
ABSTRACT

In several recent reports, we have explained the frequency dependence of
the apparent seismic quality-factor (Q) observed in many studies according
to the effects of  geometrical attenuation, which was defined as the zero-
frequency limit of  the temporal attenuation coefficient. In particular,
geometrical attenuation was found to be positive for most waves traveling
within the lithosphere. Here, we present three theoretical models that
illustrate the origin of  this geometrical attenuation, and we investigate the
causes of  its preferential positive values. In addition, we discuss the
physical basis and limitations of  both the conventional and new
attenuation models. For waves in media with slowly varying properties,
geometrical attenuation is caused by variations in the wavefront curvature,
which can be both positive (for defocusing) and negative (for focusing). In
media with velocity/density contrasts, incoherent reflectivity leads to
geometrical-attenuation coefficients which are proportional to the mean
squared reflectivity and are always positive. For «coherent» reflectivity, the
geometrical attenuation is approximately zero, and the attenuation process
can be described according to the concept of  «scattering Q». However, the
true meaning of  this parameter is in describing the mean reflectivity within
the medium, and not that of  the traditional resonator quality factor known
in mechanics. The general conclusion from these models is that non-zero
and often positive levels of  geometrical attenuation are common in realistic,
heterogeneous media, both observationally and theoretically. When
transformed into the conventional Q-factor form, this positive geometrical
attenuation leads to Q values that quickly increase with frequency. These
predictions show that the positive frequency-dependent Q observed in many
datasets might represent artifacts of  the transformations of  the
attenuation coefficients into Q.

1. Introduction
In several recent reports [Morozov 2008, 2009a-c,

2010a-d; hereafter referred to as M08, M09a-c, and M10a-d,
respectively], it was argued that the conventional description
of  seismic attenuation using the quality factor of  the
medium (denoted as Q) relies on theoretical conjectures,
analogies, and assumptions that are not sufficiently based on
the fundamental principles of  mechanics. In consequence,

the resulting Q models can be prone to spurious frequency
dependences and lead to overly complex and ambiguous
interpretations. One general manifestation of  such excessive
complexity might be in Q values that are quickly increasing
with frequency, which is commonly reported, particularly in
coda and total-energy studies [e.g., Aki 1980]. As suggested
in M09b, these increases can often be dictated by the very
definition of  Q used in seismology, and not related to any
rheological or scattering properties of  the medium. Instead
of  using the Q paradigm, we suggested returning to another
well-known description, which is the attenuation coefficient
in either its spatial (a�) or temporal (c�) forms. While
removing the assumptions and uncertainties involved in the
definition of  Q, this description provides a simple and reliable
basis for data analysis [M08, M10a] and offers several far-
reaching empirical generalizations [M10b].

The key message of  the aforementioned reports was
that for many wave types (short-period and long-period
surface and body waves, coda, Pn, Lg, and even whole-Earth
free oscillations), the observed variations of  Q with
frequency typically correspond to piecewise linear
dependences of  the attenuation coefficient, �|( f ) (Figure 1).
The intercept values of  these dependences, denoted as
� , are often positive in lithospheric measurements
and correlate with tectonic types and ages of  the crust
(Figure 1) [M08]. The slopes of  these linear�|( f ) segments
lead to a new, «effective» quality-factor-type measure,

, which is usually frequency independent and
significantly higher than the conventional Q0 = Q(1 Hz)
(Figure 1). Thus, instead of  the conventional pair of
parameters Q0 and h in the power law Q( f  ) = Q0  f h, the new
description uses parameters c and Qe in the linear
dependence:

(1.1)

Although also subject to some subtleties [M10a], the
basic interpretation of  parameters c and Qe is nevertheless

f 0/c |
"

.f Q f
e

= +| c
r^ h

Mechanisms of geometrical seismic attenuation

Igor B. Morozov

University of  Saskatchewan, Department of  Geological Sciences, Saskatoon, Canada

ANNALS OF GEOPHYSICS, 54, 3, 2011; doi: 10.4401/ag-4780

Article history
Received August 18, 2010; accepted February 14, 2011.
Subject classification:
Seismology: Waves and wave analysis, Surveys, measurements and monitoring, General or miscellaneous; Mathematical geophysics.

235

Qe =
d df 1
| r

-^ h6 @

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Open-access Literature Archive and Repository

https://core.ac.uk/display/33151357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MOROZOV

236

much more straightforward than that of  Q0 and h�. This
interpretation can be summarized as follows: 

1) The zero-frequency limit, c is principally responsible
for the effects of  the «structure», i.e., for ray bending,
lithospheric reflections and conversions, multi-pathing, and
scattering that is not accounted for by the background
model, which is used for geometrical or other types of
corrections that are performed prior to the attenuation
measurements. Because of  this meaning, we often refer to
parameter c as «geometrical» [M08, M09a], although in
certain cases, frequency-dependent geometrical spreading
can cause complications with this terminology [M10a].

2) Parameters c or Qe describe the effects of  anelastic
attenuation and small-scale, random scattering. In relation
to c above, we call these attenuation parameters «non-
geometrical».

Notably, for at least short-period coda waves, c can be
modeled from totally independent, structural information
by using numerical waveform modeling [Morozov et al.
2008]. In contrast, the nongeometrical parameters are
unrelated to the structure, although they can be recognized
by the characteristic increase in the attenuation coefficient
with frequency.

In many datasets, the observed frequency-dependent
values of  Q ~ f h, with h approaching and sometimes
exceeding 1, can be explained by the presence of  a significant
positive «geometrical attenuation», c > 0 (Figure 1) [M08,
M10a, b]. Therefore, it appears that c > 0 might be due to
some common physical properties of  the lithosphere. In the
present report, we offer some theoretical evidence for the
potential causes of  such values of  c. We show that positive

geometrical attenuation can be caused by: 1) variations of
wavefront curvatures during refraction in smoothly varying
media; and 2) by incoherent reflectivity along the wave-
propagation paths. In the conventional, Q-based paradigm,
such � values can also be attributed to a strongly frequency-
dependent «scattering Q», although such terminology can be
misleading because of  its attribution the deterministic effects
of  the structure to a Q [M09a, M10a]. However, in the third
example below, we also consider a case of  short-scale,
«coherent» reflectivity, for which a kind of  «scattering Q»
becomes meaningful and frequency independent.

