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Planning Wireless Networks by Shortest Path ∗

C. Mannino, S. Mattia, A. Sassano †

Abstract

Transmitters and receivers are the basic elements of wireless networks and are charac-
terized by a number of radio-electrical parameters. The generic planning problem consists
in establishing suitable values for these parameters so as to optimize some network per-
formance indicator. The version here addressed, namely the Power Assignment Problem
(pap), is the problem of assigning transmission powers to the transmitters of a wireless
network so as to maximize the satisfied demand. This problem has relevant practical appli-
cations both in radio-broadcasting and in mobile telephony. Typical solution approaches
make use of mixed integer linear programs with huge coefficients in the constraint matrix
yielding numerical inaccuracy and poor bounds and cannot be exploited to solve large
instances of practical interest. In order to overcome these inconveniences, we developed
a two-phase heuristic to solve large instances of pap , namely a constructive heuristic
followed by an improving local search. Both phases are based on successive shortest path
computations on suitable directed graphs. Computational tests on a number of instances
arising in the design of the Italian Digital Video Broadcasting are presented.

Keywords: wireless network optimization, mixed integer programs, exponential neigh-
borhood search.
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1 Introduction

A wireless network consists of a set of radio transmitters distributing services to a set of
receivers scattered over a target area. Transmitters and receivers are characterized by their
geographical position and by a number of radio-electrical parameters. Due to the very large
number of receivers and to the uncertainty on their exact location, several neighboring re-
ceivers are typically grouped into a single representative one. A standard aggregation tech-
nique consists in subdividing the area of interest (target area) into a set of smaller rectangular
areas, called testpoints. Each testpoint resumes the behavior of all receivers in the square.

As recommended by international standardization bodies, the testpoints ”grid” is univer-
sally adopted as a model to evaluate the quality of the service offered by wireless networks,
both in the planning and in the operational phase. In particular, the service offered by the
transmitters of the network is evaluated in the center of each testpoint; each testpoint is
assigned to a specific transmitter and is covered if (a measure of) the quality of the received
(useful) signal exceeds a prescribed threshold value. Due to this practice, most optimization
models also refer (often implicitly) to the testpoints grid ([4, 10]). The optimization process
consists in establishing suitable values for a subset of the radio-electrical parameters associ-
ated to the transmitters and the receivers of the network. The remaining parameters are fixed
to some reference value. Different (versions of) wireless network planning problems stem out
from different parameters configurations [10]. In most cases the objective is to maximize the
number (or the population) of the covered testpoints. Several algorithms have been devel-
oped to solve different planning problems. Many of these are based on Mixed Integer Linear
Programming (MILP) formulations (see [3, 8, 9, 11] for mobile planning, [10, 14] for broadcast-
ing). However, as pointed out by several authors (see, for example, [11]), these formulations
suffer from weakness of the respective bounds and, even worst, from numerical inaccuracy: in
practice, they fail to solve even small/medium sized instances of practical interest.

The problem here addressed, namely the Power Assignment Problem (pap), is the problem
of establishing transmission powers and testpoint assignments to the active transmitters so
as to maximize the covered population, when all other radio-electrical parameters (of trans-
mitters and receivers) are fixed. Natural instances of the pap arise in the standard planning
process of large broadcasting networks. In particular, when re-planning of operating networks
must be undertaken in order to satisfy new constraints imposed by network adjustments,
new international agreements, or by the introduction of new devices. Indeed, the application
which motivated this research is the actual replacement, in broadcasting networks, of the
analog technology with the digital one, which is occurring in Italy and all over Europe. The
existence of already operating networks and the restrictions imposed by a recent international
agreement ([13]) strongly constraint the planning problem, which can be reduced to solving
a sequence of independent paps, namely one for each available transmission frequency. The
corresponding instances are still too large to be attacked by exact methods, and we resorted
to heuristic approaches. In particular, we show that, under specific conditions, pap can be
reduced to identify and delete the negative weight directed cycles of a suitable graph. By
relaxing the original problem these conditions can be met and the corresponding graph is
built. Both negative cycle detection and final power assignment are found by means of a
standard shortest path algorithm. To improve the quality of this initial solution, we devel-
oped a local search approach by defining an effective exponential neighborhood ([1]) which may
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be searched in poly-time, again by solving a sequence of shortest path problems on suitable
directed graphs.

The paper is organized as follows. The basic technological elements are introduced in
Section 2 along with the formal statement of the pap. In Section 3 we show how to heuris-
tically solve pap by shortest path computations. In Section 4 we describe the exponential
neighborhood search. Finally, in Section 5 we give computational results over a number of
real-life instances arising in the re-planning of the Italian national broadcasting network.

2 The Power Assignment Problem

A wireless network distributes its services from a set T of transmitters to receivers over a
portion of territory, referred to as target area. The transmitter configuration is defined by a
number of physical and radio-electrical parameters, such as geographical location, activation
state (on/off), transmission frequency, emission power, polarization, antenna tilt, time delay,
etc. Receivers need also to be configured; most often, the only parameter taken into account
is the antenna orientation, which in turn depends on the choice of a reference transmitter
(server). The great majority of the approaches presented in the literature consider emission
powers and/or frequencies and/or server assignments as main decision variables, while all
other parameters are fixed to some pre-defined values or neglected. In this context, since
transmission frequencies get fixed to reference values, the decision variables are associated
with emission powers and reference transmitters.

