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Abstract

We address the problem of designing a multi-layer network with survivability requirements. We
are given a two-layer network: the lower layer represents the potential physical connections that
can be activated, the upper layer is made of logical connections that can be set up using physical
links. We are given origin-destination demands (commodities) to be routed at the upper layer.
We are also given a set of failure scenarios and, for every scenarios, an associated subset of
commodities. The goal is to install minimum cost integer capacities on the links of both layers
in order to ensure that the commodities can be routed simultaneously on the network. In ad-
dition, in every failure scenario the routing of the associated commodities must be guaranteed.
We consider two variants of the problem and develop a branch-and-cut scheme based on the
capacity formulation. Computational results on instances derived from the SNDLib for single
node failure scenarios are discussed.

keywords: optical network design, branch-and-cut
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1 Introduction and motivation

In the past years, telecommunication networks have grown in dimension, supported services, trans-
portation capacity, speed and reliability. In fact, the large number of new users and the growing
request for high capacity, fast and reliable connections to support new services and applications,
led to the development of new technologies. Optical networks based on Wavelength Division Mul-
tiplexing (WDM) have assumed a dominant role, since they provide a huge capacity increasing
by allowing the creation of virtual point-to-point connections (lightpaths) that can share the same
fiber. A wavelength of operation is assigned to each lightpath. The wavelength must be the same
for the entire path, unless wavelength converters are used. Every physical connection (fiber) can
support several lightpaths, but two lightpaths can share the same fiber only if they are assigned
different wavelengths on that link. Because optical transport networks are designed to carry high
volumes of traffic, network failures may have severe consequences. Therefore survivability require-
ments have became an integral part of every network design problem [8], [16], [29]. As a result,
the complexity of the design and configuration process increases significantly. In fact, the design
of optical networks includes: the definition of the virtual topology (lightpaths) in order to route a
set of point-to-point traffic demands, the dimensioning of the physical network in order to support
the virtual topology, the satisfaction of a set of survivability requirements, and the assignment of
wavelengths to the lightpaths. In order to reduce problem complexity, a common approach in the
literature is to consider the two-layer network design problem and the wavelength assignment prob-
lem as two separate problems to be solved in sequence. First the network design problem is solved
under the hypothesis that wavelength converters are available at each node of the network. As a
second step, the wavelength assignment is considered. If the design problem is solved making sure
that the capacity constraints on the physical links are satisfied, it is always possible to compute
a feasible assignment of wavelengths to the lightpaths placing wavelength converters, if needed.
In this paper, following [3], [4], [8], [10], [6], [25], [18] and others, we focus our attention on the
network design problem. We refer the reader to [19], [20] and references therein for the problem of
installing wavelength converters in the network at minimum cost.

An optical network is a two-layer network: the lower layer is called physical or optical layer, the
upper layer is called logical layer. Depending on the technology installed on the nodes, a node
of the network can either operate at both levels, or it is equipped to operate only in the physical
layer. Every link of the physical layer represents a potential physical connection that can be
established between the nodes of the network. Every link of the logical layer is a point-to-point
logical connection (lightpath) that corresponds to a path between its endpoints in the physical
network. See for example Figure 1 for a simple network on three nodes.
In this example the physical network G is the complete graph on three nodes and all the nodes can
operate at both levels. The logical network H includes four logical edges, each of them represent-
ing the physical path indicated in the edge label after the underscore. Origin-destination traffic
demands (commodities) are given in the logical network. A set of failure scenarios is considered. In
every scenario a given set of physical components (links and/or nodes) of the network are supposed
to be affected by a fault that makes those elements unavailable. The fault propagates from the
physical layer to the logical one. In fact, when a physical component fails, all logical elements using
that component become unavailable. For a more detailed description of scenarios see Section 5.
For every scenario, a subset of (protected) commodities whose routing must be guaranteed in that
scenario is given. The aim is to choose minimum costs physical and logical capacities such that
all the demands can be routed simultaneously on the network in the case without failures and, for
every failure scenario, the routing of the corresponding protected commodities is ensured.

Due to the large number of applications, network design problems have received a huge amount of
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Figure 1: a two-layer network on three nodes

attention in the literature, both for single-layer networks and for multi-layer networks. Different
versions of the problem have been investigated and different solution approaches are available in
the literature. For single-layer network design problems without survivability, see for instance [2],
[7], [14], [1], and references therein. As for the two-layer network design problem, see [27] for an
overview of technological issues and related models. Several authors proposed MIP-based models
and algorithms for different versions of the problem, see for example [3], [5]. In [10] they consider
a problem where the physical capacities are fixed and logical edges (pipes) must be activated in
order to support given demands: polyhedral results are given and a branch-and-cut approach is
developed. In [18] a problem with survivability requirements and node hardware installation is-
sues is addressed: the problem is solved by branch-and-cut using single-layer cuts. In [6] a model
based on metric inequalities without survivability requirements, based on [17], is used to solve a
variant of the problem belonging to the class that in this paper is called implicit lightpaths case
(see Section 2). In [4] a Lagrangean approach is proposed. In [25] MIP-based heuristics to be used
within a branch-and-cut scheme are presented. In [8], valid inequalities and a branch-and-cut ap-
proach are presented for the uncapacitated case with survivability requirements. In [13] multi-layer
hop-constrained node-survivable networks are addressed and two different survivability mechanisms
(path diversity and path protection) are considered.

The paper is structured as follows: in Section 2 we analyze different mathematical formulations for
the problem, in Sections 3 and 4 we describe our solution approach for two variants of the problem,
in Section 5 we discuss computational results and in Section 6 we present our conclusions.