Despite its simplicity and productive use, the model of
Equation (1.1) recently met with significant criticism [Xie and
Fehler 2009, Xie 2010], which even led to a special forum in
Pure and Applied Geophysics [Mitchell 2010]. The critique
touched upon a broad range of  subjects but focused primarily
on the perceived lack of  a physical meaning of  the expression
of  Equation (1.1), and particularly of  its geometrical part, g.
The theoretical examples developed in Section 3 (below)
answer these questions by explaining the physical rationale of
the functional form of  Equation (1.1) and by illustrating the
physical mechanisms and approximations involved in the
concepts of  | and c. These examples also show the practical
uses and limitations of  the approximation of  Equation (1.1).
For readers interested in the fundamentals of  the concept of
Q and in further details of  this extensive debate, additional
comments are given in Appendix A. Although not critical for
the present report, this discussion helps to provide an
understanding of  the physics of  the attenuation coefficient
and its relation to the conventional seismic attenuation model
and viscoelasticity.

2. Apparent and intrinsic attenuation coefficients
The observed (apparent) temporal attenuation

coefficient, denoted as | here, was heuristically inferred in
M08 and M10a,b by analyzing the seismic path factor within
several frequency bands:

P = G0dP, where dP = e
–|t. (2.1)

In these expressions of  Equation (2.1), P denotes the
seismic amplitude that is corrected for the source and receiver
effects, and G0 is the reference geometrical spreading, such as
G0(t)= t

–1 used in many local-coda studies. Factor dP is the
residual of  P that remains after the geometrical correction,
and e–|t represents the perturbation-theory approximation for
this dP. This approximation means that G0 is normalized so
that at t = 0, P = G0, and for t > 0, dP is predicted by the
scattering theory [M10a]. Equation (2.1) represents the
starting point of  most attenuation measurements, in which |
is directly measured from either the time-domain logarithmic
decrements of  the amplitudes, or from the widths of  the
spectral peaks near the resonances (Figure 2).

Figure 1. Summary of  the observed |( f ) dependences for Rayleigh
waves and short-period body, Lg, Pn, and coda waves. «Reduced» values
of  (| – r�f/1000) are shown, so that the linear dependences corresponding
to Qe = 1000 appear horizontal. Typical ranges of  Qe, and �c levels that
discriminate between the stable and active tectonic regimes are
indicated by lines and gray boxes, respectively. Modified from M10b, with
permission from Springer.
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Unfortunately, | is rarely studied by itself, as it is usually
converted into the «apparent Q» by assuming a specific form
for its frequency-dependence [e.g., Aki 1980]:

, and accordingly, . (2.2)

Note that Q is never measured directly, but is only derived
from | by using the second expression of  Equation (2.2).
Although it appears only as a simple scaling, the
transformation of  Equation (2.2) has a deep implication: it
assumes that |$ 0 when f$ 0. However, this assumption is
too restrictive and inaccurate in most practical cases. The
transformation of  Equation (2.2) assumes that attenuation
occurs proportionally to the number of  oscillation cycles and
is meaningful only for purely oscillatory processes, such as
shown in Figure 2. Nevertheless, in reality, � often includes
contributions from ray bending, reflectivity, multi-pathing,
scattering, and other effects of  the structure, for which

. In such cases, the transformation of  Equation
(2.2) results in Q ( f  ) values that are nearly proportional to f,
which is often observed. 

To avoid the tendency of  Q to spuriously increase with
frequency, we do not use the restrictive model for Q ( f  ) in
Equation (2.2) and we view | ( f ) as an arbitrary function. In
empirical data analysis, it is useful to start by isolating its zero-
frequency limit c in �| ( f ) [M08]: 

. (2.3)

Compared to Equation (2.2), the only difference of  this
form is in allowing c to be nonzero. For c = 0, Equations
(2.2) and (2.3) are equivalent, which once again emphasizes
the character of  the assumption on which the approximation
of  Equation (2.2) is based.

The dimensionless parameter l in Equation (2.3) can
generally be frequency dependent; however, from several
data examples [M08, M09a, M10a, b] and from numerical

modeling of  the seismic coda [Morozov et al. 2008] and
mantle Love waves, l turns out to be frequency
independent for many wave types and frequency bands. The
only waves for which the measured l is clearly frequency
dependent are the free oscillations of  the Earth, and even
for these, l( f  ) appears to break into only two linear
branches of  the form of  Equation (2.2) (Figure 1) [M10a].
For comparisons with the conventional terminology, l can
be transformed into an «effective» quality factor Qe = r/l
used in Equation (1.1) [M08].

Note that the apparent | is also closely related to the
parameter t* that is often used in body-wave attenuation
studies [e.g., Der and Lees 1985] as | = rft*/t. This
parameter is usually interpreted as Q–1 accumulated along
the ray path:

, (2.4)

where t is the propagation time. Because of  its affinity to
Q–1, t* also shows the same instability with respect to the
background geometrical-spreading correction and a similar
variation with frequency. For example, the values of  t* for
body P-waves decrease from ~1 s for long-period waves to
~0.2 s for short periods [Der and Lees 1985], which may also
be a spurious (apparent) effect that is related to the use of
the Q-type model of  attenuation. We discuss this point
elsewhere in more detail. However, because the frequency-
dependent Q–1 in seismology is essentially used as a proxy
for | (Equation 2.2), | can also be represented by a path
average of  the corresponding «intrinsic attenuation
coefficient», |i [M10b]:

. (2.5)

This new quantity combines local variations of
geometrical spreading, scattering, and anelastic attenuation
within the medium. Of  these three factors, the anelastic
attenuation is the one that definitely requires a frequency-
dependent |i (compare this to Equation 2.2). As argued in
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Figure 2. Definition of  the attenuation coefficient, |, and the quality factor, Q, for an oscillatory process in (a) the frequency-domain, and (b) the time-
domain. In a steady-state oscillation, the attenuation coefficient measures the width of  the resonance peak at 1/ of  the maximum amplitude, and Q
measures its relative width: Df1/2 = |/r = f0/Q. An example with Q = 10 is shown.

