove the static shift that is visible in Figure 2c by matching
the measured apparent resistivity data (dots) with the mean
model responses obtained by individual inversion of  the
phase data (solid line), and perform individual or joint
inversion, then we will also not be able to get the actual
model parameters. This is because the apparent resistivity
data generated from the mean model obtained by the
individual inversion of  the phase data still remains highly
inaccurate. The revised apparent resistivity data can certainly
improve the results compared to the individual inversion of
the apparent resistivity data affected by static shift, but it will
still yield inaccurate subsurface structure.

Fits between the observed and model data after the joint
inversion of  the apparent resistivity and phase data are
presented in Figure 2e, f. The observed and model data fit
extremely well after the joint inversion. Analysis of  the
results presented in Table 1 shows that if  the joint inversion
of  the synthetic data is performed without taking the static
shift into consideration, then the estimated resistivities are
multiplied by a factor that is approximately equal to S (S = 5
in this case) and the estimated thicknesses are multiplied by
a factor that is almost equal to √S (√5 = 2.23). Although the
static shift is not optimized, the data for the estimated model
fits the observed data very well. This is also evident from the
very small misfit errors shown in Table 1. Moreover, Table 1
reveals that incorrect estimations of  the model parameters
are obtained by optimizing the static-shift-affected data. The
relation between the static shift introduced in the synthetic
data and the estimated model parameters is in agreement
with previous studies [Tournerie et al. 2007, among others].
This reveals that the present approach yields the expected
result and that it can be performed to optimize the static shift

along with the other model parameters, to obtain reliable
estimations of  the subsurface structure.

Subsequently, the static shift is considered as one of  the
model parameters for optimization. Individual and joint
inversions of  the apparent resistivity and phase data are
performed. Plots similar to Figure 2 were generated in this
case too, and both of  these plots looked identical. For
example, the mean model obtained by individual inversion
of  the apparent resistivity data fits exactly the apparent
resistivity data as well as the phase data. Individual inversion
of  the phase data fits only the measured phase data and
shows a parallel shift for the apparent resistivity data (as in
Figure 2c), and the joint inversion fits both sets of  data.
Therefore, for brevity, the corresponding plot is not shown,
and only the numerical results are given in Table 2. Individual
inversions of  the apparent resistivity data yield better
estimations when the static shift is also optimized as a model
parameter (Table 2), compared to when it is not considered
as a model parameter (Table 1). Moreover, this still yields
inaccurate estimations of  the subsurface structure. Individual
inversion of  the phase data with the static shift optimization
also yields better results and misfit errors. It is important to
mention here that while carrying out individual inversions
of  the phase data, optimization of  the static shift does not
have any significance. Therefore, the final model after
individual inversion of  the phase data in Tables 1 and 2
should be the same. However, these values are different. The
reason for this difference is that the static shift is involved
while matching the apparent resistivity data when the phase
data is inverted, although it has no role in the misfit error
calculation. It is evident from Tables 1 and 2 that the misfit
error is very small after individual inversion of  the phase
data, although the models are widely different. This shows
the degree of  nonuniqueness of  the individual inversion
results using phase data. Joint inversion of  the apparent
resistivity and phase data using static shift as a model
parameter for optimization yields the best results. All of  the
model parameters, along with the static shift, are estimated
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Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 500 100-5000 206.03±188 406.93±45 428.89±61 

!2("m) 50 10-500 40.04±9.4 41.2±5.5 49.28±9.9 

!3("m) 1500 1000-10000 1474.16±202 1241±177 1571.98±44 

h1(m) 1000 500-5000 1398.21±333 913.63±76 1121.53±261 

h2(m) 3000 1000-10000 2235.21±591 2709±161 2830.69±196 

S 5 1-10 5.15±0.70 3.94±1.26 4.74±0.63 

Misfit error - - 1.81!10-5 8.45!10-7 1.09!10-6 

 
Table 2.Model 1: inversion results with optimization of  static shift.



as very close to their true values (Table 2). The uncertainties
shown in Table 2 for most of  the model parameters are
smaller for joint inversion as compared to the individual
inversion results.

4.2. Model 2
The second model depicts a four-layer Earth structure

with a conductive and a resistive sandwiched layer. We used
a different static shift parameter (S = 3) for this model, to
generate synthetic responses compared to model 1. However,
the search range of  the static shift is kept within 1–10, as in
the previous model. This is to examine whether the
estimation of  the static shift gets closer to the actual static
shift introduced in the data, or whether it is just a random
number generated in the range 1–10. The true values, as the
search range and estimated model parameters without
optimizing static shift, are given in Table 3.