2 Mathematical model

Let G(V,E) be an undirected graph representing the physical network, where V is the set of
nodes to be connected and E is the set of potential physical links. Let H(V,L) be an undirected
graph representing the logical network. In general, the nodes of the network can operate either at
one single layer or in both layers depending on the technological components they have. In this
paper, as done in [18], [25], [10], [6] and others, we suppose that both networks have the same
set of nodes, that is that all the nodes of the network are equipped to operate at both levels.
We use the words edge, arc and link as synonyms. We also use lightpath and logical edge as
synonymous. Let us also suppose that in the physical network there are no loops and no parallel
edges, while there can be (and in practice there are) parallel edges in the logical network. If we
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do not consider technological limitations, any path in the physical network can be used to define
a lightpath, therefore the lightpaths can be exponentially many with respect to |V |. In practice,
the set of admissible lightpaths is restricted according to some criteria. A common used criterion
is to consider only lightpaths corresponding to physical paths having at most a fixed number of
intermediate nodes (hops). Let E` be the set of physical edges used by ` ∈ L and let Le be the set of
logical links using physical edge e ∈ E. Let Lij be the set of (parallel) logical links ` ∈ L connecting
i and j and let Lii = ∅. Since the graph is undirected, Lij = Lji. Capacity on logical and physical
links can only be installed in fixed amounts. Let U be the size of a capacity module for logical links
and let B be the size of a capacity module for a physical link. That is, every time we buy one unit
(or module) of capacity for a logical link we get a capacity of U on that link, every time we buy
one module of capacity for a physical link we get a capacity of B on that link. Let cEe and cL` be
the cost of installing one module of capacity on edge e ∈ E and ` ∈ L, respectively. Let K be the
set of commodities. Each commodity k is a triple (sk,tk,dk) where sk is the source node, tk is the
destination node and dk is the demand to be routed from the source node to the destination node.
Let S be the set of failure scenarios to be considered, plus an additional scenario s0 representing
the case without failures. Let Gs(V s, Es) and Hs(V s, Ls) be the physical and logical graphs in
scenario s, where V s is the set of active nodes, Es is the set of active physical edges, Ls is the set
of active logical edges (Gs0 = G and Hs0 = H). Let Ks ⊆ K be the set of commodities whose
routing must be ensured in scenario s ∈ S (Ks0 = K). Given i and j ∈ V s, let Ls

ij be the set of
(parallel) logical links ` ∈ Ls connecting i and j in scenario s.

2.1 The flow formulation

A first possible formulation for the problem is a two-level version of the well known arc-flow for-
mulation. Let xe be an integer variable representing the number of capacity modules installed on
physical edge e ∈ E, and let y` be an integer variable representing the number of capacity modules
installed on logical edge ` ∈ L. Let fk,s

`,ij and fk,s
`,ji be continuous variables representing the flow for

commodity k ∈ Ks directed from i to j and viceversa on edge ` = (i, j) ∈ Ls in scenario s ∈ S.
The arc-flow formulation (EFF ) is:

(EFF ) min
∑

e∈E

cEe xe +
∑

`∈L

cL` y`

∑

j∈V s

∑

`∈Ls
ij

(fk,s
`,ij − fk,s

`,ji) = dki i ∈ V s, k ∈ Ks, s ∈ S (1)

∑

k∈Ks

(fks
`,ij + fk,s

`,ji) ≤ Uy` ` = (i, j) ∈ Ls, s ∈ S (2)

∑

`∈Le

y` ≤ Bxe e ∈ E (3)

f ≥ 0

xe, y` ∈ Z+

Constraints (1) are flow conservation constraints, where dki = dk if i = sk, d
k
i = −dk if i = tk and

dki = 0 otherwise. Constraints (2) are capacity constraints for logical links for every scenario. They
ensure that the total flow traversing a lightpath does not exceed the installed capacity. Constraints
(3) are capacity constraints for physical edges and they ensure that enough physical capacity is
installed to support all the lightpaths.

Formulation (EFF ) can handle the presence of integrality requirements for the flows and simple
routing constraints, but it can not handle general routing restrictions for the commodities. If there
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are path restrictions for the commodities, we have to use a path-flow formulation. In this paper we
suppose that there are no path restrictions for the commodities. Under this assumption, a different
formulation based on the so-called metric inequalities can be written. Metric inequalities allow us
to eliminate flow variables at the cost of obtaining a non compact formulation, which requires the
use of a cutting-plane approach. Metric inequalities have already been used in the literature, both
for single-layer problems (see for example [7], [2]) and for two-layer problems (see for example [6],
[17]) without survivability requirements. They have also been used when survivability issues must
be taken into account (see for example [30], [29] and references therein). In the following section
we formally define metric inequalities, clarify their importance for the single-layer problem, and
use them to formulated the two-layer problem.

2.2 Metric inequalities

definition 2.1 Given a set of nodes N , a function π : N ×N → R+ is a semi-metric on N if and
only if:

1. πii = 0 i ∈ N

2. πij ≥ 0 i, j ∈ N

3. πij = πji i, j ∈ N

4. πij ≤ πik + πkj i, j, k ∈ N

More precisely, if condition 2. holds with strict inequality we have a metric, otherwise we have
a semi-metric. If symmetry condition 3. does not hold we have an oriented distance function or
quasi-(semi)-metric [11],[12]. Since we are working on undirected graphs and we allow π values
to be zero, when we say metric, we are technically speaking of a semi-metric. Let MetN the cone
generated by all non zero metrics.

definition 2.2 Let G(N,A) be a graph, a function µ : A → R+ defines a metric on G if and only
if:

1. µa ≥ 0 a ∈ A

2. µa ≤ µ(Pa) a ∈ A

where µ(Pa) is the length of shortest path between the endpoints of edge a using µ as weights.

Let MetA be the cone of all non zero metrics defined on G(N,A). Given u, v ∈ N we denote by
πµ
uv the length of the shortest path in G between u and v using µ as weights, πµ

ii = 0 for all i.
If (u, v) ∈ A then, by definition, πµ

uv = µuv. In this way a metric µ ∈ MetA can be extended to
a metric πµ ∈ MetN . IfG is directed we get a quasi-(semi)-metric, otherwise we get a (semi-)metric.

Let us consider for the moment a single-layer network design problem, also known as Network
Loading Problem. The problem can be stated as follows: let G(N,A) be an undirected graph and
let D be a set of traffic demands, we want to choose minimum cost integer capacities for the edges
so that the demands can be routed simultaneously on the network.

theorem 2.3 [23] [15] An edge capacity vector z (not necessarily integer) is feasible for the prob-
lem, that is, it can support a feasible flow on the network, if and only if it satisfies inequalities:

∑

a∈A

µaza ≥
∑

q∈D

πµ
q d

q µ ≥ 0 (4)
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where πµ
q is the length of the shortest between the source node and the destination node of demand

q ∈ D using µ as edge weights. Theorem 2.3 is known as Japanese theorem and inequalities (4)
are called metric inequalities. A stronger feasibility condition (see [21]) can be obtained replacing
µ ≥ 0 by µ ∈ MetA in (4). Therefore, the so-called capacity formulation of the problem is:

(NLF ) min
∑

a∈A

caza

∑

a∈A

µaza ≥
∑

q∈D

πµ
q d

q µ ∈ MetA

za ∈ Z+ a ∈ A

where za is an integer variable representing the capacity installed on edge a ∈ A. Let NL(G,D)
be the convex hull of integer feasible solutions of the problem. The following results hold.

theorem 2.4 [2] If aT z ≥ b is valid for NL(G,D) then there exists a metric µ ∈ MetA such that
µT z ≥ b is still valid and µij ≤ aij for all (i, j) ∈ A.

definition 2.5 [2] Given a metric µ ∈ MetA, let Rµ = min{µT z : z ∈ NL(G,D)} be its rank.

theorem 2.6 [2] Every constraint of type µT z ≥ b is dominated by µT z ≥ Rµ.