The power emitted by a transmitter in every direction is described by its antenna diagram
or radiation pattern. The radiation pattern is the two- or three-dimensional spatial distri-
bution of radiated energy as a function of the observer’s position along a path or surface of
constant radius ([5]).

1d +
d
1d −

Figure 1: Antenna Diagram: example

Usually, for network planning purposes only horizontal diagrams are taken into account.
The angular dependence of the horizontal radiation patterns is approximated by specifying
thirty-six values attached to angles from 10 degrees to 360◦ ([6]): the corresponding directions
are numbered from 1 to 36. Consequently, the radiation pattern of each transmitter can be
described by a set of 36 variables, each representing the power emitted in a specific direction.
So, for all t ∈ T , let Dt = {(t, d) : d = 1, . . . , 36} be the set of directions of t: we introduce
a power variable ps for all s ∈ Dt, each ranging in the interval [ǫ, PMax], where ǫ > 0 is a
positive small constant. We assume that if ps = ǫ for all s ∈ Dt, then t is switched off. Each
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element (t, d) ∈ Dt can be regarded as an ”elementary transmitter”, later referred to as a
d-transmitter. In order to yield feasible antenna diagrams, the powers ps : s ∈ Dt emitted by
each d-transmitter of a same transmitter t must obey simple technological laws ([6]): namely,
their ratio cannot exceed specified thresholds, which can be expressed by following family of
inequalities, denoted as design constraints:

ps

pq

≤ ∆sq t ∈ T, s, q ∈ Dt (1)

In particular, we consider two types of design constraints. Those involving only adjacent
directions s = (t, i), q = (t, i+1), for i = 1, . . . , 36, with ∆sq = ∆adj = 100.5 and those between
any pair of directions s, q ∈ Dt, for which ∆sq = ∆ = 102.4. Lower and upper bounds are

represented by the following family of linear constraints:

ǫ ≤ ps ≤ PMax t ∈ T, s ∈ Dt (2)

A power vector satisfying all design constraints (1) and all bounds (2) is said to be feasible.

In order to evaluate the quality of the received signals, the target area is decomposed into
a set R of “small”, rectangular areas called testpoints (TPs). Each testpoint, identified by its
coordinates, represents the behavior of all receivers within it. The number of customers in
each testpoint r ∈ R is denoted by cr ∈ Z+ (for S ⊆ R, c(S) =

∑
r∈S cr).

The signal emitted by a transmitter propagates according to its antenna diagram and to
territory orography. The power density received in TP r ∈ R from transmitter t is proportional
to the emission power ps of the d-transmitter s = (t, d) ∈ Dt in the direction d which is
”closest” to the center of r. Observe that, denoting by R(s) ⊆ R the set of testpoints reached
by a d-transmitter s, we have R(s)∩R(q) = ∅ for all s, q ∈ Dt, s 6= q, for every t ∈ T . In other
words, at most one out of the 36 d-transmitters associated with a same transmitter t ∈ T

will be received in r ∈ R. For all r ∈ R we denote by D(r) the set of d-transmitters received
in r. Now, if we define Prs the power density received in r ∈ R from s ∈ D(r), we have
Prs = ars · ps, where coefficient ars ∈ IR+ is the fading factor and is typically calculated, for
each r ∈ R, s ∈ D(r), by means of a suitable propagation model (see [12]). We refer to matrix
[A] = [ars]r∈R,s∈D(r) as the fading matrix. In most cases of practical interest, the coefficients
of the fading matrix may differ by several order of magnitudes (the ratio between the largest
and the smallest coefficient is typically around 1012). For this reason, practitioners prefer to
represent ars by using the so called dB form adB

rs , which is defined as the integer closest to the
quantity 10 log10 ars. The approximation error introduced by this representation is considered
tollerable for practical planning purposes. Indeed, other relevant quantities, such as emission
powers and antenna design coefficients, are generally represented in dB form. In particular,
we have ∆dB

adj = 5dB and ∆dB = 24dB.
We briefly describe now how service quality assessment is carried out. Informally, a TP r

is said to be covered if the service is received in r above a given quality level. Among all d-
transmitters received in a TP, exactly one is selected as the reference transmitter (or reference
signal or simply server), the major (possibly the unique) candidate to ensure the service in the
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TP. Then, the coverage condition is expressed by the following inequality, denoted as Signal
to Interference Ratio inequality:

∑
s∈U(r,hr) Prs

∑
s∈I(r,hr) Prs

≥ br, (3)

where constant br is the receiver sensitivity, hr is the reference transmitter of r, U(r, hr) ⊆
D(r) is the set of wanted signals in r and I(r, hr) ⊆ D(r) is the set of interfering signals in
r. The ratio in the left hand side of (3) is the Signal to Interference Ratio (SIR). Both sets
U(r, hr) and I(r, hr) depend on the selected server hr ∈ D(r) (the exact definition of the sets
W and U in DVB technology can be found in [10]). Once again, the threshold br is provided
by technical manuals in dB form bdB

r .
Due to the relation between emitted and received powers above described, the coverage

constraint for a testpoint r can be rewritten as a function of the emitted powers:

∑
s∈U(r,hr) arsps

∑
s∈I(r,hr) arsps

≥ br (4)

Summarizing, for a given emission power vector p̃, deciding whether TP r is covered or
not consists in finding a reference transmitter hr ∈ D(r) satisfying (4) or proving that none
exists. Therefore, coverage evaluation in TP r is carried out by enumerating all |D(r)| SIRs
inequalities associated with the candidate reference transmitters. If r is covered, the receiver
chooses as reference transmitter the one maximizing the SIR. The proof of the following
remark can be found in [10]:

Remark 2.1 [10] The coverage evaluation procedure can be carried out in linear (amortized)
time O(|D(r)|).

We are now able to introduce a more formal statement of our specific planning problem.
Let D = {(t, d) : t ∈ T, d = 1, . . . , 36}. An assignment h ∈ D|R| of reference transmitters to
all TPs is called server assignment.

Problem 2.2 (Power Assignment Problem (pap)) Given a network (T,R), the fading
matrix [A]s∈D(r),r∈R and a power upper bound PMax ∈ IR+; suppose that a transmission

frequency is given for each t ∈ T . Find a server assignment h ∈ D|R| and a feasible power
vector p ∈ IR|D| such that the population c(p, h) of the covered testpoints is maximized.

3 Reducing Power Assignment to shortest path

Problem 2.2 can be readily cast into a Mixed Integer Linear Program (see, for example, [10]).
However, it is common experience that the MILP formulations corresponding to instances of
some practical interest are far from being solvable by standard Branch&Cut, for a number of
reasons. First, these instances contain a large number of binary variables, which results in
huge search trees. Second, the coefficient matrix is ill conditioned as the entries may differ
by several orders of magnitudes. As a consequence, the time to perform standard simplex
operations increases and, even worst, the solutions produced by the lp solver are not always
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reliable. Third, the constraints associated with the SIR inequalities contain the notorious
BIG M coefficient which may yield poor relaxations. For this reason we decided to resort to
an effective heuristic approach. In order to introduce our methodology we need the following:

Definition 3.1 A set of testpoints S ⊆ R is coverable iff there exist a server assignment h

and a feasible power vector p such that all testpoints in S are covered.

The above definition reduces for pap to finding h̄ ∈ DR and p̄ ∈ IRD satisfying the
following system of inequalities:

COV (S, h̄)

∑
s∈U(r,h̄r) arsp̄s

∑
s∈I(r,h̄r) arsp̄s

≥ br r ∈ S (5)

p̄s

p̄q

≤ ∆sq t ∈ T, s, q ∈ Dt (6)

ǫ ≤ p̄s ≤ PMax t ∈ T, s ∈ Dt (7)

We can now rephrase pap as the problem of finding a set S ⊆ R of testpoints and a server
assignment h ∈ DR such that COV (S, h) is feasible and the population c(S) of S is maximum.

Let us consider now the following family of linear inequalities:

COV (R)

∑
s∈U(r,hr) arsps

∑
s∈I(r,hr) arsps

≥ br r ∈ R,hr ∈ D(r) (8)

ps

pq

≤ ∆sq t ∈ T, s, q ∈ Dt (9)

ǫ ≤ ps ≤ PMax t ∈ T, s ∈ Dt (10)

It is easy to see that, for all possible S ⊆ R and all server assignment h, with hr ∈ D(r),
we have COV (S, h) ⊆ COV (R). Thus pap can be rephrased as the problem of finding a
suitable subset of constraints (8) to remove so that the remaining family of constraints:

(i) is feasible;

(ii) contains at most one SIR inequality for each r ∈ R

and the (iii) the population of the associated testpoints is maximum.
Our heuristic approach to the solution of pap is based on a number of simplifying but

quite reasonable technological assumptions. First observe that, due to the wide variability
of the fading coefficients and emission powers, the signals received in a testpoint typically
differ one from another by order of magnitudes. More specifically, for each r ∈ R, if r is
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covered with reference signal hr ∈ D(r), in most cases there will be only one ”strongest”
useful signal, namely hr, and the contribution of the other useful signals to the numerator
of the SIR inequality (4) can be neglected. So, if we assume that this condition is always
satisfied, we rewrite (8) as:

arhr
phr∑

s∈I(r,hr) arsps

≥ br r ∈ R,hr ∈ D(r) (11)

and r is covered if at least one of the (|D(r)|) constraints (11) associated with its potential
servers is satisfied. Similarly, if we assume that for each r ∈ R, hr ∈ D(r) there will be only
one strongest interfering signal, all other interfering signals can be neglected. However, since
emission powers are not known in advance, for each r ∈ R, hr ∈ D(r), we split (11) into
|I(r, hr)| inequalities of the form

arhr
phr

artpt

≥ br t ∈ I(r, hr) (12)

and r is covered with reference signal hr iff all of the constraints (12) associated with r

and hr are satisfied.
Now, similarly to COV (R), if we define COV2(R) as the following family of constraints:

COV2(R)

arhr
phr

artpt

≥ br r ∈ R,hr ∈ D(r), t ∈ I(r, hr) (13)

ps

pq

≤ ∆sq t ∈ T, s, q ∈ Dt (14)

ǫ ≤ ps ≤ PMax t ∈ T, s ∈ Dt (15)

then pap can be rephrased as the problem of removing a suitable subset of constraints of type
(13) from COV2(R) so that the remaining constraints:

(i) are feasible;

(ii) contain at most one family of SIR inequalities for each r ∈ R, namely the family as-
sociated with a specific reference signal hr ∈ D(r), and all the associated interferers
t ∈ I(r, hr).

and, in addition, (iii) the population of the covered testpoints is maximized.

Observe now that COV2(R) can be rewritten in the following equivalent way:

COV dB
2 (R)

10 log10

arhr
phr

artpt

≥ 10 log10 br r ∈ R,hr ∈ D(r), t ∈ I(r, hr) (16)

10 log10
ps

pq

≤ 10 log10 ∆sq t ∈ T, s, q ∈ Dt (17)

10 log10 ǫ ≤ 10 log10 ps ≤ 10 log10 PMax t ∈ T, s ∈ Dt (18)
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By introducing, for all t ∈ T , s ∈ Dt, a variable pdB
s = 10 log10 ps, and by expressing all

constants in dB form, by simple algebra we obtain:

COV dB
2 (R)

pdB
hr

− pdB
t ≥ bdB

r + adB
rhr

− adB
rt r ∈ R,hr ∈ D(r), t ∈ I(r, hr) (19)

pdB
s − pdB

q ≤ ∆dB
sq t ∈ T, s, q ∈ Dt (20)

ǫdB ≤ pdB
s ≤ P dB

Max t ∈ T, s ∈ Dt (21)

By adding an extra, reference power variable p0, we can replace each (21) with a pair

pdB
s − p0 ≤ P dB

Max (22)

p0 − pdB
s ≤ −ǫdB (23)

Thus, COV dB
2 (R) can be rewritten in compact form as

pdB
j − pdB

i ≤ lij ij ∈ A. (24)

The family of solutions to (24) is the solution set of the dual of a shortest path problem
on the weighted graph GdB(D,R) = (V,A, l), with V = D∪{0}. Each arc ij ∈ A corresponds
to one of the constraints of COV dB

2 : a testpoint arc is an arc corresponding to a constraint of
type (19). If (r, hr, t) is a constraint of type (19), we denote by a(r, hr , t) the corresponding
testpoint arc. It is well known (see, for example, [2]) that (24) has a solution iff GdB(D,R)
does not contain a negative weight directed cycle. Also observe that each negative cycle in
GdB(D,R) corresponds to a infeasible subsystem of COV dB

2 (R). We have the following:

Lemma 3.2 Let C be a negative cycle of G(V,A, l). Then C contains a testpoint arc.

Proof. Let p̃dB
s = ǫdB for all s ∈ D, and let p̃0 = 0. It is easy to see that p̃ satisfies con-

straints (20), (22) and (23). As a consequence, any infeasible subsystem of COV dB
2 contains

at least one constraint of type (19). 2

The above lemma is the basis of a heuristic procedure to find a feasible subsets of con-
straints of COV dB

2 . The idea is to iteratively identify a negative weight dicycle in GdB(D,R)
and remove suitable subset of testpoint arcs meeting the negative dicycles. In particular, if
C is a negative dicycle, then we select a testpoint arc a(r, hr , t) ∈ C and remove it from the
graph. Intuitively, this corresponds to renounce covering r with reference signal hr. As a
consequence, all testpoint arcs corresponding to the different interferers I(r, hr) of r and hr

must also be dropped from GdB(D,R). The procedure stops when no negative dicycles are
left. The following scheme summarizes what above discussed:

Procedure Cycle Detect

1. Build the graph G0 = G(R,D) = (V,A, l).
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2. While Gi contains a negative weight dicycle Ci.

(a) Choose a testpoint arc a(r, hr, t) in Ci.

(b) Build Gi+1 by deleting all testpoint arcs corresponding to r, hr, i.e. remove the arc
set A(r, hr) = {a(r, hr , t) ∈ Gi : t ∈ I(r, hr)}.

(c) i := i + 1;

3. EndWhile.

4. Let q = i. Compute the shortest path lengths p̃s from 0 to s ∈ V in Gq.

Observe that Step 2.a and Step 2.b correspond to identifying a testpoint r, with ref-
erence signal hr and remove the corresponding constraints from COV dB

2 ; recall that there
are |I(r, hr)| such constraints. Let Gq(V,Aq) be the final graph, and let A

q
R be its test-

point arcs. Denote by R(Gq) the family of testpoints corresponding to some arcs in Gq, i.e.
R(Gq) = {r ∈ R : ∃a(r, hr , t) ∈ Aq}. Finally denote by COV dB

2 (Gq) the family of con-
straints corresponding to the arcs of Gq. Observe that the solution p̃ returned by Procedure
Cycle Detect is feasible for COV dB

2 (Gq).