Individual inversions of  the apparent resistivity data
(without considering static shift) once again yield the mean
model, which fits very well with the measured apparent
resistivity as well as with the phase data (Figure 3a, b). The
mean model parameters are widely different compared to
the actual values (Table 3). The responses (as apparent
resistivity and phase) for the mean model obtained after
individual inversion of  the phase data only fits the observed
phase data, and does not fit the apparent resistivity data
(Figure 3c, d). After inversion of  the phase data, a parallel
shift (Figure 3c) reveals that the static shift is present in the
apparent resistivity data. Even though Figure 3d shows a
good fit between the model and the observed phase data, the
misfit error in Table 3 is relatively large. The reason for this
could be that the different solutions derived from the
inversion of  the individual phase data might not lie in the
same region. If  some of  the models are located significantly
away from the other models, then the computed mean
model might deviate in such a way that the misfit error could

change and the mean model response might not fit the
observation at all. However, the presented misfit error is still
very small, and the mean model response fits very well with
observation. Joint inversion of  the apparent resistivity and
phase data without taking the static shift into consideration
yields the estimated resistivities that are multiplied by an
amount approximately equal to the value of  S (= 3) and the
estimated thicknesses that are multiplied by an amount
approximately equal to    (= 1.73). The mean model
responses fit very well with the observed apparent resistivity
and phase data (Figure 3e, f ).

Next, individual and joint inversions of  the static-shift-
affected data are performed by optimizing the static shift
along with the other model parameters. Since we are not
presenting the corresponding figures for brevity, the
numerical value of  the misfit error presented in Table 4 can
be compared, to assess the fits between the observed and
model responses. We can see that the misfit errors are
comparable for individual and joint inversion, and they are
also significantly small enough to predict that the fits
between the observed and model data are very good. The
interpreted mean model parameters shown in Table 4 reveal
that due to the insensitivity of  the electromagnetic methods
towards a resistive layer, uncertainties in the resistivity of  the
resistive layers are larger in comparison to those of  the
conducting layer. The results of  the comparisons of
individual and joint inversion in Table 4 reveal that joint
inversion predicts the static shift and the other model
parameters very close to the actual values. The uncertainties
presented in Tables 3 and 4 without or with static-shift
optimization reveal that this is smaller for most of  the
parameters after the joint inversion, as compared to the
individual inversions.

It is worth highlighting that a large search range for the
various model parameters is considered, because the data are
affected by the static shift. Various solutions obtained by
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Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 200 100-1000 565.3±169 370.8±137 572.46±152 

!2("m) 1000 100-10000 7306±2796 4352 ±2774 4410.3±2164 

!3("m) 20 1-100 77.23±24.2 40.81±18 74.62±14 

!4("m) 5000 1000-20000 14950.4±64 9518±2080 14971±1265 

h1(m) 1000 500-3000 1908.6±687 1570.6±626 1813.7±655 

h2(m) 5000 1000-10000 8031.7±876 6526.08±1007 8241.6±929 

h3(m) 2000 1000-5000 4564.4±1486 3017.86±1224 4362.7±1167 

S 3 1-10 - - - 

Misfit error - - 2.57!10-6 1.26!10-4 2.96!10-6 

 
Table 3.Model 2: inversion results without optimization of  static shift.
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Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 200 100-1000 186.6±53 131.7±39 162.67±39 

!2("m) 1000 100-10000 1704.7±721 564.2±949 1354.7±934 

!3("m) 20 1-100 23.36±7.5 11.44±6.2 22.06±7.6 

!4("m) 5000 1000-20000 4663.2±765 3748±767 4304±1083 

h1(m) 1000 500-3000 1101.4±350 604.3±398 909.70±251 

h2(m) 5000 1000-10000 4343.5±594 4776±796 4355.9±801 

h3(m) 2000 1000-5000 2474.4±822 1301±634 2410±684 

S 3 1-10 3.25±0.53 3.78±1.2 3.4±0.7 

Misfit error - - 4.44!10-6 1.29!10-6 1.06!10-5 

 
 

Table 4.Model 2: inversion results with optimization of  static shift.

Figure 3. Comparisons between observed data (solid symbols) and model data (lines) for model 2 after inversion of  the apparent resistivity data (a, b),
the phase data (c, d) and both sets of  data (e, f ).



global inversion are widely spread in this large model space.
Therefore, the mean model derived from these solutions
reveals large uncertainties in each of  the model parameters.
As joint inversion of  the apparent resistivity and phase data
yields the most accurate results, while also optimizing the
static shift, this process can be repeated using a smaller model
space that is based on uncertainties in each model parameter.
This yields the best results, with very small uncertainties in
each model parameter [Sharma and Verma 2003].