2



detail in M10a, the other two factors can only be separated by
making additional simplifications, such as assuming a
frequency-independent residual geometrical spreading. The
difficulty of  their separation is related to the fundamental
ambiguity in the definitions of  the geometrical spreading and
scattering. However, in many practical cases, including the
present report, separation of  these quantities is not required,
and |i can be treated as a single medium property.

The most important observation from Equations (2.1)
and (2.5) is that for traveling waves, dP represents a path
integral, which can be rendered in either the temporal or
spatial forms: 

, (2.6)

where s is the ray path length, and ai and |i are the
corresponding spatial and temporal intrinsic attenuation
coefficients. This shows that the variations of  geometrical
spreading, scattering, and attenuation have similar characters
and are accumulated over the wave propagation paths. The
exponential form has important general properties and
similarities to ray-field, wave-field, and quantum-field
mechanics. 

3. Models for geometrical attenuation
In this section, we consider three theoretical examples

that illustrate the path-integral forms (Equation 2.6) for |
and show what mechanisms can create the linear frequency
dependences of  | (Equation 2.2). As we will see, the
residual geometrical spreading ci and the corresponding
frequency-independent li occur in several end-member
cases: 

1) Refraction in a medium with smoothly varying
velocities. This example shows that ci is also related to the
variations of  wavefront curvature (i.e., to perturbations of
the traditional geometrical spreading).

2) Incoherent normal-incidence reflectivity, which
corresponds to large numbers of  sparse reflections occurring
during long propagation paths. In this case, �ci is proportional
to the gradient of  the acoustic impedance.

3) Short-scale reflectivity, with random but
«coordinated» (alternating) reflectivity at scale lengths much
shorter than the length of  the incident wave. In this case,
the reflectivity becomes «coherent» at f" 0, and consequently
ci= 0. This example is studied numerically, as in Richards and
Menke [1983].

All of  these cases relate to the elastic processes of
refraction or reflectivity, which fall under the category of
«scattering», or more generally, the «geometrical» attenuation
processes discussed in M08 and M10a. Our specific goal here
is to illustrate the origins of  the geometrical parameter ci in
theoretically tractable cases. The physics of  anelastic
attenuation is not discussed in these examples, and its effects

are simply incorporated by the additional factor exp(–�li ft). 

3.1 Variations of  wavefront curvature
Dynamic ray theory [Červený 2001] illustrates the

origins of  the exponential form of  Equation (2.6) for the
attenuation coefficient. In this theory, the wave-amplitude
variation is described by the ray propagator P, which in
logarithmic form is [Equation 4.4.86 in Červený 2001]:

. (3.1)

Here, S is the source, R is the receiver, Qi and and are
the incidence and emergence points at the i-th interface,
respectively (Figure 3), and:

. (3.2)

In our notation (Equation 2.6), dP corresponds to P(R,S),
and is equal to          , where |i is the intrinsic
attenuation coefficient, and the integral is taken from point
Qi–1 to Qi along the ray.

In the absence of  interfaces and caustics, the
geometrical spreading is caused by the variations in the
waveform curvature (Figure 3). In dynamic ray theory, this
curvature is denoted as H and measured by the trace of  the
wavefront curvature matrix, K: H= ½ tr K. Matrix K consists
of  second derivatives of  the travel-time field T with respect
to the wavefront-orthonormal coordinates yk [Equation
4.6.15 in Červený 2001]:

, (3.3)

where V is the wave velocity. The wavefront curvature H is
related to the theoretical geometrical spreading of  the ray,
G0 " L–1, by the following differential equation [Equations
4.10.28-29 in Červený 2001]:

, (3.4)

where L is the geometrical-spreading denominator, and s is
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Figure 3. Ray propagator in a layered medium (Equation 3.1). Geometrical
spreading is related to the ratio of  the wavefront curvature (gray dashed
lines) at the receiver (R) and source (S).
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the ray arc length. The solution to this equation relating L(R)
at the receiver to L(S) at the source is: 

, (3.5)

which has the expected exponential path-integral form of
Equation (2.6). Ratio G=L(S)/L(R) represents the geometrical
spreading factor, which is equal to G0dP=exp(–ais). In the
presence of  the anelastic attenuation given by parameter li,
the full path factor becomes:

, (3.6)

and by writing this expression in terms of  the intrinsic spatial
attenuation coefficient, ai,

, (3.7)

we can see that ai equals in this case:

, (3.8)

with the corresponding relation for |i= aiV. These expressions
show that for smoothly refracting waves, ai contains a
frequency-independent «geometrical» part (H–lnG0), which is
equal to the difference of  the actual wavefront curvature from
that predicted by the geometrical-spreading law selected as
the background reference.

3.2 Incoherent reflectivity
To understand the relation of  the in-situ attenuation

coefficient to the properties of  the medium, it is instructive
to analyze its properties in a simple one-dimensional (1D)
medium. For plane-wave propagation, the theoretical
geometrical-spreading factor G0 is equal to 1; however,
reflections within a heterogeneous medium result in
deviations from this level. As the transmission coefficients
are completely described by the reflection-coefficient series,
the geometrical part of  the attenuation coefficient should
also be related to reflectivity. Indeed, as shown below, the
geometrical-attenuation coefficient is equal to half  of  the
average squared reflection coefficient.