The above results imply that all facet-defining inequalities are of the form µT z ≥ Rµ, where µ is a
metric on G. This kind of inequalities are called tight metric inequalities.

lemma 2.7 [22] Given µ, η, ν ∈ MetA such that µ = η + ν, then Rµ ≥ Rη +Rν

definition 2.8 Given η and ν ∈ MetA, then η 6= µ if there does not exist λ ∈ R+ such that η = λν

definition 2.9 A metric µ ∈ MetA is decomposable with respect to D if there exist η, ν ∈ MetA
such that η 6= µ, ν 6= µ, η 6= ν and:

1. µ = η + ν

2. Rµ = Rη +Rν

lemma 2.10 [22] µT z ≥ Rµ is facet-defining for NL(G,D) only if µ is not decomposable with
respect to D.

In particular, metrics corresponding to extreme rays of the metric cone (extreme metrics) are non
decomposable with respect to every possible D and the following result holds.

theorem 2.11 [2] If µ is an integer valued extreme ray of the metric cone having greatest common
divisor equal to one, then Rµ = dπT de.

Examples of extreme rays inducing facet-defining inequalities for NL(G,D) are the well-known cut
inequalities. However, in general, extreme rays are not sufficient to describe all facets.

The above results show that metric inequalities are a powerful tool, but there are limitations in
using them that one must be aware of. In fact (NLF ) is not a formulation for unsplittable flow
problems or, in general, in any case where path restrictions (maximum number of crossed nodes,
unavailable paths, predetermined set of available paths, . . . ) are given. In those situations you
have to use a different framework, that can be either (i) a capacity formulation based on tight
metric inequalities where NL(G,D) is defined according to the routing requirements, or (ii) a
general Benders decomposition approach, or (iii) a branch-and-cut(-and-price) method based on
the path-flow formulation of the problem. Additional details about the relationship between metric
inequalities and Benders cuts can be found in [9].
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2.3 The capacity formulation

The limitations discussed in the previous section have a huge impact on a two-layer problem. Here
you can potentially use metric inequalities for both layers: in the logical layer logical capacities
play the role of capacities and original commodities play the role of demands, in the physical layer
physical capacities play the role of capacities and logical capacities play the role of demands.

As in the single-layer problem, you can use metric inequalities for the logical layer only if there are
no routing constraints for the commodities. The formulation is given below.

(ECF ) min
∑

e∈E

cEe xe +
∑

`∈L

cL` y`

∑

`=(i,j)∈Ls

µijUy` ≥
∑

k∈Ks

πµ
kd

k µ ∈ MetLs , s ∈ S (5)

∑

`∈Le

y` ≤ Bxe e ∈ E (6)

xe, y` ∈ Z+

Constraints (5) are metric inequalities for logical layer, which ensure that the capacity installed on
logical links can support the demand in every scenario. Capacity constraints for the physical layer
(6) guarantee that the capacity installed on physical edges can support the logical links.

The situation is much more complex for the physical layer and some remarks are needed before
replacing (6) by metric inequalities. A capacity formulation using metric inequalities for both layers
should have the following structure.

(ICF ) min
∑

e∈E

cEe xe +
∑

`∈L

cL` y`

∑

`=(i,j)∈Ls

µijUy` ≥
∑

k∈Ks

πµ
kd

k µ ∈ MetLs , s ∈ S (7)

∑

e=(i,j)∈Es

µijBxe ≥
∑

`∈Ls

πµ
` y` µ ∈ MetEs , s ∈ S (8)

xe, y` ∈ Z+

where (7) and (8) are metric inequalities for the logical and the physical layer. Unfortunately,
formulation (ECF ) and (ICF ) are not equivalent.
Consider for example the problem of Figure 2 a). Let the demands be d12 = d23 = 0 and d13 = 1.
Let S = {s0} (there are no failure scenarios), let U = B = 1. Let (x, y) be the solution having
y4 123 = 1, y1 12 = y2 13 = y3 23 = 0 and x13 = 1, x12 = x23 = 0. It is easy to see that (x, y) is
feasible for (ICF ), but it is not feasible for (ECF ), and therefore for (EFF ), because no physical
capacity is installed to support logical edge 4 123. Things are no better if we consider logical
networks without parallel edges. Let us consider for example the two-layer network of Figure 2 b).
Let B = U = 1, let the demands be d13 = 1, d12 = d23 = 0. Solution (x, y) defined as y2 13 = 1,
y1 12 = y323 = 0, x12 = x23 = 1, x13 = 0, is feasible for (ICF ), but not for (ECF ).

In fact, even the simple assumption of choosing in advance physical paths for the lightpaths, as we
do in (EFF ) and (ECF ), is a routing constraint that can not be handled by metric inequalities
(8). Formulation (ICF ) can be used only under the assumption that the physical paths for the
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Figure 2: explicit VS implicit lightpaths

lightpaths are not known in advance. For this reason we distinguish between two possible light-
paths definitions: explicit lightpaths and implicit lightpaths (see also [24]). By explicit lightpaths
we mean that a set of available lightpaths is given: for each lightpath ` a physical routing E` is
known a priori, and there may be parallel lightpaths. This is the usual definition of lightpaths, the
one we used so far. In this case it is not possible to use metric inequalities for the physical layer
and we must use formulation (EFF ) or (ECF ). By implicit lightpaths, we mean that only a set
of node pairs that can be potentially connected by a lightpath is given: the physical routing of
the lightpaths is not known in advance. To each logical capacity module installed on a lightpath
can correspond a different physical path. Moreover a lightpath can be routed on different paths
depending on the scenario. In this case the problem can be modeled as (ICF ). The corresponding
arc-flow formulation (IFF ) is given below.