4.3. Model 3
The third model also depicts a 4-layer Earth model with

a sandwiched resistive and conductive layer. Random noise is
superimposed on the synthetic data to simulate field data.
This is intended to demonstrate the applicability of  the
approach developed for optimizing the static shift along with
the resistivity and thickness for the field data. We applied
10% random noise on the synthetic data, such that the mean
and standard deviation of  the error introduced was zero. The
true model parameters, the search range, and the estimated
model parameters are given in Table 5.

Individual and joint inversions without and with
optimizing the static shift are performed with the noisy
synthetic data. Figure 4 shows the similar fits between the
observed and the model data, which has been seen for
previous models. When the static shift is not considered in
the optimization, the estimated model parameters are far
from their true values, even though the mean model data fits
very well with the observed data. After the joint inversion,
the estimated resistivities are multiplied by an amount that is
approximately equal to the value of  S (= 6) and the estimated
thicknesses are multiplied by an amount approximately equal
to         (= 2.45). When the static shift is optimized as a model
parameter, then the estimated model parameters are very
close to their actual values after the joint inversion (Table 6).
Even though we consider the static-shift optimization, the

individual inversion results are not reliable. It can also be seen
that in all the results of  the inversion (Tables 1 to 6), the
resistivity of  a conductive sandwiched layer is resolved better
than the resistive sandwiched layer. This is because the
magnetotelluric method, or in general, electromagnetic
methods, are sensitive towards conductive structures.

4.4. Model 4
The study presented for Model 4 depicts a special

condition. It assumes that the measured apparent resistivity
data is not affected by the static shift, and by using the present
approach, the static shift is optimized for this data. Under
such circumstances, it is worth investigating how the
inverted model parameters will be affected. To model this,
the true value of  ‘S’ in this model is taken as 1 (or free of
static shift). As the nature of  the noise in the data is never
known, for this model, 10% Gaussian noise (with mean and
standard deviation zero) is added to the data to simulate field
conditions.

Inversion results for this model are presented in Figure 5
and Table 7. Individual inversions of  the apparent resistivity
data yield lower estimates of  resistivities. Accordingly, the
estimated thickness is also lower than the actual value
(especially for the second layer). However, this is in agreement
with the principle of  equivalence in electromagnetic
sounding curves. Furthermore, the individual inversion of  the
phase data yields higher estimates of  the resistivities.
Therefore, neither the apparent resistivity nor phase data
yield the actual model when the static shift is optimized as a
model parameter for a dataset that is actually not affected by
static shift. Interestingly, after joint inversion (Table 7), the
resistivities and thicknesses of  all of  the layers are well
estimated, as close to their respective true values. The
apparent resistivity and phase data fit very well (Figure 5e, f )
with the respective measured data. Here again, it has been
observed that when the phase data is inverted, the apparent
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Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 5000 1000-30000 23109±6937 16556±5623 27484±2568 

!2("m) 20 1-200 106.38±28 65.54±21.94 109.25±15 

!3("m) 2000 1000-20000 13802±6740 13350±6707 12091±5861 

!4("m) 10 1-200 60.16±0.82 33.35±12.33 60.18±8.6 

h1(m) 4000 1000-20000 10019 ±417 7195±1391 9922±176 

h2(m) 2000 1000-10000 4308.2±1211 3585.3±527 4401.6±755 

h3(m) 20000 10000-50000 49269±572 35863±6972 49333±557 

S 6 1-10 - - - 

Misfit error - - 6.32!10-7 3.10!10-5 4.25!10-7 

 Table 5.Model 3: inversion results without optimization of  static shift.
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Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 5000 1000-30000 6812.±2374 5444±516 5330.8±708 

!2("m) 20 1-200 21.97±2.7 21.49±2.7 20.85±3.4 

!3("m) 2000 1000-20000 2005.9±612 1977±768 1779.05±686 

!4("m) 10 1-200 11.11±0.6 11.14±0.6 10.82±0.55 

h1(m) 4000 1000-20000 4221.5±130 4245.8±88 4186.13±91 

h2(m) 2000 1000-10000 2066.7±266 2005±246 1969.63±323 

h3(m) 20000 10000-50000 21169.4±551 21247±490 20963.6±514 

S 6 1-10 5.4±0.28 4.98±1.64 5.55±0.3 

Misfit error - - 7.06!10-7 2.05!10-6 4.08!10-7 

 Table 6.Model 3: inversion results with optimization of  static shift.