To begin, consider a boundary between two layers of
acoustic impedances Zj–1 and Zj (Figure 4). The specific
expression for impedance depends on the local properties of
the medium, the wave type, and the angle of  its incidence
on the boundary. From [M10c], in the presence of
attenuation, the complex-valued acoustic impedance for a
P-wave or S-wave at normal incidence is:

, (3.9)

where t, V, and Qi
–1 are the mass density, wave velocity, and

parameter of  anelastic attenuation, respectively. Note that
although we generally argue that Q cannot be considered as
a medium property, this parameter is retained here for
convenience of  comparison to the current terminology. This
use of  anelastic Q is possible because we are considering an
otherwise uniform background, in which the geometrical
spreading is accurately known, and so a single wave type is
used, and therefore Q appears in its specific,
phenomenological sense of  a plane-wave amplitude decay
parameter [M09b].

Considering for simplicity the normal-incidence case,
and denoting the displacement in the incident wave as u, the
displacements in the reflected and transmitted waves
become (–Riu) and Tiu, respectively (Figure 4), where, Ri is
the reflection coefficient, 

, (3.10)

and Tj = 1 – Rj is the transmission coefficient,

. (3.11)

The corresponding transmission coefficient for energy is:

, (3.14)

and the energy reflection coefficient is equal to RE,j= 1 – TE,j.
For small impedance contrasts, the above coefficients

are:

, (3.15)

, (3.16)

, (3.17)

where dj(X) denotes the contrast in quantity X across the j-th
boundary. Switching to a continuous Z(t) description, the
impedance contrasts over an infinitesimal propagation time
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Figure 4. One-dimensional plane-wave reflection-transmission problem.
Solid lines are reflectors, dashed lines are incident-wave wavefronts at
times t and t +dt. Multiple reflections have been ignored.



interval [t, t+dt] can be considered small, and therefore from
Equation (3.17),

, (3.18)

where r (t) is the root-mean square (RMS) density of
reflectivity.

Equation (3.18) only gives the transmission loss caused
by reflections on the boundaries passed by the wave between
propagation times t and t+ dt. The anelastic medium
attenuation over the same time interval leads to an additional
energy decay:

, (3.19)

where li is the non-geometrical attenuation factor.
If  the transmitted waves interfere incoherently, the

energy transmission coefficients combine multiplicatively
over the propagation time, and therefore their logarithms are
additive. For a wave that traverses N boundaries in a finite
propagation time t, the energy density E(t) is (Figure 4):

, (3.20)

or in terms of  the continuous reflectivity function, r(t):

(3.21)

This expression shows that the logarithm of  the
transmitted energy loss is given by a path integral,

, (3.22)

and consequently the temporal attenuation coefficient is
equal to:

. (3.23)

The corresponding spatial attenuation coefficient is
equal to a = |/V:

. (3.24)

Equations (3.23) and (3.24) also show the differences
between the temporally- and spatially-veraged RMS
reflectivities, which are denoted as r and rspatial, respectively. 

Thus, for incoherent 1D acoustic-wave propagation, the
geometrical-attenuation coefficient is equal to half  of  the
corresponding path-averaged squared reflectivity. As path-
averaged properties, a and | can be evaluated over finite
propagation-time intervals, and therefore they can also be
time dependent. 

Note that when li= 0, the resulting ai or |i are associated

with geometrical attenuation, which is the zero-frequency
forward scattering in this case. In the approximation
considered here (normal incidence and absence of  multiple
reflections), these geometrical a or | are independent of  the
frequency and the incident wavelength. 

If  multiple reflections are present, frequency-dependent
effects (tuning) should arise even in the geometrical limit.
These effects should probably have the form of  resonance
peaks, rather than a continuous trend with frequency. These
undulations of  the recorded amplitudes with frequency
(«spectral scalloping») on top of  the linear trend of  |( f  )
(Equation 2.3) are commonly observed, as shown in several data
examples recently, which were reviewed in [M08, M10a, b].

3.3 Coherent reflectivity
The preceding example assumed incoherent interference

of  scattered arrivals, which occurs at all scales, but particularly
when the scatterers are large and spaced at large distances
compared to the incident wavelength. In this section, we
consider the opposite limit, of  scatterers that are small and
relatively closely spaced. In this case, destructive interference
of  scattered waves occurs, and the attenuation coefficient
shows strong frequency dependence. For simplicity, we again
consider the 1-D case, in which scattering reduces to normal-
incidence reflectivity. Originally, this example was analyzed by
Richards and Menke [1983], who demonstrated the frequency-
dependent effects of  scattering (Figure 5) and presented them
in terms of  the «scattering Q». Let us briefly review this
important example from a somewhat different angle, and in
particular, let us look closely at the decay of  the spectral
amplitudes with time.

During 1D propagation, the wavefronts remain
perfectly planar, and consequently the theoretical geometrical
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Figure 5. Transmission responses of  a simulated 100-boundary sequence
[modified from Richards and Menke 1983]. a) Transmitted record that
resulted from a single initial pulse. b) Power spectrum of  its initial part
(main pulse with early forward scattering). c) Spectrum of  the later
forward-scattered waves. 
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spreading is equal to exactly 1. Therefore, all of  the
perturbations of  the wavefield are due to elastic scattering on
the boundaries and anelastic attenuation between them. In
particular, scattering causes a part of  the wave energy to
reflect backward (which is often called «back scattering»), and
a part of  it continues propagating forwards while being
delayed relative to the primary wave. This delayed part of  the
propagating wavefield is called «forward scattered» (Figure 6).
From numerical simulations and real data, the initial wave
pulse and both the back-scattered and forward-scattered
waves have linear spectral variations, which increase with
propagation time. Note that the senses of  these variations are
opposite for the initial pulse and back-scattered and forward-
scattered waves, the high frequencies of  which are
progressively depleted and enhanced, respectively (Figure 5).