Let fk,s
`,ij, and fk,s

`,ji be the usual flow variables for the commodities. Let p`,sij and p`,sji be the flow on
the physical layer corresponding to the routing of the logical capacity installed on lightpath ` ∈ L,
going from i to j and viceversa on e = (i, j) ∈ E for every scenario s ∈ S. For a lightpath ` ∈ L let
s` and t` be the endpoints of `.

(IFF ) min
∑

e∈E

cEe xe +
∑

`∈L

cL` y`

∑

`∈Ls

(p`,sij + p`,sij ) ≤ Bxe e = (i, j) ∈ Es, s ∈ S (9)

∑

k∈Ks

(fk,s
`,ij + fk,s

`,ji) ≤ Uy` ` = (i, j) ∈ Ls, s ∈ S (10)

∑

j∈V s

∑

`∈Ls
ij

(fk,s
ij − fk,s

ji ) = dki i ∈ V s, k ∈ Ks, s ∈ S (11)

∑

j∈V s:(i,j)∈Es

(p`,sij − p`,sji ) = y`(i) i ∈ V s, ` ∈ Ls, s ∈ S (12)

f, p ≥ 0

xe, y` ∈ Z+
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Where y`(i) = y` if i = s`, y`(i) = −y` if i = t`, y`(i) = 0 otherwise. Constraints (9) and (10) are
capacity constraints for the physical layer and for the logical layer respectively. Constraints (11),
(12) are flow conservation constraints for the logical layer (commodities) and for the physical layer
(lightpaths) respectively.
Formulations (IFF ) and (ICF ) also include the implicit assumption (not always reasonable in
practice) that the cost of a lightpath depends only on its endpoints and not on the physical path
where it is routed. To take into account lightpath routing costs, in formulation (IFF ) it is possible
to associate costs to variables p. Nothing can be done for (ICF ) as it is.

An additional remark about the relationship between the flow (or path) formulation of the problem
and the corresponding capacity version is the following. The flow formulation explicitly computes
at the same time optimal capacities and the corresponding feasible routing. A capacity formulation
only computes optimal capacities ensuring that, with the given capacities, such a routing exists.
It can be computed in a second time by fixing the capacity variables to their optimal values and
solving the flow formulation. Therefore solving (EFF ) or (IFF ) we get both the capacity values
and the routing, solving their capacity versions (ECF ) and (ICF ) we only get the capacity values
while the routing must be computed in a second time solving an LP problem.

The two-layer metric formulation and the flow formulation for implicit lightpaths for the case with-
out failures are given in [17] and [6]. We extend them to take into account failure scenarios. We
were not able to find previous references for formulation (ECF ).

Usually, only one of the two lightpath models is considered. The aim of this work is to propose a
solution approach both for the explicit lightpaths model and for the implicit case. For each problem
we present a branch-and-cut algorithm based on the capacity formulation. We use formulation
(ECF ) for explicit lightpaths and (ICF ) for implicit lightpaths.

3 The algorithm for explicit lightpaths

In this section we present a branch-and-cut approach for solving the problem when explicit light-
paths are given. Separation and heuristic techniques to be used within a branch-and-cut framework
are presented.

Branch-and-cut combines branch-and-bound and cutting plane methods, see also [28]. Starting
from an initial formulation including only a reduced number of inequalities, the current problem
without the integrality requirements is solved. The optimal solution of the current problem is tested
for feasibility. If a violated inequality is found, the inequality is added to the current formulation
and the problem is solved again. This process is repeated until a feasible solution is found. If the
solution is fractional, then a branching step is performed.

3.1 Preprocessing and initial formulation

Let us consider the single-layer problem described in Section 2. Let a be an edge of the network
and let ca be its cost. If a is not a bridge, which means that the removal of a does not disconnect
the network, let Pa be the shortest path between the endpoints of a after removing a from the
network, and let c(Pa) be the corresponding cost. If ca ≥ c(Pa) then a can be removed from the
network, since the capacity installed on a can be installed on Pa at a lower cost. Even this simple
consideration is not valid, in general, for a two-layer problem. Consider for example the simple
network on three nodes given in Figure 3. Let the physical costs be cE12 = 3, cE13 = 1 and cE23 = 5.
Let the logical costs be cL1 12 = 2, cL2 13 = 9 and cL3 23 = 1. Let us consider a problem without
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scenarios and let the demands be d23 = 1, d12 = d23 = 0. Let B = 2 and let U = 1. Even if
for physical edge (2, 3) we have that c23 > c(P23), where P23 = {(1, 2), (1, 3)}, edge (2, 3) can not
be eliminated. In fact the optimal solution of the problem is x23 = y3 23 = 1, x12 = y1 12 = 0,
x13 = y1 13 = 0.

1 2

3

1 2

3

1 12

2 13 3 23

G

H

Figure 3: preprocessing example

The following (very weak) condition can be used. Let `, t ∈ L such that cL` > cLt + cE(Et), where
cE(Et) is the cost of installing capacities on the physical path corresponding to lightpath t, then `
can be eliminated. In fact we get a lower cost using t instead of `, even if it implies to buy additional
physical capacities for all the physical edges involved. In addition, since we have scenarios, before
removing any edge, we have to check each scenario. If the above condition is satisfied in every
scenario then the edge can be removed. If a physical edge e does not support any lightpath, it can
be eliminated from the problem.

Let dKs(i) be the sum of all the demands in Ks for which i is the source node or the destination
node, that is: dKs(i) =

∑

k∈Ks:sk=i or tk=i d
k. Let δEs(i) and δLs(i) = ∪j∈V sLs

ij be the set of
physical links and logical links incident to i in scenario s. We start with the following initial
formulation:

min
∑

e∈E

cEe xe +
∑

`∈L

cL` y`

∑

`∈δLs (i)

y` ≥

⌈

dKs(i)

U

⌉

i ∈ V s, s ∈ S (13)

∑

`∈Le

y` ≤ Bxe e ∈ E

xe, y` ∈ Z+

where constraints (13) are single-node cut inequalities (and therefore metric inequalities) for the
logical layer. They simply say that the capacity on edges incident to node i must support the total
demand of node i, see [2] and [7] for similar constraints. To help reducing the size of the branch-
and-bound tree, upper bounds for physical and logical capacities can be computed as follows.