Lemma 3.3 Let p̃dB be a feasible solution to COV dB
2 (Gq). Then all testpoints in R(Gq) are

covered.

Proof. By construction, if a(r̄, h̄r, t̄) ∈ Aq, then a(r̄, h̄r, t) ∈ Aq for all t ∈ I(r̄, h̄r). This
implies that COV db

2 (Gq) contains all constraints (19) associated with r̄, h̄r, and r̄ is covered
with reference signal h̄r. 2

The identification of a negative dicycle Ci in Gi can be performed by applying the Bellman-
Ford algorithm, which either finds Ci or returns a feasible solution p̃ to COV db

2 (Gi). In order to
establish how to select the arc at Step 2a. we tested several criteria. The best one corresponds
to selecting the arc which appeared most often in the negative cycles detected so far; ties are
broken by selecting the one minimizing the population of the corresponding testpoint.

4 Exponential Neighborhood Search

The solution (p̃, h̃) to pap returned by Procedure Cycle Detect is computed by neglecting
the effect of multiple useful and interfering transmitters. In order to increase its quality
we developed an efficient exponential neighborhood search which takes into account these
contributions to the actual SIR.

Neighborhood structure Let (p̄, h̄) be the current solution. For any t̄ ∈ T define Nt̄(p̄, h̄) =
{(p̃, h̃)} as the family of solutions obtained by letting p̃s = p̄s for every s ∈ Dq, q ∈ T −{t̄}. In
other words, Nt̄(p̄, h̄) is the family of solutions which can be obtained from the original one by
changing the power vector pt̄ = (p1,t̄, . . . , p36,t̄) associated with the directions d ∈ Dt of a single
transmitter t̄ ∈ T , and re-assigning reference signals in all possible ways. We suppose that,
for all t ∈ T and s ∈ Dt, pdB

s belongs to a discrete set of integer dB values L = {L1, . . . , Lq}.
Finally, we define the neighborhood N(p̄, h̄) of a solution (p̄, h̄) as N(p̄, h̄) =

⋃
t∈T Nt(p̄, h̄).
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Neighborhood search Exploring the neighborhood N(p̄, h̄) consists in searching each
Nt, for all t ∈ T , and then choosing the best configuration encountered. Searching Nt is
equivalent to finding the configuration (p∗, h∗)t ∈ Nt(p̄, h̄) so that c((p∗, h∗)t) is maximized.
Since powers are fixed for all z ∈ T − {t}, we only need to establish the best power vector
p∗t = (pt,1, . . . , pt,36)

∗ for t and the corresponding new reference signals h∗ ∈ DR. Specifically,
p∗t must be feasible - i.e. satisfy all adjacent and non-adjacent design constraints (1) - and
must maximize coverage.

Observe that the number of different feasible vectors h ∈ Nt grows exponential in |R|
and |T |, being in correspondence with the feasible assignments of TPs to reference signals.
However, we will show that the optimum solution in Nt can be found in polynomial time (in
|R| and |L|). Let ct

ǫ(p̄, h̄) be the coverage of the solution obtained by (p̄, h̄) by switching off
t ∈ T , i.e. by letting (pt,1 = . . . = pt,36 = ǫ). Denote by cdk the coverage increase in direction
d with respect to ct

ǫ(p̄, h̄) when pdB
t,d = Lk ∈ L. This coefficient can be efficiently computed

by the coverage evaluation procedure described in Section 2 (Remark 2.1) and it can assume
positive, zero or negative value. Recall that the coverage evaluation procedure also establishes,
for each testpoint r ∈ R(t, d) (the family of testpoints reached by the d-direction of t), the
corresponding reference signal h̃r. Finally, recall that R(t, d1)∩R(t, d2) = ∅ whenever d1 6= d2.

Now, in order to find the optimum solution in Nt(p̄, h̄), we first find the optimum solution
when the power of t in its first direction (t, 1) is fixed to some reference value (in L). In other
words, We want to find the optimum configuration for t in Nt(p̄, h̄) when pdB

(t,1) = Lk ∈ L.
We show that this can be done by solving a sequence of shortest path problems in a suitable
acyclic directed graph Gk = G(k,∆adj) = (Vk, Ak), for k = 1, . . . , q. Each vertex vd,ℓ ∈ Vk of
Gk is associated with a direction d and a feasible power level Lℓ ∈ L. In particular, v1,k ∈ Vk,
i.e. there is a vertex associated with direction 1 and power level Lk; then we have a vertex for
every other direction and every power level in L, namely vdℓ ∈ Vk, 2 ≤ d ≤ 36, ℓ = 1, . . . , q.
Finally, Vk contains an extra node w. The arcs of Gk are associated with the pair of power
levels satisfying the adjacency design constraints pdB

s − pdB
u ≤ ∆dB

adj for all adjacent directions

s and u. Namely, for d = 1, . . . , 35, (vd,ℓ, vd+1,g) ∈ Ak iff |Lℓ − Lg| ≤ ∆dB
adj ; (v36,ℓ, w) ∈ Ak for

all v36,ℓ ∈ Vk such that |Lℓ −Lk| ≤ ∆dB
adj . Finally, with every arc (vd,ℓ, vd+1,g) we associate the

weight cdℓ.