Conventionally [for example, see Richards and Menke
1983], the relative changes in the spectra (Figure 5) are
viewed as proportional to the number of  wavelengths
traveled by the incident wave, as in Equation (2.2). The
resultant spectra are fit by using approximations of  the form
exp(–rft/Qs), and the scattering is automatically viewed as
analogous to the anelastic attenuation, for which the
corresponding spectral amplitude decay is exp(–rft/Qi).
However, as shown below, the proportionality to the number
of  wavelengths is incidental and it is only valid for coherent
superposition of  scattered waves. By contrast, for incoherent
scattering, the attenuation tends to be independent of  the
incident wavelength. We therefore take a conservative view
and use the Q-type parameters only for the frequency-
dependent part of  the attenuation coefficient.

To derive the attenuation coefficient for the general case
that includes both weak and strong, back scattering and forward
scattering, note that the scattering problems for both the single-
boundary and multi-boundary cases (Figure 6) can be described
equivalently by using the scattering-matrix formulation:

, (3.25)

where N = 2 for the 1-boundary case, and TN,1 is the
transmission matrix that relates the states on the right to

those on the left in Figure 6. Here, u denotes the scalar wave
amplitudes, waves with subscripts ‘+’ travel to the right, and
those with ‘–’ travel to the left. For a single interface,
transmission matrix T2,1 combines the coefficients of  Equations
(3.15) and (3.16) for forward and backward wave propagation,

, (3.26)

where the second equation corresponds to the small-
reflectivity approximation, r2 is the reflectivity at the
boundary, and I is the identity matrix. Alternately, the
amplitudes of  the waves that travel away from the boundary
can be related to those that are incident on it from both sides:

. (3.27)

In this expression, SN,1 is called the scattering matrix. For
N = 2, this matrix combines the reflection and transmission
coefficients in both of  the propagation directions:

. (3.28)

In the absence of  anelastic attenuation, the elastic
energy is preserved in the outgoing states:

, (3.29)

for any N, and consequently the sum of  the powers of  back-
traveling and forward-traveling waves is constant at any
frequency.

For N–1 interfaces, matrix TN,1 is a product of  wave-
mode transformations on all of  the boundaries:

,

(3.30)

where D{i is the phase shift of  the forward-traveling wave
during its propagation in layer i. Let us denote the elements
of  this «propagator» matrix across the stack of  all N–1
boundaries (Figure 6b) as:

. (3.31)

The total reflection amplitude, u1–, can be found from
the requirement that on the right-hand-side of  Figure 6b
there should be no incoming wave traveling to the left:

, (3.32)

and consequently:
. (3.33a) 
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Figure 6. One-dimensional scattering problem. a) On a single boundary.
b) On a random sequence of  boundaries.



This gives the total back-scattered amplitude. The total
transmitted amplitude is therefore:

. (3.33b)

Equation (38a,b) can be used numerically to model the
propagation of  a long seismic wave through a stack of  thin
random layers. We use an example similar to that of  Richards
and Menke [1983], with 1000 layers of  uncorrelated random
velocities drawn from a Gaussian distribution with a mean
of  3.0 km/s and a standard deviation of  0.25 km/s. The
density is assumed to be constant. Using its scale invariance,
the impedance was normalized to a mean value of  Z = 1,
and the same value of  impedance was placed at both ends
of  the random sequence (Figure 7). The travel-time within
each layer is taken as being equal to 1 s, which also gives the
characteristic Nyquist frequency of  fN = 0.5 Hz, relative to
which all of  the frequencies in the propagation process can
be measured.

To investigate the time «history» of  scattering, the
impedance time series (Figure 7) was truncated at the

boundaries N = 2,3,…1000, and the remainders of  the series
were closed with a layer with Z = 1. The resulting variations
of  the reflected and transmitted wave intensities showed
large fluctuations for the different statistical realizations of
the impedance time series (Figure 8). However, after
averaging these over multiple realizations, the transmitted
and reflected powers showed clear and mutually
complementary exponential decay (Figure 9). By measuring
the logarithmic decrements of  these decays, temporal
attenuation coefficients | were measured for selected
normalized frequencies f/fN (Figure 10). 

This procedure was performed for impedance contrasts
spaced at regular time intervals Dti= 1 s (Figure 7) and it was
also repeated for another set of  random impedance
variations, in which �ti were randomly distributed. A log-
normal distribution of  Dti was constructed so that the
average <Dti> was also equal to 1 s. As expected, the
resulting attenuation coefficients are similar for low
frequencies f < 0.3fN. At f > 0.3fN, the attenuation in the
random-�ti sequence saturates at a constant level (black line
in Figure 10), although the attenuation in the regularly
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Figure 7. Random Gaussian distribution of  impedance that corresponds to a mean velocity of  3.0 km/s and a standard deviation of  0.25 km/s. The
impedance is normalized to a mean value of  Z = 1.0.

Figure 8.Wave attenuation in three statistical realizations of  impedance time series (see Figure 7) for frequency f = 0.2fN. Black and gray lines show the
transmitted and reflected power, respectively.
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spaced sequence continues to increase to f ≈ 0.5fN, after
which it decreases to near-zero at f ≈ fN. This pattern
resembles the well known «frequency folding» effect, which
is characteristic for aliasing. As can be seen, near f ≈ fN, the
phases of  all of  the reflections superimpose equivalently to
the case of  f ≈ 0, and the elastic attenuation drops to zero.
Interestingly, the regularly spaced impedance series shows a
very narrow «notch» at f ≈ 0.5fN, at which the attenuation
drops sharply because of  the tuning of  the incident wave
with the reflectivity sequence (Figure 10). However, neither
aliasing nor tuning are present in the more realistic random-
Dti impedance series.

In summary, the general behavior of  the attenuation
coefficient in 1D random media can be described as follows:

1) At near-zero frequencies, the attenuation is low (| ≈ 0)
because of  the destructive interference of  the impedance
contrasts.

2) Up to a certain frequency f0, | increases almost
linearly with f. In this range, «scattering Qs» can be
meaningfully defined as Qs= r�f/|. However, this Qs is not a
true «quality factor», but only a measure of  the slope of  the

|( f ) dependence, which is proportional to the mean
stochastic reflection amplitude. The value of  f0 might
generally depend on the statistics of  the distribution of  layer
thicknesses and is equal to ~0.3fN in our example.