UB` =

⌈

∑

k∈K dk

U

⌉

` ∈ L
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UBe =

⌈

∑

`∈Le
UB`

B

⌉

e ∈ E

To obtain better x values in the first iterations of the algorithm, we also add to the initial formulation
the following constraints.

∑

e∈δEs(i)

xe ≥









⌈

dKs (i)
U

⌉

B









i ∈ V s, s ∈ S (14)

They are single node cut inequalities for the physical layer.

3.2 Separation procedure

Let (x̄, ȳ) be the optimal solution of the current problem. Let Ds be the set of the source nodes of
the commodities in Ks and let Cs = {(i, j) ∈ N ×N : i < j, Ls

ij 6= ∅} in scenario s ∈ S. To verify
whether ȳ is a (non necessarily integer) feasible logical capacity vector for scenario s, we solve:

(sepY s) min
∑

(i,j)∈Cs

∑

`∈Ls
ij

Uȳ`µij −
∑

k∈Ks

πk
µd

k

πoj
µ ≤ πoi

µ + µij o ∈ Ds, (i, j) ∈ Cs

πoi
µ ≤ πoj

µ + µji o ∈ Ds, (i, j) ∈ Cs

∑

(i,j)∈Cs

µij = 1 (15)

µ ≥ 0

Where (15) is a normalization constraint to avoid unboundedness. The above formulation is the
two-layer version of the separation oracle used in [2] for finding violated strong metric inequalities.
For other separation oracles for metric inequalities see for example [7], [17] and references therein.

If the optimal value of (sepY s) is greater than or equal to zero, then ȳ is a feasible capacity vector
for the logical layer in scenario s, otherwise, let (µ̄, π̄) be the optimal solution of the separation
problem, we get the violated inequality:

∑

(i,j)∈Cs

∑

`∈Ls
ij

µ̄ijUy` ≥
∑

k∈Ks

π̄µ
kd

k (16)

We strengthen the above inequality by dividing all coefficients and the right-hand-side by m̄ =
min{µ̄ij : (i, j) ∈ Cs} and rounding to the upper nearest integer. In addition, we apply a second
rounding after dividing by U , obtaining constraint:

∑

(i,j)∈Cs

∑

`∈Ls
ij

⌈

µ̄ij

m̄

⌉

y` ≥











⌈∑
k∈Ks π̄

µ

k
dk

m̄

⌉

U











(17)

If (17) is violated, we use it. Otherwise we use inequality (16). Let us note that the dimension of the
separation problem does not depend on the number of parallel lightpaths, therefore the separation
scheme is, in a sense, robust with respect to the parallel lightpaths.
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At each iteration, we look for a violated inequality by checking all scenarios and we stop as soon
as we found one. Therefore we add only one violated inequality per iteration. In addition we set
a maximum number of cuts to be added at each node of the branch-and-bound tree. When this
number is reached, we look for a violated inequality only if the solution is integer, otherwise we
branch. We do that for several reasons. The most important ones are: (i) to keep the problem small,
(ii) because there is a trade-off between cutting and branching and, sometimes, it is easier to cut
a fractional solution by branching than by cutting-plane. Preliminary comparative tests confirmed
the effectiveness of this strategy. The maximum number of cuts allowed must be carefully chosen,
in order to avoid the generation of a huge number of branch-and-bound nodes.

3.3 Heuristic procedure

In this section, we describe the heuristic procedure we use during the exploration of the branch-
and-bound tree. Let (x̄, ȳ) be the capacity vector corresponding to the current LP solution, non
necessarily integer. We first get rid of x̄ variables and then apply Algorithm 1.

Algorithm 1 branch-and-bound heuristic

1: procedure b&b-heuristic(ȳ)
2: compute ŷ . round components of ȳ to the nearest integer

3: compute x̂ supporting ŷ . x̂e =
⌈
∑

`∈Le
ŷ`

B

⌉

4: response = false
5: if ŷ is feasible then . step 1: use algorithms of Section 3.2
6: response = true
7: end if

8: if response = false then . step 2: use Algorithm 2
9: route(x̂, ŷ)

10: response = true;
11: end if

12: end procedure . return (x̂, ŷ) and the response

Algorithm 1 is made of two components (step 1 and step 2). In step 1 we round each component
of ȳ to the nearest integer, obtaining the integer vector ŷ. Vector ŷ is tested for feasibility using
the oracle described in Section 3.2. If ŷ is a feasible capacity vector, we use the physical capacity
constraints to compute physical capacities x̂ supporting ŷ, thus obtaining a feasible solution for the
problem. Otherwise we perform step 2 by applying Algorithm 2.
Algorithm 2 can also be used as a stand alone heuristic with initial capacities x = 0 and y = 0.
The algorithm works as follows. At each iteration one scenario is considered. Physical and logical
available capacities are fixed according to the current capacity values. The algorithm tries to route
the commodities corresponding to the given scenario using a shortest path strategy. A commodity
having a positive demand is chosen and the shortest path between its endpoints is computed.
Logical edge costs are set as follows. The cost of an edge is zero if there is an available capacity
on that edge, otherwise it is equal to the cost of installing a capacity module, plus the cost of
installing additional physical capacity to support it, if needed (see Algorithm 3). The demand is
routed on the computed path such that either the demand or the available capacity of at least one
of the edges of the path is saturated. Demands, available capacities and edge costs are updated
accordingly. The algorithm terminates when all the scenarios have been considered.
Since the two steps of Algorithm 1 are independent, each step can be separately turned off. If step
2 is not turned off, the response of the algorithm is always true, that is, it always returns a feasible
solution. If step 2 is turned off, the algorithm returns a feasible solution only if ŷ is a feasible
capacity vector, which is not always the case.
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Algorithm 2 routing procedure

1: procedure route(x,y)
2: for all s ∈ S do

3: Y` = y`, Xe = xe . X ,Y vector of available capacities
4: while ∃k ∈ Ks : dk > 0 do

5: choose k : dk > 0
6: compute weights cR and capacities u . see Algorithm 3
7: find P k, shortest sk-tk path in Hs

8: for all ` ∈ P k do

9: if Y` = 0 then . install logical capacity
10: Y` = U ,
11: y` = y` + 1
12: for all e ∈ E` do

13: if Xe = 0 then . install physical capacity
14: Xe = B − 1
15: xe = xe + 1
16: end if

