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Abstract. In line with the aims of the “National Bilharzia Control Programme” and the “School Health and Nutrition
Programme” in Zambia, a study on urinary schistosomiasis was conducted in 20 primary schools of Lusaka province
to further our understanding of the epidemiology of the infection, and to enhance spatial targeting of control. We inves-
tigated risk factors associated with urinary schistosomiasis, and examined small-scale spatial heterogeneity in preva-
lence, using data collected from 1,912 schoolchildren, 6 to 15-year-old, recruited from 20 schools in Kafue and
Luangwa districts. The risk factors identified included geographical location, altitude, normalized difference vegetation
index (NDVI), maximum temperature, age, sex of the child and intermediate host snail abundance. Three logistic
regression models were fitted assuming different random effects to allow for spatial structuring. The mean prevalence
rate was 9.6%, with significance difference between young and older children (odds ratio (OR) = 0.71; 95% confidence
interval (CI) = 0.51-0.96). The risk of infection was related to intermediate host snail abundance (OR = 1.03; 95% CI
= 1.00-1.05) and vegetation cover (OR = 1.04; 95% CI = 1.00-1.07). Schools located either on the plateau and the val-
ley also differed in prevalence and intensity of infection for moderate infection to none (OR = 1.64; 95% CI = 1.36-
1.96). The overall predictive performance of the spatial random effects model was higher than the ordinary logistic
regression. In addition, evidence of heterogeneity of the infection risk was found at the micro-geographical level. A
sound understanding of small-scale heterogeneity, caused by spatial aggregation of schoolchildren, is important to
inform health planners for implementing control schistosomiasis interventions.
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Introduction

Schistosomiasis, a disease caused by parasites of
the genus Schistosoma, is currently estimated to
infect at least 200 million people, among an esti-
mated at-risk population of 779 million (Steinmann
et al., 2006). Estimates further suggest that sub-

Saharan Africa bears a disproportionately high bur-
den of the disease, with 85% of all schistosomiasis
cases occurring in the region (Chitsulo et al., 2000).
Two forms, urinary schistosomiasis caused by
S. haematobium, and intestinal schistosomiasis
caused by S. mansoni are endemic in sub-Saharan
Africa. The current control strategy of schistosomi-
asis recommends provision of praziquantel in areas
of high prevalence, especially through school health
programmes or through (routine) primary health
care services. Mass treatment repeated annually is
advocated for schools where prevalence is over 50%
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to ensure that levels of infection are kept below
those associated with severe morbidity (Hotez et al.,
2008).

However, because of small-scale focality of the dis-
ease, implementation of any control strategy should
understand where the population at risk is located for
spatial targeting of limited resources, for efficient and
cost-effective control (Brooker et al., 2002). The spa-
tial variability of schistosomiasis is partly explained
by a range of climatic, ecological and socioeconomic
factors. Numerous geographical landscapes of varied
characteristics, biotic and abiotic features affect sur-
vival and development of schistosome parasites and
intermediate host snail populations. Socioeconomic
and behavioural characteristics of human community
such as water-contact behaviour, adequacy of water
and sanitation shape the frequency of exposure to
infected water (Appleton, 1978; Chandiwana et al.,
1987).

This paper reports a cross-sectional study carried
out in two districts of Lusaka province, Zambia,
with the aim of furthering our understanding of the
epidemiology of urinary schistosomiasis. Such
knowledge is important for the “School Health and
Nutrition Programme”, and indeed the “National
Bilharzia Control Programme” of the Ministry of
Health (MoH). Previous efforts under the School
Health Programme to assess prevalence of schisto-
somiasis in the area used questionnaire-generated
data (Lengeler et al., 2002), which assisted the deliv-
ery of praziquantel to primary schools in the
province. However, experience in applying the ques-
tionnaire in this study indicated the need to careful-
ly validate the tool in different epidemiological and
sociocultural settings, as most lightly-infected indi-
viduals, without visible haematuria, were over-
looked. Further, although haematuria is a key
parameter for assessing urinary schistosomiasis, it
can contribute to misdiagnosis as also other urinary
tract infections present with this symptom. Careful
validation in various community settings would
improve both the sensitivity and specificity of the
questionnaire rendering it more useful for monitor-
ing the effectiveness of control programmes.