3) At frequencies f > f0, the process of  scattering
becomes incoherent, and ��becomes frequency-independent. 

The value of  f0 for a particular area might not be easy to
determine; nevertheless, for an average sedimentary layering
of  ~10-cm thickness, f0 can be relatively high (~40 kHz).
Therefore, the entire seismological frequency band might lie
within the «scattering Q» regime for such layering and might
exhibit a nearly frequency-independent Qs. However, at
significantly lower frequencies and longer scale lengths, the
1D approximation considered here breaks down because of
the effects of  the structure (i.e., geometrical attenuation),
and the saturation of  the attenuation coefficient (Figure 10),
and an apparent frequency-dependent Qs is observed. Thus,
separation of  the deterministic and stochastic wave-
propagation regimes is critical when considering scattering,
but it cannot be done from the coda data alone.

4. Discussion and conclusions
The above analysis shows that in the absence of

anelastic attenuation, the resulting cumulative attenuation
coefficient | is generally nonzero and depends on the
refracting or reflecting structures within which the wave
propagation takes place. For refraction, the zero-frequency
(geometrical) attenuation coefficients can be positive
(corresponding to defocusing) or negative (focusing). For
incoherent reflectivity, the geometrical attenuation
coefficients are always positive. For coherent reflections in
which reflections of  alternating polarities occur at scale
lengths significantly smaller than the incident wavelength,
the geometrical factor is approximately zero, and reflectivity
can be described by «scattering Q». However, this last case is
quite abstract, because an incoherent component should also
be present in any random reflection sequence, even in the
short scale length case.

Thus, the nonzero limit of                         is common in both
the data and the theory. This limit is explained by inaccurate
knowledge and variability of  the background structure. In
an empirical, ad-hoc interpretation that stays strictly within
the paradigm of  the Q measurements, this limit can be
attributed to a «scattering Q» that increases with frequency:
Qs= r�f/c. However, this Q-factor terminology would ignore
most of  the other known information about the structure,
such as the existence of  velocity gradients, velocity/density
contrasts, bending rays, reflections, and mode conversions.
On the other hand, the concept of  correctly captures these
factors in the form of  the geometrical spreading associated
with the structure.

The two-parameter attenuation model of  Equation (1.1)
with constant c and Qe considered here represents only a

GEOMETRICAL SEISMIC ATTENUATION

Figure 9. Transmitted (black) and reflected (gray) power averaged over
100 statistical realizations, as in Figure 8.

Figure 10. Frequency dependence of  attenuation coefficient | in 1D
propagation. Gray, propagation in a sequence of  layers with equal travel
times; black, propagation in layers with travel-times distributed according to
a log-normal distribution. Dashed line, level of  «scattering Q» equal to 170.

f 0/c |
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first-order, perturbation-theory approximation. The theoretical
examples in Section 3 indicate several limitations of  this
approximation, which consist in a requirement for a relatively
accurate reference model G0, a weak interactions, and finite
propagation times. These examples also show how these
limitations can be measured and quantified. By contrast, as
shown Appendix A, the conventional Q-based paradigm has
many more problems, which are difficult to assess even at the
level of  the basic physical theory.

For unambiguous interpretation of  seismic attenuation
data, it is therefore important to use the attenuation-
coefficient description, in which the geometrical, scattering,
and anelastic-attenuation effects are treated adequately and
combined in the temporal intrinsic attenuation coefficient,
�|i. Compared to this model, the emphasis on the frequency-
dependent quality-factor might lead to interpretations that
are overly complex, but unrelated to the available structural
information. 
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Appendix A: Physical basis of the (c, Qe) model
Even if  taken purely empirically, the (c, Qe) model of

Equation (1.1) leads to two important general observations:
A) The geometrical spreading is typically not known

accurately enough to measure the frequency dependence of  Q.
B) Geometrical spreading variations can and should be

estimated from the data, and they represents a most valuable
attribute for interpretation.

These observations were illustrated on a number of
datasets from ~500-s to ~100-Hz frequency bands, and led
to major reconsiderations of  several interpretations [M08,
M09a, b, M10a-c]. Nevertheless, Xie and Fehler [2009] and
Xie [2010, hereafter X10] argued that this literally cannot be
done, and presented an extensive critique of  this model.
Their critique follows several lines, from the functional form
of  Equation (1.1) and data fitting, to the physical meaning of
geometrical attenuation and its relation to the viscoelastic
theory and laboratory observations. At the same time, Xie
and Fehler [2009] and X10 did not address the key points of
A) and B) above, and they appeared to misunderstand, or
misrepresent, a number of  other key points of  the |( f  )
approach. It is therefore important to compare the
conventional and new model of  Equation (1.1) in light of  the
arguments of  Xie and Fehler [2009] and X10. 

A.1 Data fitting and criteria for model validity 
It is known [e.g., M08, M10a, X10] that seismic

attenuation data can often be fit by using either the
frequency-dependent Q( f  )=Q0 f h (i.e., |( f  ) = rf

1–h�/Q0) or
linear |( f  ) dependences of  the type of  Equation (1.1�). In
M08, a mapping between parameters (c, Qe) and (Q0, h) was
derived, which was also sensitive to the observation
frequency band. 

With the existing datasets, two-parameter frequency
dependencies are probably all that can be reliably
constrained, and the model of  Equation (1.1) can be viewed
as exploiting this by using a Maclaurin series in f [M08]. The
traditional power law |( f  ) = rf1–h�/Q0 is another way to fit
the |( f  ) data with two parameters, although in a far less
intuitive fashion. From the equivalence of  these forms in
data fitting, X10 argued that the observations of  linear |( f  )
dependencies «do not invalidate» the power law Q( f  ).
Indeed, Equation (A.1) cannot invalidate the power law or
any other form of  Q( f  ); nevertheless, in view of  its fitting
the data well (indeed, often within broader frequency ranges
than the power law [M08, M10a]), we can ask why a Q( f  )
would really be required. This remains the key question,
because it appears that the frequency-dependent Q is only
motivated by the viscoelastic theory. 