Figure 4. Comparisons between observed data (solid symbols) and model data (lines) for model 3 after inversion of  the apparent resistivity data (a, b),
the phase data (c, d) and both sets of  data (e, f ).
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Figure 5. Comparisons between observed data (solid symbols) and model data (lines) for model 4 after inversion of  the apparent resistivity data (a, b),
the phase data (c, d) and both sets of  data (e, f ).

 

Parameters True values Search range App. Resistivity Phase Joint 

!1("m) 500 100-5000 250.4±150 673±135 489.48±65 

!2("m) 50 10-500 34.99±5.5 67.3±13.7 48.45±5.2 

!3("m) 1500 1000-10000 1241.08±128 2018±413 1463±150 

h1(m) 1000 500-5000 1155.13±346 1160±124 994.22±55 

h2(m) 3000 1000-10000 2153.8±486 3480±362 2940±186 

S 1 1-10 1.2±0.13 2.51±0.76 1.02±0.1 

Misfit error - - 1.81!10-5 2.71!10-6 5.83!10-8 

 
Table 7.Model 4 (zero static shift): inversion results with optimization of  static shift.
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resistivity curves do not fit very well (Figure 5c) with
observation. This shows that even if  the phase data is not
affected by the static shift, the inversion of  the phase alone will
not lead to an accurate interpretation. The data in Table 7
show that even though they do not have any static shift,
individual inversions of  the apparent resistivity and phase
data still predict that the data are affected by static shift. This
shows the unreliability of  the individual inversions. However,
the joint inversion can clearly predict that the data is not
affected by the static shift, and it resolves all of  the model
parameters accurately.

5. Field example
To demonstrate the efficacy of  the proposed approach,

a field example is presented from Singhbhum craton, eastern
India. Singhbhum craton consists of  a highly resistive and
thick granitic layer that extends from the near surface to a
great depth. Near-surface fractures in the granitic layer that
allow groundwater movement through it affect the
magnetotelluric data in this area. This groundwater
movement produces electro-kinetic potential that modifies
the electric field components. Figure 6 shows a classic field
example in which the apparent resistivities in the transverse
electric (TE) and transverse magnetic (TM) modes are
widely different, and the phases in both of  the polarization
modes have similar magnitudes. This clearly indicates that
the TE mode data are affected by the static shift. Dey [2005]
estimated the resistivity as of  the order of  70,000 Xm, with
a thickness of  25 km to 30 km for the Singhbhum granite.
These estimations are grossly inaccurate and overestimated.
As discussed in the theoretical examples, in the absence of
static-shift-corrected data, both the resistivity and the
thicknesses are over estimated when the static-shift factor is
greater than unity. It is important to note that for S <1, an
opposite, underestimated, result would be obtained.

As the data indicate the 1-D structure up to large time
periods, it is best to test the proposed approach. Field data
up to 4096 s is presented in Figure 6; however, these data
show multidimensionality after 800 s. Therefore, to constrain
the inversion, the data up to 800 s are used in the inversion.
Furthermore, inversion should be attempted to model the
minimum structures in the subsurface that fit the observed
data very well. We systematically optimized the 3-, 4- and
5-layer models using joint inversion. It was always possible
to obtain the correct fit with the apparent resistivity data and
the estimation of  the static shift of  similar magnitude.
However, the observed phase data did not fit well with the 3-
and 4-layer model data. Therefore, a 5-layer model was
considered to match both the apparent resistivity data and
the phase data, and the corresponding results are presented.

First, the 1-D joint inversion of  the TE mode data
(apparent resistivity and phase) is performed without

optimizing the static shift. It is important to note that a wider
search range was required when the static shift was not
optimized. Although the model data fit very well with the
observed data (Figure 7), the resistivities and thicknesses are
overestimated and geologically irrelevant (Table 8).
Subsequently, the TE mode data are interpreted and the
static shift is also optimized. The model response is modified
according to the magnitude of  the optimized static shift,
which is 8.76 ±1.24. Interestingly, the modified model data fit
the observed data very well. Although the fit of  the model
data is similar, the delineated model parameters obtained
after optimization of  the static shift represent the actual
subsurface structures (Table 8). As the fit is the same as that
presented in Figure 7, similar plots are not repeated for
brevity. Finally, the TM mode data are interpreted, and these
results correlate very well with the TE mode interpretation
that was also optimized for the static shift. Interestingly, the
static shift parameter for the TM model is 1.03 ±0.01, which
suggests that these data are not affected by the static shift.
The relation between the inverted model parameters for the
TE data without and with optimization of  the static shift
follows a similar trend to that observed for the synthetic data
for the various models. The interpreted results suggest that
the thickness of  the Singhbhum granite is about 14 km. Two
conducting layers with different resistivities are seen below
the Singhbhum granite, which have a total thickness of
about 15 km. A resistive layer lies below this conducting
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Figure 6.Classic field example showing the apparent resisitivity data (top)
and the phase data (bottom) in transverse electric (red) and transverse
magnetic (blue) modes with static shift [Dey 2005].