17: end for

18: end if

19: end for

20: compute δ = min{dk,min{u` : ` ∈ P k}}
21: dk = dk − δ . route δ on P k

22: Y` = Y` − δ, for ` ∈ P k . update available logical capacities
23: end while

24: end for

25: end procedure . return (x, y)

Algorithm 3 procedure that compute edge weights and capacities

1: procedure compute edge weights(Y ,X)
2: for all ` ∈ L do

3: if Y` > 0 then

4: cR` = 0
5: u` = Y`

6: else

7: u` = U
8: cR` = cL`
9: for all e ∈ E` do

10: if Xe = 0 then

11: cR` = cR` + cEe
12: end if

13: end for

14: end if

15: end for

16: end procedure . return cR, u
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4 The algorithm for implicit lightpaths

In this section we present a branch-and-cut approach for solving the problem in the case of implicit
lightpaths. We remark that, in this case, no explicit routing for the lightpaths (E`) is given, but the
routing of the lightpaths on the physical network is computed as a side result of the optimization
process.

4.1 Preprocessing and initial formulation

In the case of implicit lightpaths, we can eliminate physical edges using the preprocessing technique
for the single-layer problem described in Section 3.1. We can also apply the condition given in Sec-
tion 3.1 for eliminating logical edges. In this case Et is the longest path between the endpoints of
t.

The initial formulation to be used in the branch-and-cut algorithm is the following.

min
∑

e∈E

cEe xe +
∑

`∈L

cL` y`

∑

`∈δLs (i)

y` ≥

⌈

dKs(i)

U

⌉

i ∈ V s, s ∈ S (18)

∑

e∈δEs(i)

xe ≥









⌈

dKs (i)
U

⌉

B









i ∈ V s, s ∈ S (19)

xe, y` ∈ Z+

Constraints (18) and (19) are single node cut inequalities for the logical and the physical layer.
Also in this case, to help reducing the size of the branch-and-bound tree, upper bounds on physical
and logical capacities can be computed as follows.

UB` =

⌈

∑

k∈K dk

U

⌉

` ∈ L

UBe =

⌈
∑

`∈L UB`

B

⌉

e ∈ E

Since the routing of the lightpaths is not known in advance and a lightpath can use any physical
link, upper bounds on physical capacities are weaker with respect to the ones that can be computed
when explicit lightpaths are given.

4.2 Separation procedure

Given a scenario s, to verify if the current (possibly fractional) solution (x̄, ȳ) is feasible for s,
we apply two times the separation oracle for a single-layer problem. For logical feasibility, we use
original commodities as demands and logical capacities as capacities. For physical feasibility, we
use logical capacities as demands and physical capacities as capacities. The separation oracle for
the single-layer problem is the following. Let G(N,A) be a single-layer graph and let Q be a set of
commodities to be routed on G. Let O be the set of source nodes of commodities Q and let qoi the
amount to be sent from o to i. To test if a given vector of capacities z̄ is feasible for the problem
we can solve the problem below (see [2]).
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(sepZ) min
∑

(i,j)∈A

z̄ijµij −
∑

o∈O

∑

i∈N

qoi π
oi
µ

πoj
µ ≤ πoi

µ + µij o ∈ O, (i, j) ∈ A

πoi
µ ≤ πoj

µ + µji o ∈ O, (i, j) ∈ A
∑

(i,j)∈A

µij = 1

µ ≥ 0

If the optimal value of (sepZ) is less than zero then we get a violated inequality, otherwise z̄ is
feasible. When applied to the logical layer, the resulting violated metric inequality is:

∑

`=(i,j)∈Ls

µ̄ijUy` ≥
∑

k∈Ks

πµ
kd

k (20)

We strengthen the above inequality by dividing the right-hand-side and the coefficient by m̄ =
min{µij : ` = (i, j) ∈ Ls} and rounding to the nearest integer, obtaining inequality:

∑

`=(i,j)∈Ls

⌈

µ̄ij

m̄

⌉

y` ≥











⌈∑
k∈Ks π̄

µ
k
dk

m̄

⌉

U











(21)

We use inequality (21), if it is still violated, otherwise we use inequality (20).
If applied to the physical layer, the above oracle returns, if any, the violated inequality below.

∑

e=(i,j)∈Es

µ̄ijBxe ≥
∑

`∈Ls

πµ
` y` (22)

We first check the logical feasibility, if no violated constraint for the logical layer exists, we look for
a violated constraint for the physical layer.

4.3 Heuristic procedure

Let (x̄, ȳ) be the current solution, we apply Algorithm 4. As in the previous case, Algorithm 4
consists of two steps and, since the steps are independent, each step can be separately turned off.
In the first step each component of the current solution is rounded to the nearest integer, obtaining
an integer vector of capacities. The vector is tested for feasibility using the separation oracle of
Section 4.2. If it is feasible, then we stop, otherwise we perform step 2 that consists of applying
Algorithm 5.
Algorithm 5 finds a feasible solution decomposing the problem by layer and sequentially solving
the two single-layer sub-problems for every scenario. When the sub-problem corresponding to the
logical layer is solved, the commodities play the role of demands and the logical capacities play the
role of capacities. When the sub-problem corresponding to the physical layer is solved, the logical
capacities play the role of demands and the physical capacities play the role of capacities. As in
the previous case, Algorithm 5 can also be used as a stand alone heuristic. The algorithm solves a
sequence of problems, one for each scenario.

Algorithm 6 is used to solve the single-layer problem for a given scenario. Available capacities are
fixed according to the given capacity vector. Until a commodity with a positive demand exists, the
algorithm selects such a commodity and tries to route it using a shortest path approach. Edge costs
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Algorithm 4 branch-and-bound heuristic for implicit logical edges

1: procedure b&b-heuristic i((x, y))
2: compute (x̂, ŷ) . round x and y to the nearest integer
3: response = false
4: if x̂ and ŷ are feasible then . step 1: use algorithms of Section 4.2
5: response = true
6: end if

7: if response = false then . step 2: use Algorithm 5
8: heuristic i(x,y)
9: response = true;

10: end if

11: end procedure . return (x̂, ŷ) and the response

Algorithm 5 step 2 of the heuristic for implicit logical edges

1: procedure heuristic i(x,y)
2: initialize (x̂, ŷ) . round x and y to the nearest integer
3: for all s ∈ S do

4: route i(ŷ,Ks) . see Algorithm 6
5: for all s ∈ S do

6: route i(x̂,ŷ) . see Algorithm 6
7: end for

8: end for

9: end procedure . return (x̂, ŷ)

are defined as follows (see Algorithm 7): the cost of an edge is zero if there is an available capacity
on that edge, otherwise it is equal to the cost of installing a capacity module. The demand is routed
on the computed path such that either the demand or the available capacity of at least one edge of
the path is saturated. Demands, capacities and edge costs are updated accordingly. Parameter M
of Algorithm 6 is the capacity module and c are the costs. If the routing is for the logical network
F (N,A) = Hs(V s, Ls), c = cL and M = U , if it is for the physical network F (N,A) = Gs(V s, Es),
c = cE and M = B. The same happens for Algorithm 7.