In this study, we investigated risk factors of uri-
nary schistosomiasis. We also examined small-scale
spatial heterogeneity in prevalence, an area less
commonly explored despite spatial focality of the
disease (Utzinger et al., 2003a, Brooker, 2007).
Recent advances in spatial statistical tools have seen
an increase in the application of spatial methodolo-
gies in analysing the prevalence of schistosomiasis
and soil-transmitted helminths (Kristensen et al.,
2001; Brooker et al., 2002; Raso et al., 2005;
Brooker, 2007). We applied a random-effects spatial
logistic model to account for spatial heterogeneity in
prevalence, adjusting for age, sex and other
explanatory variables.

Materials and methods

Study area and design

Field surveys were conducted in two districts,
Kafue and Luangwa, in Lusaka province, Zambia
(Fig. 1), after obtaining ethical clearance from
the University of Zambia Ethics Committee.

Fig. 1. Map of Zambia showing the study area (shaded region
in the top plot), and expanded below.
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The two districts were selected on the basis of their
ecological representativeness of the country in gener-
al (Abell et al., 1998; Brooker et al., 2002;
Meteorology Department, 2003). In each of these
districts 10 primary schools were selected.
Approximately 100 schoolchildren, 6 to 15-year-old,
were recruited from each school in both districts. 

The altitude and geographical location (longitude,
latitude) of the surveyed schools were obtained from
the archives of the Survey Department (2003).
Further details of the study design are given else-
where (Simoonga et al., 2007).

Field data collection

Data on S. haematobium prevalence and intensi-
ty were obtained using the quantitative filtration
technique (Mott, 1984) to process and examine
microscopically specimens prepared in duplicate for
each urine sample that were collected about mid-
morning. Two laboratory technicians were trained
to prepare and read the specimen filters. Both tech-
nicians read each specimen independently, which
increased the sensitivity of the technique, particular-
ly where egg counts were low (Barreto et al., 1990).
All pupils found to be infected were treated with
praziquantel (40 mg/kg body weight). Individual
data sheets were used to collect ancillary informa-
tion on each child examined.

In addition, data on intermediate host snails were
obtained through field collections and laboratory-
based species identification. The sampling of potential
schistosomiasis transmission sites was done based on
the proximity of the water-body to the respective pri-
mary school, i.e. the nearest likely infection source.
These water points were also qualified by relevant
local people as the most frequented water-contact
points for both domestic purposes and/or by livestock.

The identified sites were geo-referenced with a
hand-held global positioning system (GPS) device
(Magellan Systems Corp., San Dimas, CA, USA)
and this information was used to assess prevalence
and abundance of intermediate host snails during
the malacological surveys conducted before and

after the rainy season. Two standardized snail
scoops were used by two field operators during the
snail surveys, each one allocated a duration of 15
min of scooping. Where scoops were not possible to
use, for instance in muddy, semi-dry habitats, each
operator handpicked snails for 15 min.

Collected snails were placed individually in vials
containing 10 ml of water and exposed to light for
two hours in order to induce cercarial shedding.
Due to lack of facilities for species identification of
the cercariae, this study used morphology and
rhythmic vibrations to try and differentiate the
shaded human cercariae from mammalian ones as
described by Jordan and Webbe (1969) and Davis et
al. (1972). Shedding snails were then placed in sep-
arate vials for species identification using field
guides (Brown and Kristensen 1989; Danish
Bilharziasis Laboratory, 1998).

Climate data

Climate data were downloaded in 1-km image
files from the website (http://edcdaac.usgs.gov/1km-
homepage.html). These images were captured by the
Advanced Very High Resolution Radiometer
(AVHRR) onboard National Oceanic and
Atmospheric Administration (NOAA) polar-orbit-
ing meteorological satellites (Cracknell, 1997). The
images were calibrated into normalized difference
vegetation index (NDVI) and mid-day earth surface
temperature (Tmax) values using the ERDAS Imagine
8.5 (ERDAS, Atlanta, GA, USA) software for each
decadal (10-day) interval between April 1992 and
September 1993 and between February 1995 and
January 1996.