strata, with a thickness of  7 km to 8 km. The magnetotelluric
data suggest that the heterogeneous structure lies below this
resistive layer. This interpretation suggests that up to 36 km
to 37 km depth of  the structure is 1-D. This coincides well
with the Moho depth in this region.

6. Conclusions
Magnetotelluric sounding is a very important geophysical

method for investigation of  subsurface structures. The
measured apparent resistivity data are often affected by static

shift. The static shift should be removed before data
interpretation, or it should be optimized together with the
other model parameters simultaneously, for accurate
estimation of  the subsurface structures. The global
optimization method is presented for the interpretation of
1-D magnetotelluric sounding data, as well as for the
optimization of  the static shift. It can be concluded that the
individual inversion of  either the apparent resistivity data or
the phase data without or with optimization of  the static
shift is not reliable. Even the joint inversion of  the
magnetotelluric sounding data without taking static shift
into consideration leads to erroneous interpretations and
yields inaccurate estimations of  the model parameters. The
estimated resistivities are multiplied by a factor equal to the
amount of  static shift, and the estimated thicknesses are
multiplied by factor equal to the square root of  the amount
of  static shift, with respect to the true resistivities and
thicknesses, respectively. However, joint inversion of  the
apparent resistivity and phase data by also taking the static
shift as one of  the model parameter in the optimization
yields very good estimations of  all of  the parameters,
including the static shift. The accuracy of  this approach is
shown by taking a number of  models that deal with
synthetic and noisy data. This approach can also be used
when the data are not affected by static shift. Joint inversion
in such cases yields a static shift very close to unity. The
efficacy of  this approach is demonstrated with a classic field
example from Singhbhum granitic craton, eastern India,
where the TE data were affected by static shift. The inverted
model parameters without and with static-shift optimization
are in very good agreement with the theoretical results. The
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Figure 7. Fits for the apparent resisitivity data (top) and the phase data
(bottom) for the observed (solid circles) and model (lines) responses for
the transverse electric mode data.

 

Parameters Search range 
Without 

optimizing static 
shift (TE) 

Search range 
With  

optimizing 
static shift (TE) 

With optimizing  
static shift (TM) 

!1("m) 10000-100000 33293±1620 1000-10000 3735 ±391 3134±540 

!2("m) 1000-10000 5547±810 100-1000 486 ±53 283±28 

!3("m) 1000-10000 2093±171 100-1000 239 ±28 76± 14 

!4("m) 10000-100000 76646±2012 1000-10000 6683±534 8751±476 

#5("m) 100-1000 830 ±42 10-1000 94 ±6 47±4 

h1(m) 5000-50000 41064±3460. 2000-25000 14743±2890 12960±1586 

h2(m) 5000-50000 23470±2056 2000-25000 8762 ±428 9980±687 

h3(m) 5000-50000 19521±4351 2000-25000 4795 ±619 4841±364 

h4(m) 5000-50000 17942±2970 2000-25000 6449 ±840 8816±1045 

S - - 1-20 8.76±1.24 1.03±0.01 

Misfit error - 2.01!10-3 - 2.03!10-3 6.06!10-4 

Table 8. Field data: inversion results without and with optimization of  static shift. TE, transverse electric mode; TM, transverse magnetic mode.
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inverted model parameters without optimization of  the
static shift are found to be geologically irrelevant, even
though the model data fit the field data extremely well.
However, the model parameters obtained after optimization
of  the static field yield accurate results that are geologically
relevant. The global optimization of  the field TM data shows
that when the data are not affected by static shift, then the
static-shift parameters can also be optimized. Moreover, in
such cases, the static-shift parameter will be close to unity.
This means that the approach is more robust and versatile
for the interpretation of  magnetotelluric data, irrespective
of  whether they are affected by static shift. Hence, this can be
used to obtain very accurate estimations of  the resistivities
and thicknesses of  subsurface structures.
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