Algorithm 6 routing procedure for a single-layer problem

1: procedure route i(z,D)
2: Za = ẑa . Z vector of available capacities
3: while ∃k ∈ D : dk > 0 do

4: choose k : dk > 0
5: compute edge weights cR and capacities u . see Algorithm 7
6: find P k, shortest sk-tk path in F (N,A)
7: for all a ∈ P k do

8: if Za = 0 then . install additional capacity
9: Za = M ,

10: za = za + 1
11: end if

12: end for

13: compute δ = min{dk,min{ua : a ∈ P k}}
14: dk = dk − δ . route δ on P k

15: Za = Za − δ, for a ∈ P k . update available capacities
16: end while

17: end procedure . return z
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Algorithm 7 procedure that compute edge weights and capacities for a single-layer problem

1: procedure compute edge weights and costs i(Z)
2: for all a ∈ A do

3: if Za > 0 then

4: cRa = 0
5: ua = Za

6: else

7: ua = M
8: cRa = ca
9: end if

10: end for

11: end procedure . return cR, u
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5 Computational results

The branch-and-cut algorithms described in the previous sections have been implemented in C++,
using CPLEX 11.2. It was tested on a laptop having a 2.20 GHz Intel Core 2 Duo processor, with
4Gb RAM. We turned off most of CPLEX features: presolve, CPLEX cuts and heuristics, the
option to purge cuts if they seem ineffective. This was done in order to prove the effectiveness
of our cutting plane and heuristic scheme. We set a time limit of 1 hour for every problem. We
present results on 84 instances. Experiments have been made using instances derived from SNDlib
networks [26]. We used SNDlib instances as physical networks and derived logical networks. We
used original demands but, during optimization, we replace commodities (i, j, dij) and (j, i, dji),
if any, by a unique commodity (i, j, dij + dji), since the graphs are undirected. In Table 1 we
summarize the physical networks data reporting for every instance, the number of nodes, edges and
commodities.

name nodes edges commodities

atlanta 15 22 210
nobel-germany 16 26 121
nobel-us 14 21 91
polska 12 18 66
di-yuan 11 42 22
pdh 11 36 24
cost266 37 57 1368
nobel-eu 28 41 378

Table 1: physical networks data

We chose those instances in order to test our approach in three different settings: (i) in a standard
situation, (ii) when the number of edges increases, and (iii) when the number of nodes increases.
Instances of group 1 (atlanta, nobel-germany, nobel-eu, polska) are regular-size instances on sparse
physical networks. Instances of group 2 (di-yuan, pdh) are regular-size instances on (almost)
complete physical networks. Instances of group 3 (cost266, nobel-eu) are big-size instances on sparse
physical networks. Instance of group 1 are the usual target of optical network planning. Instances
of group 2 have complete physical networks, which is not true in real-life instances, corresponding
to very dense logical networks. Instances of group 3 have been included since we think that optical
network planning algorithms will be forced to move towards those kind of networks in order to
address real-life problems.
For the case of explicit lightpaths (EL), we derived logical networks with and without hop limits.
For the case of implicit lightpaths (IL), we considered logical networks having a lightpath between
every pair of nodes. In Table 2 we report, for every instance, the number of logical edges and the
maximum number of hops allowed, if any. For all instances we set the size of the physical capacity
module to B = 8. The size of the logical capacity module is set to a value depending on the mean
demand of each instance. Physical costs are derived from the costs of the first available capacity
module of the original problem. Logical costs are randomly generated. As for the scenarios, we
generated a single node failure scenario for every node of the network, therefore the number of
scenarios for every instance is equal to the number of nodes. We choose to generate node failure
scenarios instead of the usual edge failure scenarios (see for example [8]), because the failure of a
node is, in our opinion, a much more critical event than the failure of an edge. In fact, the failure of
a node also implies the failure of all edges (physical and logical) incident to that node. However, the
proposed approach is general and it can be used for any kind of scenarios. When explicit lightpaths
are given, a lightpath ` ∈ L non incident to the disconnected node, is active under failure scenario
s (` ∈ Ls) if all physical edges in E` are active. When implicit lightpaths are given, a lightpath `
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name logical edges max hops allowed

atlanta-3hop-EL 295 3
atlanta-5hop-EL 899 5
atlanta-Thop-EL 5436 -
nobel-germany-3hop-EL 560 3
nobel-germany-5hop-EL 1989 5
nobel-germany-Thop-EL 13641 -
nobel-us-3hop-EL 314 3
nobel-us-5hop-EL 1107 5
nobel-us-Thop-EL 7113 -
polska-3hop-EL 273 3
polska-5hop-EL 810 5
polska-Thop-EL 2457 -
di-yuan-3hop-EL 10809 3
di-yuan-5hop-EL 201930 5
pdh-3hop-EL 4706 3
pdh-5hop-EL 54582 5
cost266-3hop-EL 1133 3
cost266-5hop-EL 5096 5
nobel-eu-3hop-EL 718 3
nobel-eu-5hop-EL 2900 5

atlanta-IL 105 -
nobel-germany-IL 120 -
nobel-us-IL 91 -
polska-IL 66 -
di-yuan-IL 55 -
pdh-IL 55 -
cost266-IL 666 -
nobel-eu-IL 378 -