The true reasons for using one or another attenuation
model are not in the data fit, but in their correspondence to
the physics of  wave propagation [M10a]. As noted below, for
viscoelasticity and Q, this correspondence can be seriously



questioned. On the other hand, rigorous physical theories of
waves in heterogeneous and attenuative media exist, and do
not require the use of  an in-situ Q [Biot 1962].  

A.2 Measured versus assumed geometrical spreading
The conventional practice of  attenuation measurements

defended by Xie and Fehler [2009] and X10 is based on the
presumption that the geometrical spreading can be established
by mathematical modeling and does not need to be measured.
In the notation of  this report, this means that c in Equations
(2.1) and (2.3) can always be taken to be equal to zero.
However, realistic geometrical spreading is practically
impossible to define mathematically. Any controlled-source
data section shows that «multi-pathing» (i.e., reflections,
refractions, and mode conversions) is so pervasive that the
wavefronts that could be followed for geometrical spreading
prediction are completely absent. At the same time, despite a
lack of  tractable mathematical formulations, the geometrical
spreading certainly exists as a physical process, and its
parameters can be measured as described in M08, M10a, b. In
practical observations, we only have the frequency-dependent
attenuation coefficient to go by, and therefore we can only
approximate the residual geometrical spreading as a
frequency-independent part of  the attenuation coefficient,
which is given by parameter c. For the same reason, the effects
of  small-scale scattering cannot be unambiguously separated
from this residual geometrical spreading [M08, M10a].

A.3 Physical basis of  c
While criticizing the general idea of  variable and

measured geometrical spreading, X10 focused on the
exponential form of  the correction to G0: 

, (A1)

which arises from Equation (2.1) with f = 0. Here, G is the
true geometrical spreading within the structure, G0 is the
assumed reference geometrical spreading, and we call �dG
the «residual geometrical spreading» [M08, M10a]. According
to X10, this functional form for G has «no physical basis»,
principally because it decays too quickly at large times.
However, as explained in M10a, Equation (2.1) represents a
common perturbation-theory (or scattering-theory)
approximation, which only means that the rate of
geometrical spreading variation, dG/dt, is small and
proportional to G. Similar to all perturbation models, this
approximation should not be used at the limit of  t "3, in
which a diffusive (also called multiple scattering) regime is
established. In maybe not appreciating this point, X10 applied
the �dG= e–ct correction to ~300-km distances [Appendices 1
and 2 in X10], whereas it was only proposed for up to 50-70
km, and also used exaggerated values of  c. If  the limit t "3
is not considered, then both of  the functional forms G0 and

G0 = e–ct in Equation (A1) are equally acceptable, because G0

itself  is also only an ad-hoc, or reference, approximation for
the geometrical spreading. Other forms of  geometrical-
spreading corrections were also proposed in M10a, with the
exponential model of  Equation (A1) preferred because of  its
useful roots in the scattering approximation. 

It is clearly impossible to disprove the validity of  the
approximation of  Equation (A1), because the realistic baseline
G0 has neither a unique functional form nor a definite physical
meaning. In Appendix 2 of  X10, an example was offered of  a
«physically meaningful» geometrical spreading of  a wavefront
spreading in a 2D structure with a linear velocity gradient.
However, this derivation is not correct, because it assumes that
the wavefront remains cylindrical in shape while propagating
at different speeds in different directions. This once again
illustrates the fundamental difficulty of  purely mathematical
approaches to geometrical spreading. 

A.4 Accuracy of  perturbation-theory approximation
Many studies have shown that the theoretical

geometrical-spreading approximation G0 is often inaccurate
and affects the attenuation measurements, which is known as
the «trade-off» of  Q with the assumed model geometrical
spreading [e.g., Kinoshita 1994]. In M08 and related reports,
this concept of  a model trade-off  was viewed as not
acceptable, and the accuracy of  G0 was tested quantitatively
using the ansatz of  Equation (1.1) as a single-parameter
generalization of  the conventional G0. The data showed that
c were nonzero in most cases, and also that the entire
frequency-dependent part of  Q can be absorbed by a
correction in c. This correction also increases the values of
Q (from Q0 to Qe) by as much as ~20-30-fold [M08, M10a].
Thus, the zero-order approximation G0 is clearly
insufficiently accurate for measuring the in-situ Q.

The next important question is whether the first-order
correction of  Equation (1.1) to G0 is accurate enough. X10
correctly noted that from some datasets, |c| values turn
out to be too large and to violate the perturbation-theory
criterion t|c| << 1, where t is the characteristic observation
time [M10a]. However, from such large � values, X10 made
a paradoxical conclusion that G0 (i.e., set �c = 0) should
therefore be used and that the attenuation measurements
«cannot be improved» by a better geometrical spreading
model. On the contrary, large |c|only means that G0 is too
inaccurate, and a correction is required. With the use of  a
more accurate G0, such as the numeric models of  M10a, the
values of  c would reduce, and the approximation of
Equation (1.1) would enter the range of  its formal validity.

Finally, Q represents only a second-order effect that can
only be constrained when both G0 and the residual
geometrical spreading (c) are accounted for. It appears that,
realistically, this can only be done based on the frequency
dependence of  |, i.e., by measuring Qe from the spectral

G G G G e t
0 0/d= c-
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slopes of  seismic amplitudes. This can only be done by
assuming that the residual geometrical spreading is
frequency independent [M10a].

A.5 Monotony of  apparent Q(f) dependencies
In a peculiar, but instructive, argument that deserves

some discussion, X10 found a «fundamental contradiction»
of  the �|( f  ) model of  Equation (1.1) in the fact that it only
predicts apparent Q=rf/| values monotonously varying with
frequency. X10 pointed out that among the four major long-
period Rayleigh-wave models, only Dziewonski and Anderson
[1981] showed a monotonous increase in the apparent Qwith
f (Figure A1a). However, all four models cannot be correct
simultaneously, and they differ among themselves to about
the same extent as from Dziewonski and Anderson [1981].
Therefore, all of  these models do not have to comply with the
model of  Equation (1.1). At the same time, note that model
PREM shows an almost perfectly linear |( f ) dependence
within the entire frequency band (Figure A1b).