Statistical analysis

The analysis focussed on the prevalence and inten-
sity of infection. The intensity of infection was
expressed as the geometric mean of egg counts. This
was further categorised into four outcomes namely:
(i) no infection (i.e. 0 eggs/10 ml of urine), (ii) light
infection (1-100 eggs/10 ml of urine), (iii) moderate
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infection (101-400 eggs/10 ml of urine), and (iv)
heavy infection (>400 eggs/10 ml of urine) (Carabin
et al., 2005). The data were further stratified by alti-
tude (plateau for elevation of 601-1150 m and valley
for ≤600 m), sex (male, female) and age (6-9 years,
10-15 years) and assessed for any significant varia-
tions. The χ2 test was used to explore for association
between prevalence of infection and altitude, sex, age,
and between intensity of infection and the same
covariates. A t-test was used to determine differences
in intensity, as measured by the geometric means of
egg counts, between plateau and valley. The analyses
were carried out in R (R Development Team, 2007).

Three logistic regression models were developed
to determine the relationship between infection out-
come (positive or negative) and risk factors, i.e.
environmental/ecological (altitude, NDVI, Tmax),
malacological (intermediate host snail abundance),
and individual-level demographic covariates (sex,
age). The first model fitted was an ordinary logistic
regression model, assuming homogeneity in the
infection rates. This is given by

logit(pi) =

β0+β1age+β2sex+β3altitude+β4NDVI+β5Tmax+β6snail
(equation 1), 

where pi is the probability of infection for child i,
and βi,i = 0, Λ, 6 are regression parameters such that
exp(βi) are interpreted as odds ratios (ORs). 
The second model was an extension of the first and
included random effects (u) to capture unstructured
heterogeneity, i.e.

logit(pi) =

β0+β1age+β2sex+β3altitude+β4NDVI+β5Tmax+β6snail+u

(equation 2). 

The third model assumed spatially correlated ran-
dom effects (s) and is given by

logit(pi) =

β0+β1age+β2sex+β3altitude+β4NDVI+β5Tmax+β6snail+s

(equation 3).

The unstructured random effects, given by equa-
tion 2, were modelled by assuming exchangeable
Gaussian processes, u ~ N(0, 1/τu) , where τu is the
precision parameter. The spatially correlated random
effects are modelled by assigning an isotropic station-
ary Gaussian process with mean 0, and correlation
function 1/τuexp(- d/φ) where τs is the precision
parameter, drt is the Euclidean distance between
schools r and t, with a spatial correlation decay
between any two schools measured by φ. The models
were estimated using Bayesian inference via Markov
chain monte Carlo (MCMC) simulation techniques.
Given suitably chosen prior distributions for the
unknown parameters, MCMC samples were drawn
of all parameters by running 40,000 iterations. The
first 5,000 samples were discarded as “burn-in”, and
every 35th sample was thinned. The subsample of
1,000 was then summarized to provide point param-
eter estimates and corresponding Bayesian credible
intervals (BCIs). We assigned the following priors:
(i) the fixed effects were assigned diffuse priors;
(ii) the precision parameters were assumed to fol-

low a gamma distribution with parameters; and
(iii) the spatial correlation function was assumed to

be distributed as an exponential function.
The three models were compared using the

deviance information criteria (DIC), proposed by
Spiegelhalter et al. (2002). The DIC is composed of
the mean posterior deviance D

_
, which measures

model fit and the effective number of parameters pD,
which represents model complexity. Small values of
DIC imply a better-fitting model. All models were
estimated in BayesX (Brezger et al., 2005). Model
validation used receiver operating characteristics
(ROC) curves analysis, a method recently used to
validate regression models (Brooker et al., 2002), in
which the proportion of “true positives” (sensitivi-
ty) is plotted against the proportion of “false nega-
tives” (1-specificity) across a range of threshold val-
ues. One performance measure used in the ROC
analysis is the area under the curve (AUC) of the
ROC plot. A purely random model would be
expected to be correct half of the time (AUC = 0.5),
whereas a perfect model would be correct all the
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time (AUC = 1.0). We validated the ordinary model
(model no. 1) against the random effects models
(models nos. 2 and 3), and again between the spa-
tially unstructured random effects and the spatially
structured random effects models (model no. 2 and
model no. 3, respectively).