v1,K = v1,4 

W

d1 2

0 1 2 3 4 5-1d3

d4 0 1 2 3 4 5-1

d5

0 1 2 3 4 5-1d2

0 1 2 3 4 5-1

v2,7v2,6

v5,7

L1 L2 L3 L5 L6 L7

Figure 2: Example of neighborhood graph

An example of this construction is shown in Fig.2, where, for the sake of simplicity, we
have supposed only 5 directions, 7 power levels L = {L1 = −1, L2 = 0, L3 = 1, L4 = 2, L5 =
3, L6 = 4, L7 = 5}, and ∆dB

adj = 1.
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It is easy to see that Gk is a layered graph. Also, it is immediate to verify that any power
vector (pdB

t,1 , . . . , pdB
t,36) ∈ L36 satisfying pdB

t,1 = Lk and all the adjacency design constraints, cor-
responds to the directed path m = {v1,k, v2,pt,2

, . . . , v36,pt,36
, w}. Moreover, the weight of m is

precisely the coverage increase with respect to ct
ǫ(p̄, h̄) when t is assigned powers pdB

t,1 , . . . , pdB
t,36.

Analogously, it is easy to see that any directed path m̃ = (v1,k, v2,ℓ2 , . . . , v36,ℓ36 , w) in Gk corre-
sponds to a power assignment for t, namely p̃dB

t,1 = Lk, . . . , p̃
dB
t,36 = Lℓ36 , satisfying all adjacency

design constraints (1). Recall now that feasible power assignments must satisfy both adjacency
and non-adjacency design constraints. We have the following:

Lemma 4.1 Suppose m̃ is a maximum weighted path in Gk, and suppose the corresponding
power assignment p̃t = (p̃dB

t,1 , . . . p̃dB
t,36)

t also satisfies all non-adjacent design constraints, then
p̃t is optimum in Nt(p̄, h̄).

As a consequence, a maximum path m∗
k in Gk whose corresponding power assignment

p∗k satisfies the non-adjacent design constraints solves the optimization problem in Nt(p̄, h̄),
when restricted to pdB

t,1 = Lk. Since Gk is layered, Gk is acyclic and m∗
k can be computed

by an O(|A|) shortest path algorithm ([2]). In order to ensure that also non-adjacent design

constraints are satisfied we define, for each Gk, k = 1, . . . , q a family G0
k, . . . , G∆dB

k of induced
subgraphs with the property that any directed path in Gi

k corresponds to a feasible power
assignment and any feasible power assignment corresponds to a path in some Gi

k.
Namely, let {−∆dB + Lk + i, . . . , Lk + i} be a set of ∆dB contiguous integer power values

including Lk, for i = 0, . . . ,∆dB . Define Li = L∩{−∆+Lk+i, . . . , Lk+i}. By definition, there
exists i ∈ 0, . . . ,∆dB such that every feasible power vector p̃t, with p̃t,1 = Lk satisfies p̃t,d ∈ Li,
for all d. Thus, we define Gi

k as the subgraph of Gk induced by the vertices corresponding
to the power levels in Li, plus vertex w. Any path m from v1,k to w in Gi

k corresponds to
a power assignment satisfying both adjacent and non-adjacent design constraints. Finally,
by solving ∆dB + 1 maximum path problems on the graphs G0

k, . . . , G
∆dB

k and choosing the
optimum one, we find the optimum solution in Nt(p̄, h̄). The Neighborhood Search procedure
is summarized in Table 4.

The Neighborhood Search procedure is embedded into a standard local search (LS) ap-
proach. Namely, starting from a given initial solution, the algorithm proceeds by searching
its neighborhood for an improving solution by applying Procedure Neighborhood Search: if
found, this becomes the new current solution and the search continues, otherwise the search
is stopped.

We apply our LS to the solution found by Procedure Cycle Detect. However, observe that,
by taking as initial solution the one with all d-transmitters to the minimum power ǫ (covering
no testpoints), the local search can be applied to find from scratch a heuristic solution to pap.

5 Computational results

We tested our heuristics on 56 real-life instances arising in the planning of the new DVB
networks in north Italy. Each instance corresponds to a Single Frequency Network, operating
at a specific frequency in the UHF band. These instances were generated by Fondazione Ugo
Bordoni, a major Italian research foundation, advising the Italian Ministry of Communica-
tion. The instances are described in Table 2, where the name in Column name is associated

11



——–——————————————————————————————————————

Procedure Neighborhood Search

Input: a pap instance, L = {L1, . . . , Lq}, initial solution (p̄, h̄)

For t ∈ T

For k = 1 to q

Build graph Gk.

For i = 0 to ∆dB

Build subgraph Gi
k of Gk

Find a maximum weighted path mi
k in Gi

k with associated solution (pi
k, hi

k)

Endfor

Endfor

Endfor

Return the best path m∗ found with associated solution (p∗, h∗)

————————————————————————————————————————-

Table 1: Neighborhood Search procedure

with the transmission frequency, column population and column # TPs is the total amount
of coverable population and coverable TPs, respectively, column # SIR is the total number
of constraints (8) (corresponding to the SIR inequalities), and column # transm. is the num-
ber of transmitters. Observe that the coverable population and TPs may differ slightly from
instance to instance.