As Figure 10 shows, |, and even more so Q, are not
required to vary monotonously with frequency in the model
of  Equation (1.1). Values c and Qe in Equations (1.1) and (2.3)
are apparent quantities, and their constancy is just an
empirical observation for certain wave types and frequency
bands [M08]. At the same time, it is certainly remarkable that
these quantities stay nearly constant within the same wave
types [M10b and Section 3, present report].

A.6 Laboratory observations of  frequency-dependent Q
An important argument in favor of  a frequency-

dependent Q and implicitly against the attenuation-
coefficient model of  Equation (1.1) comes from laboratory
measurements using rock samples [X10]. Indeed, many

laboratory observations at seismological frequencies, such
as by Faul et al. [2004], yield values of  Q that increase with
frequency. Nevertheless, it should not be thought that
geometrical spreading does not exist in laboratory
experiments, or that these measurements are not affected by
elastic structural effects. Quite the opposite: the
transformation of  the measured quantities, which are the
resonance-peak widths or strain-stress phase delays, into the
inferred «material Q» is most complex for laboratory data and
relies on the most intricate models and numerous
corrections [Bourbié et al. 1987]. These models have
pronounced effects on the elastic limit (see Section 3) and
have the role of  geometrical spreading. The examples in
Section 3 of  the present report illustrate three types of  such
effects quantitatively.

A.7 Physical basis of  conventional attenuation models
Ironically, the physical basis of  the conventional

geometrical spreading and Qmodels (such as G0 " t–V and Q=
= Q0 f h, respectively) is much more difficult to establish than
that of  the perturbation-theory formulae of  Equations (1.1)
and (2.3). Both of  these models only arise in overly simplified
theories, such as approximations of  the Earth lithosphere as
a uniform and isotropic half-space with a flat boundary that
are commonly used in local-coda studies [e.g., Aki 1980]. The
Q0 f h power law appears to be suggested by the elementary
«equivalent linear solid» models [e.g., Carcione 2007],
although at the same time, multiple solids are usually
superimposed to allow almost arbitrary frequency
dependencies of  Q [Liu et al. 1976]. The only definite
constraint on possible |( f  ) = rf/Q dependencies from the
power-law Q model consists in ||f  "0 = 0. However, such a
constraint is not physically justified and it is commonly

GEOMETRICAL SEISMIC ATTENUATION

Figure A1.Apparent attenuation for four spherically symmetric global Rayleigh-wave models. a) In Q( f  ) form. b) In |( f  ) form. DE, [Dalton and Ekström
2006]; PREM, [Dziewonski and Anderson 1981]; QL6, [Durek and Ekström 1996]; and QM1, [Widmer et al. 1991]. Note that �( f  ) for PREM is near linear
across the entire 50-250-s period band.



violated in observations [M08, M09a, M10a,b].
It appears that the reason for the popularity of  Q in

attenuation models is not in its physical validity, but in its
simplicity, flexibility, and practical convenience. Once we
postulate that virtually the same quantity, namely Q–1, exists
as both the material and observed (apparent) property, the
theory becomes greatly simplified. The correspondence
principle [Aki and Richards 2002] allows the treating of  the
in-situ Q–1/2 as a complex argument of  the velocity, which
dramatically simplifies modeling and inversion. The
frequency dependence of  the in-situ Q provides a very
flexible parameterization that allows the fitting and modeling
of  the data across broad frequency bands. However, all of
this is achieved by departing from the mechanical description
of  the medium, which means that such a Q might be no
more than a heuristic mathematical model.

A.8 In-situ Q and viscoelasticity
The viscoelastic theory is often used for implicit

conceptual support for a frequency-dependent in-situ Q of
the propagating medium [X10]. This is a very extensive
subject that cannot be fully addressed here; however, two
observations supporting this were made in M09b. First, note
that the quality factor was introduced in seismology from an
intuitive analogy with acoustic or mechanical resonators
[Knopoff  1964], alhough it is still not the type of  quantity that
can be easily associated with a point within the medium. The
difficulty in the definition of  a «material Q» can be seen as
there are many factors that are responsible for elastic-energy
dissipation, such as rock-matrix properties, grain shapes, pore
volumes, shapes and connectivity, fractures, fluids, and
various dielectric and piezoelectric properties. Most of  these
factors are unrelated to the elastic moduli and cannot be
grouped together into the only two values of  Q

J
and Qn used

in traditional seismic viscoelasticity. Thus, the viscoelastic
model is far too simple to describe the real Earth materials.

Secondly, the viscoelastic model is also too general and
permissive. It only reproduces the formal convolutional
relationships between the strain and stress within a wave, so it
does not constrain the mechanism of  energy dissipation.
However, nearly any linear process can be presented as
«viscoelastic» in this sense. For example, ordinary Newtonian
mechanics can be described by convolutional integrals that
relate the particle position, x(t), to the force-rate history, :

, (A2)

where J(t) can be called the «delayed compliance function»:

, (A3)

where m is the mass, and i (t) is the Heavyside step function.
However, such a picture does not replace Newton's second

law, , and should not be interpreted literally, as
some «memory» inherent in particle motion. Note the
similarity of  Equation (A2) to the viscoelastic relation of  the
strain, f�, to stress-rate history, [Dahlen and Tromp 1998]: 

. (A4)

Another fundamental problem in the application of  the
viscoelasticity to seismology is the absence of  a unique
definition for the elastic energy [e.g., Carcione 2007]. This
leads to the absence of  the traditional Hamiltonian dynamic
principle, which is standard in mechanics. Among its
practical manifestations, this problem leads, for example, to
an incorrect complex argument of  the acoustic impedance
in the presence of  attenuation [M10c].
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