After obtaining consent, a total of 2,040 school-
children, 6 to 15 years of age were enrolled into the
study from the 20 selected primary schools in the
two districts, Kafue and Luangwa of Zambia. Of
these enrolled children, 1,912 (94%) provided urine
samples for parasitological examination, and hence
this sample served as our final study cohort.

Results

Prevalence and intensity of infection 

Table 1 shows a summary of the prevalence and
intensity of infection of the schoolchildren from the

20 primary schools. The mean prevalence rate for
the two districts was 9.6% (range = 0-36.1%). The
mean prevalence was slightly higher in Kafue dis-
trict, although not significant, than that in Luangwa
district (10.9% versus 8.4%). The intensity of infec-
tion among positives had a mean of 31.4 eggs/10 ml
of urine (range = 0-120 eggs/10 ml of urine).
However there was a significant difference in the
mean intensity of infection, with 40.2 (range = 3-
53.1) eggs/10 ml of urine observed in Kafue district
and 22.6 (range = 0-116.0) eggs/10 ml of urine in
Luangwa district.

Table 2 shows the relative number and percentage
of schoolchildren, stratified by different intensity
levels, and compares the overall geometric mean of
S. haematobium egg counts between schoolchildren
from plateau and valley schools. No significant dif-
ference in prevalence of infection was observed
between the plateau and the valley for moderate
infection to no infection. However, in the heavy

District School Altitude of school No. examined No. positive Prevalence* 
(%)

Geometric mean egg count
(eggs/10ml)±

Kafue
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Luangwa
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Chilileka
Hachipilika
Kasaka
Lishiko
Muchuto
Nanduba
Siamikobo
Gota gota
Kabwadu
Mafungautsi

Kakaro
Luangwa
Chirirwe
Janeiro
Kapoche
Katondwe
Kaunga
Kavalamanja
Mwalilia
Mwavi

Plateau
Plateau
Plateau
Plateau
Plateau
Plateau
Plateau
Valley
Valley
Valley

Plateau
Plateau
Valley
Valley
Valley
Valley
Valley
Valley
Valley
Valley

94
96
98
99
94
97
91
102
83
92

91
85
102
104
102
102
81
104
100
95

16
3
2
33
8
35
1
3
2
2

2
2
9
1
4
17
11
0
6
28

17.0
3.1
2.0
33.3
8.5
36.1
1.1
2.9
2.4
2.2

2.2
2.4
8.8
1.0
3.9
16.7
13.6
0
6.0
29.5

120
28.6
12.0
81.1
14.0
50.7
3.0
18.4
20.6
53.1

16.7
3.6
12.6
18.0
7.8
25.3
4.7
0
116.0
21.6

Table 1. Prevalence and intensity of urinary schistosomiasis infection in the 20 mixed-sex schools selected in the districts of
Kafue and Luangwa in Zambia.

*Calculated as percentage of the positives from those who submitted urine samples
±Only positives were considered into the school geometric mean egg count
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infection category significant differences in infection
rates were observed. For infection intensity, given as
geometric mean egg counts, significant differences
were found between schoolchildren on the plateau
(58 eggs/10 ml of urine, 95% confidence interval
(CI) = 38-87 eggs/10 ml of urine) and those from the
valley (18 eggs/10 ml of urine; 95% CI = 13-26) at
P <0.001.

The model-building strategy considered the same
fixed-effects covariates with a range of additional
random effects, and proposed the use of DIC for
model selection. Table 3 shows the DIC for the three
estimated models. Model 2 had the lowest DIC and
was therefore considered the best fitting one (DIC =
1730.2, 1592.0 for models 1 and 3, respectively,
versus DIC = 1590.8 in model 2). However, the dif-
ference, 1.2, between models 2 and 3 implies that
the two models cannot be distinguished and are
equally well fitting. The posterior estimates of fixed
effects, based on model 2, are given in Table 4. The
risk of urinary schistosomiasis was found to be
lower in children aged 5 to 9 years compared to

those aged 10 to 15 years (OR = 0.69; 95% BCI =
0.50-0.95). Children living on the plateau were
associated with increased risk of urinary schistoso-
miasis compared to those in the valleys (OR = 1.64;
95% BCI = 1.36, 1.96). Increased risk was also
observed between urinary schistosomiasis and
NDVI (the mean Dec-Nov biannual composites of
NDVI) with OR = 1.04 (95% BCI = 1.00-1.07), and
a similar positive relationship was obtained between
snail abundance and risk of infection (OR = 1.03;
95% BCI = 1.00-1.05).