The algorithms were implemented in C++ and run on a Intel Core 2 Duo T7500 / 2.2
GHz, with 4 Gb RAM. We compare our heuristic, which combines the Cycle Detection (CD)
procedure with the Local Search (LS) against the commercial solver ILOG-CPLEX version
11.1 ([7]), with default settings and one hour time limit, applied to a standard BIG M formu-
lation to pap which slightly extends the one presented in [10] to cope with multiple candidate
servers. We also compare it with the stand-alone versions of CD and LS.

The results are shown in Table 3, where column coverage is the percentage of covered pop-
ulation while sec. is the running time (in seconds), Column UB is the Upper Bound produced
by Cplex, while LB is the best coverage found by Cplex.

The values show that these instances are quite difficult to solve by Branch-and-Bound,
since Cplex is not able to solve any of them to optimality within time limit. For most of the
instances, Cplex is not able to produce a suitable feasible solution and in 11 cases over 56, it
is not even able to solve the lp relaxation. Moreover, these are regional instances, while in
the future, Fondazione Ugo Bordoni intends to generate and solve larger, national instances
of DVB planning.

The best approach resulted the one that combines the cycle-detection algorithm and the

12



local search. In fact, it strictly dominates both CD and LS in their stand-alone versions; also,
in 45 cases over 56, it is able to produce solutions which are better than the ones found by
cplex (in almost twice the running time).
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name population # TPs # SIR # transm.

F5 21069661 10901 15318 287
F6 21369393 11392 15000 206
F7 21004619 10945 15241 250
F8 21212563 11284 15315 223
F9 21368196 11097 15349 280
F10 20922187 10820 15230 231
F11 21399406 11150 15304 246
F21 20530081 10821 15333 228
F22 19543530 10182 15389 261
F23 20058458 10371 15404 257
F24 20150831 10482 15417 247
F25 19620998 10034 15406 269
F26 19680288 10115 15404 279
F27 20302469 10762 15318 214
F28 19908252 10290 15336 244
F29 20268812 10509 15303 228
F30 19525939 9976 15419 279
F31 20467330 10774 15288 227
F32 20041155 10428 15356 259
F33 20138351 10423 15331 262
F34 19866429 10260 15370 254
F35 20036065 10383 15340 241
F36 19668580 10134 15408 278
F37 19903572 10276 15444 278
F38 19899952 10252 15436 288
F39 20853718 10812 15377 235
F40 19685609 10019 15448 288
F41 20244427 10439 15413 248
F42 20727175 10639 15396 261
F43 19888074 10229 15360 258
F44 19897282 10192 15437 278
F45 20257987 10381 15399 258
F46 20166514 10372 15390 257
F47 20751799 10601 15397 244
F48 20167903 10285 15471 278
F49 19807479 10079 15434 290
F50 19836959 10152 15430 295
F51 20515163 10623 14907 229
F52 20178607 10251 15410 278
F53 20471954 10453 15378 263
F54 20664862 10499 15422 249
F55 20988971 10762 15428 255
F56 20721347 10503 15380 257
F57 20910003 10862 15359 240
F58 20125275 10220 15431 278
F59 20209295 10464 15398 252
F60 20888234 10638 15388 250
F61 20881567 10911 15376 238
F62 20774316 10505 15376 254
F63 20897163 10644 15396 250
F64 20298106 10530 15414 254
F65 20914758 10682 15391 266
F66 20425513 10700 15348 237
F67 20246201 10478 15400 251
F68 20724640 10727 15395 222
F69 19901820 10196 15277 219