Spatial heterogeneity in prevalence of infection

Figure 2 shows spatial random effects of 20 com-
munities from where the sampled children were
drawn. Evidently, the risk of infection varied with
location. The regression residuals derived from
model 2 were assessed for spatial autocorrelation,
through the use of a semi-variogram. Figure 3 indi-
cates a lack of spatial correlation among the 20
communities, thus all possible variability in infec-
tion has been adequately explained by the random
effects logistic regression model (equation 2).

Figure 4 shows the ROC analysis results for the
three models fitted above. The solid black reference
line represents equal trade-offs between sensitivity
and specificity of the prediction modelling. The ref-
erence line has an area under the ROC curve (AUC)

Characteristics value* No. (%) of schoolchildren P

Plateau region
(n = 669)

Valley region
(n = 1243)

Urinary schistosomiasis infection 

intensity (eggs/10 ml of urine):

No infection (0)

Light infection (1-100)

Moderate infection (101-400)

Heavy infection (>400)

Geometric mean egg count (95% CI)‡

571 (85)

67 (10)

11 (2)

20 (3)

58 (38 to 87)

1156 (93)

78 (6)

5 (0.4)

4 (0.3)

18 (13 to 26)

ns

ns

ns

0.001

0.001

Table 2. Schoolchildren from Luangwa and Kafue districts living within the two sampled ecological zones, plateau and valley,
stratified by infection intensity. Values are numbers (%) of children unless stated otherwise   

*Comparison between regions was done using Chi-square test for different infection intensity levels or t-test for geometric mean egg counts
‡Only infection positive schoolchildren were included, (plateau, n = 98; valley, n = 87); 95% CI = 95% confidence interval

Model D
_

p
D

DIC

Ordinary (fixed effects) logistic model
Unstructured heterogeneity effects
Spatially structured effects

1716.02
1544.84
1549.16

7.08
22.96
21.43

1730.2
1590.8
1592.0

Table 3. Deviance information criteria (DIC) for three logistic
regression models fitted to the data.
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Table 4. Variables and fixed effects in the univariate logistic model and multiple spatial logistic model (model 2) of urinary
schistosomiasis. Given are odds ratios (OR) and 95% confidence intervals (CI).

Variable Univariate Multivariate

OR (95% CI) P OR (95% CI) P

Sex
Male
Female

Age
5-9 years
10-15 years

Altitude
Plateau
Valley

NDVI
Tmax
Snail abundance

0.79 (0.58, 1.07)
1.00

0.73 (0.54, 1.00)
1.00

1.20 (1.09, 1.32)
1.00
0.93 (0.91, 0.96)
0.95 (0.91, 1.00)
1.26 (1.11, 1.43)

0.132

0.051

0.01

0.001
0.045
0.001

1.19 (0.87, 1.63)
1.00

0.71 (0.51, 0.96)
1.00

1.64 (1.36, 1.96)
1.00
1.04 (1.00, 1.07)
0.98 (0.93, 1.04)
1.03 (1.00, 1.05)

0.267

0.023

0.01

0.034
0.303
0.043

Fig. 3. A semivariogram of deviance residuals obtained from
the random effects logistic regression model (model 2).

Fig. 2. A caterpillar plot showing spatial random effects (cir-
cles) at the 20 communities samples were collected. Error bars
show 95% Bayesian credible intervals. The horizontal dotted
line shows the zero effect. 
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equal to 0.50. The AUC for the ordinary logistic
regression model (model 1) is 0.61, while for the
two random effects models the AUC are 0.74 for
both models 2 and 3. The overall predictive per-
formance of random effects models was higher than
the ordinary model. The AUC of 0.74 in model 2
implies that the prevalence of urinary schistosomia-
sis infection is as high as 73.8%.

Discussion

The study examined small-scale heterogeneity in
prevalence of infection from a sample of 1,912
schoolchildren drawn from 20 schools in Kafue and
Luangwa districts, Zambia. We found evidence of
heterogeneity in risk of infection at a micro-geo-
graphical level. Studies dealing with quantification
of such small-scale heterogeneities and their use in
targeting control initiatives are relatively few
(Utzinger et al., 2003a), despite the focal nature of
schistosomiasis (Brooker and Michael, 2000;
Brooker et al., 2002). Substantial variation in expo-

sure to schistosomiasis, even within endemic com-
munities, has been reported in Brazil  (Bavia et al.,
2001), Côte d’Ivoire (Raso et al., 2005) and
Kenya (Clennon et al., 2004), but such evidence
has been lacking in Zambia (Michelson, 1989).
Heterogeneity, caused by spatial aggregation of
schoolchildren, would inform appropriate adjust-
ments in planning control interventions and target-
ing of limited resources. The search for risk factors,
i.e. behavioural and environmental determinants
will have to be more localized if the extent of their
influence on transmission dynamics should impact
on control programmes.

With regard to prevalence, our study found a rel-
atively low rate of infection, with no significant dif-
ferences between the two districts. This is due to the
fact that high prevalence rates in both districts were
found in schools located within the same altitude
range without major climate differences. Our obser-
vation of non-significant variations in prevalence
rates amongst the surveyed schools compares well
with Mukaratirwa et al. (1999), who reported simi-
lar transmission intensities in this climatic region in
Zimbabwe. However, significant differences were
observed between young and older children, and
between children from valleys and the plateau.
These observed differences are associated with the
increased-risk behaviour of older schoolchildren
who frequently contacted schistosome-infested
water for both domestic and livestock purposes
(Mungomba et al., 1995). We observed, during the
dry season, that schoolchildren in the schools on the
plateau tended to have a higher degree of water-con-
tact than those in the schools of the valley. The rea-
son is that the water sources for domestic and live-
stock purposes remain relatively unlimited due to
perennial rivers flowing through such as the
Zambezi River. The national schistosomiasis control
programme should consider provision of safer alter-
native water sources for both domestic and livestock
purposes, during the dry season when the only avail-
able water sources are collected pools that are often
infested with S. haematobium-infected snails. Public
health interventions tailored to improving the water

Fig. 4.  Receiver operating characteristics (ROC) analysis for
the ordinary and random effects models of prevalence of uri-
nary schistosomiasis. The solid black line is the reference line
which represents equal trade-off.
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sources should be complemented with effective
health education in both schools and communities
on participatory hygiene and sanitation (Utzinger et
al., 2003b, Singer and Castro, 2007).

Regarding environmental factors of infection, our
results indicate that NDVI and the abundance of
intermediate host snails (Bulinus globosus) have a
significant influence on the transmission of urinary
schistosomiasis in Zambia. Malone et al. (2001)
observed that successful development of an interme-
diate host snail-parasite system within a given eco-
logical setting was significant for maintaining schis-
tosomiasis transmission in a community.

Our observation also compared well with
Mukaratirwa et al. (1999) who reported a range of
128 to 160 for NDVI and 20° to 21°C for Tmax as
being optimal for the development and mainte-
nances of a B. globosus-S. haematobium system,
and explained urinary schistosomiasis transmission
in a similar climatic environment in Zimbabwe.
However, there were no significant variations
observed between the schools on the plateau and in
the valley. This is because schools that had relative-
ly higher infection risk and snail abundance were
found in the same altitude range with no significant
differences in temperature.

From the point of control, it is important that an
integrated approach within a primary health care
system is adopted by ensuring that infection source
reduction through the control of intermediate host
snails is combined with chemotherapy for morbidi-
ty control. Our study also emphasize the need for
comparing environmental predictors at finite spatial
scales if micro-epidemiological mapping of infection
risk should be of value in control programmes.
Furthermore behavioural factors, such as water-
contact activities, are particularly important for
small-spatial scale risk mapping.

Our results show that the risk of infection with
urinary schistosomiasis is heterogeneous, and there-
fore there is need to undertake further localized
studies, based on questionnaires, to establish expo-
sure risk factors. For example, we intend to deter-
mine water-contact patterns and then combine these

with malacological surveys. Further to this, instead
of using schools as spatial points, it is suggested that
future studies focus on households in high-risk
areas. This would avoid spatial aggregation, but
allow appropriate finite-scale spatial mapping, and
thus  offer further insight into the micro-epidemiol-
ogy of schistosomiasis, and therefore help to tailor
control programmes at local and relevant levels.
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