Table 2: The instances



Name Cycle Detection (CD) Local Search (LS) CD + LS Cplex

coverage % sec. coverage % sec. coverage % sec. UB % LB %

F5 79,8418% 85,924 95,2727% 2033,27 95,2986% 1415,854 - 0,532149%
F6 41,6027% 94,224 40,4891% 660,707 46,4288% 768,83 52,3237% 47,9199%
F7 73,6214% 94,911 66,0285% 1394,22 84,3445% 982,584 96,864% 0,254587%
F8 57,688% 106,236 54,8027% 1379,88 63,34% 904,503 72,8185% 65,9537%
F9 80,1467% 97,235 91,9451% 1731,12 94,7761% 1607,865 - 0,0559523%
F10 74,7378% 88,468 62,3175% 1280,73 87,2839% 1069,881 98,8187% 1,94629%
F11 61,3924% 126,859 66,7614% 1047,59 74,9865% 1404,389 82,1221% 0,760367%
F21 40,1347% 121,602 36,8315% 747,88 45,3939% 1034,452 48,7% 46,3055%
F22 63,5942% 116,423 70,2906% 1294,07 74,834% 1026,95 78,0683% 0,178576%
F23 66,9851% 114,458 71,3575% 1429,51 79,2129% 1217,798 - 0%
F24 60,7148% 158,824 66,9607% 896,626 70,1393% 1297,454 73,9213% 69,7668%
F25 88,4662% 170,242 95,5985% 1686,94 97,7916% 1641,512 99,6446% 6,27393%
F26 85,8047% 95,253 96,741% 1099,68 98,1487% 1881,453 - 0,173803%
F27 42,6817% 107,546 42,8157% 539,932 48,8265% 955,22 51,6759% 48,229%
F28 66,8339% 114,504 72,4736% 1014,69 79,6364% 1186,474 83,9521% 74,9001%
F29 50,0771% 115,549 41,1089% 730,626 54,1612% 903,13 58,7065% 54,4966%
F30 84,8831% 107,609 95,9258% 1507,24 97,3922% 1458,509 99,8513% 0,0270563%
F31 40,0064% 124,737 37,7534% 730,846 46,3932% 1218,967 49,8142% 47,329%
F32 64,6909% 119,247 67,8447% 1183,59 72,4931% 1317,357 75,5777% 0%
F33 66,6602% 134,036 71,0827% 1107,8 76,4636% 1262,726 78,7034% 2,36324%
F34 71,2243% 118,108 78,0429% 1217,94 84,7092% 1027,416 87,6557% 0,011673%
F35 66,2171% 123,646 72,5449% 1034,61 75,6917% 1383,226 78,5756% 0,0888897%
F36 83,9962% 124,66 96,6734% 1550,08 98,4099% 1694,43 - 0,625398%
F37 87,6432% 157,763 95,6286% 1481,85 97,1552% 1266,893 - 2,59759%
F38 78,5477% 181,88 94,0447% 1729,56 94,5341% 1547,3 97,6486% 91,3435%
F39 49,1384% 125,689 46,657% 769,985 54,3828% 937,731 60,3147% 56,9224%
F40 84,0879% 98,452 95,5456% 1973,28 97,4642% 1474,862 99,8815% 0,118086%
F41 63,5636% 117,405 71,8825% 841,027 76,1615% 1350,755 78,712% 71,0901%
F42 66,4654% 108,81 70,0535% 1374,44 74,4103% 1146,87 77,3379% 0,329673%
F43 68,7493% 109,387 70,1778% 1049,69 80,1439% 1235,507 84,2964% 0%
F44 82,3275% 93,023 95,3856% 1263,99 97,9221% 1636,733 - 0,526409%
F45 72,5564% 102,975 73,1345% 1058,68 84,1291% 1225,945 88,3394% 0%
F46 68,4876% 111,868 70,2297% 1224,68 80,1255% 1051,442 84,5057% 74,0412%
F47 64,9907% 135,939 70,7747% 1280,01 74,424% 1086,915 76,9839% 72,7106%
F48 81,0323% 123,443 95,9466% 1566,34 97,696% 1462,433 99,8464% 0,622013%
F49 83,8589% 80,558 95,4187% 2271,06 96,745% 1689,228 - 0,0115108%
F50 92,2888% 125,596 95,6574% 1400,9 98,1913% 1784,846 - 0,0909464%
F51 40,9997% 120,495 37,3943% 604,313 47,0617% 898,326 49,5654% 47,229%
F52 88,1002% 152,132 96,4587% 1337,47 97,545% 1502,032 - 1,27357%
F53 66,776% 117,312 70,3306% 1119,91 79,7436% 1068,18 84,8421% 0%
F54 67,4301% 113,693 68,1214% 1158,75 73,6662% 1099,036 77,681% 72,2078%
F55 65,4833% 112,866 70,2952% 1375,95 74,1437% 1294,456 76,9225% 0%
F56 67,3372% 104,551 69,5604% 1172,96 74,1539% 1492,501 77,3618% 72,2278%
F57 49,7666% 123,786 41,2418% 805,927 55,558% 958,37 60,8171% 56,3608%
F58 86,8067% 112,242 97,1489% 1529,83 98,042% 1684,702 99,5915% 4,44063%
F59 67,9255% 122,507 72,0547% 1193,74 76,2406% 1021,365 79,0792% 0,686095%
F60 65,2924% 112,944 71,7% 1106,82 74,3476% 887,437 76,7249% 0,0262636%
F61 53,8853% 130,089 42,5093% 947,872 59,0629% 799,86 63,6467% 59,0989%
F62 66,2672% 104,52 71,5899% 1574,53 74,083% 1295,96 77,0095% 72,224%
F63 65,7345% 111,337 71,5625% 1152,86 74,3454% 1465,167 - 0%
F64 68,0427% 163,426 68,713% 1244,44 73,2866% 1254,286 75,7337% 68,9843%
F65 66,7843% 136,359 72,3228% 1402,47 74,902% 1384,469 77,4342% 73,616%
F66 42,7375% 143,583 44,0755% 916,562 49,4907% 1274,303 51,9139% 49,7468%
F67 59,806% 118,981 69,9529% 1540,5 75,5733% 1023,267 78,388% 71,77%
F68 50,1931% 116,625 43,5531% 1026,86 55,9932% 891,151 61,0669% 57,0673%
F69 85,6529% 67,345 97,6251% 1451,49 98,0405% 1043,062 99,8893% 93,3489%

Table 3: Computational Results
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