Table 2: logical networks size for explicit and implicit lightpaths

branch-and-cut flow formulation

problem bestUB bestLB gap sec bestUB bestLB gap sec

atlanta-50-3hop-EL 2475 2475 0% 775.71 4469 686.56 84.63% 1h

atlanta-50-5hop-EL 2470 2470 0% 1378.95 - - - 1h

atlanta-50-Thop-EL 2470 2470 0% 1102 - - - 1h

nobel-germany-50-3hop-EL 5238 5238 0% 427.54 - - - 1h

nobel-germany-50-5hop-EL 5214 5214 0% 383.74 - - - 1h

nobel-germany-50-Thop-EL 5214 5214 0% 2119.34 - - - 1h

nobel-us-50-3hop-EL 1366 1366 0% 215.60 2946 299.86 89.82% 1h

nobel-us-50-5hop-EL 1366 1366 0% 184.18 - - - 1h

nobel-us-50-Thop-EL 1366 1366 0% 512.80 - - - 1h

polska-50-3hop-EL 3063 3063 0% 32.57 4811 985.87 79.50% 1h

polska-50-5hop-EL 3063 3063 0% 24.05 5347 824.09 84.58% 1h

polska-50-Thop-EL 3063 3063 0% 42.88 - - - 1h

di-yuan-50-3hop-EL 423 423 0% 2704.54 - - - 1h

di-yuan-50-5hop-EL 423 360 14.89% 1h - - - 1h

pdh-50-3hop-EL 1186 1186 0% 1101.38 - - - 1h

pdh-50-5hop-EL 1186 1186 0% 3306.28 - - - 1h

cost266-50-3hop-EL 24888 20976 15.71% 1h - - - 1h

cost266-50-5hop-EL 24888 20951 15.81% 1h - - - 1h

nobel-eu-50-3hop-EL 1710 1655 3.21% 1h - - - 1h

nobel-eu-50-5hop-EL 1707 1657 2.92% 1h - - - 1h

Table 3: results for explicit lightpath instances with 50% of protected commodities
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branch-and-cut flow formulation

problem bestUB bestLB gap sec bestUB bestLB gap sec

atlanta-70-3hop-EL 2503 2503 0% 490.51 - - - 1h

atlanta-70-5hop-EL 2500 2500 0% 865.24 - - - 1h

atlanta-70-Thop-EL 2500 2500 0% 631.55 - - - 1h

nobel-germany-70-3hop-EL 5310 5310 0% 354.55 - - - 1h

nobel-germany-70-5hop-EL 5280 5280 0% 2341.75 - - - 1h

nobel-germany-70-Thop-EL 5280 5264 0.30% 1h - - - 1h

nobel-us-70-3hop-EL 1375 1375 0% 176.74 - - - 1h

nobel-us-70-5hop-EL 1375 1375 0% 82.16 - - - 1h

nobel-us-70-Thop-EL 1375 1375 0% 224 - - - 1h

polska-70-3hop-EL 3151 3151 0% 17.12 4908 982.49 79.98% 1h

polska-70-5hop-EL 3151 3151 0% 21.38 - - - 1h

polska-70-Thop-EL 3151 3151 0% 29.74 - - - 1h

di-yuan-70-3hop-EL 423 423 0% 537.29 - - - 1h

di-yuan-70-5hop-EL 423 423 0% 1973.51 - - - 1h

pdh-70-3hop-EL 1223 1223 0% 315.94 - - - 1h

pdh-70-5hop-EL 1223 1223 0% 1446.51 - - - 1h

cost266-70-3hop-EL 24858 20983 15.58% 1h - - - 1h

cost266-70-5hop-EL 24858 20908 15.89% 1h - - - 1h

nobel-eu-70-3hop-EL 1714 1684 1.75% 1h - - - 1h

nobel-eu-70-5hop-EL 1714 1667 2.74% 1h - - - 1h

Table 4: results for explicit lightpath instances with 70% of protected commodities

branch-and-cut flow formulation

problem bestUB bestLB gap sec bestUB bestLB gap sec

atlanta-100-3hop 2575 2575 0% 164.50 - - - 1h

atlanta-100-5hop 2568 2568 0% 285.71 - - - 1h

atlanta-100-Thop 2568 2568 0% 432.40 - - - 1h

nobel-germany-100-3hop 5437 5437 0% 210.77 - - - 1h

nobel-germany-100-5hop 5406 5406 0% 268.72 - - - 1h

nobel-germany-100-Thop 5406 5377 0.53% 1h - - - 1h

nobel-us-100-3hop 1420 1420 0% 139.91 - - - 1h

nobel-us-100-5hop 1420 1420 0% 82.74 - - - 1h

nobel-us-100-Thop 1420 1420 0% 304.80 - - - 1h

polska-100-3hop 3254 3254 0% 24.07 4978 1195.1 75.99% 1h

polska-100-5hop 3245 3245 0% 22.29 - - - 1h

polska-100-Thop 3245 3245 0% 28.89 - - - 1h

di-yuan-100-3hop 423 423 0% 655.18 - - - 1h

di-yuan-100-5hop 423 423 0% 1189.84 - - - 1h

pdh-100-3hop 1274 1274 0% 881.71 - - - 1h

pdh-100-5hop 1274 1250 1.88% 1h - - - 1h

cost266-100-3hop 26862 21113 21.40% 1h - - - 1h

cost266-100-5hop 26862 21055 21.61% 1h - - - 1h

nobel-eu-100-3hop 1739 1710 1.66% 1h - - - 1h

nobel-eu-100-5hop 1739 1701 2.18% 1h - - - 1h

Table 5: results for explicit lightpath instances with 100% of protected commodities
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branch-and-cut flow formulation

problem bestUB bestLB gap sec bestUB bestLB gap sec

atlanta-50-IL 2068 2068 0% 3227.11 - 927.88 - 1h

nobel-germany-50-IL 6564 4948 24.61% 1h - - - 1h

nobel-us-50-IL 1455 1193 18% 1h - 540.63 - 1h

polska-50-IL 2872 2872 0% 1281.77 3140 1501.01 52.19% 1h

di-yuan-50-IL 336 336 0% 5.14 656 38.41 94.14% 1h

pdh-50-IL 1075 1075 0% 12.19 2016 208.43 89.66% 1h

cost266-50-IL 33306 19263 42.16% 1h - - - 1h

nobel-eu-50-IL 2241 1622 27.62% 1h - - - 1h

atlanta-70-IL 2070 2070 0% 1401.79 - - - 1h

nobel-germany-70-IL 6757 4951 26.72% 1h - - - 1h

nobel-us-70-IL 1462 1193 18.39% 1h - 408.74 - 1h

polska-70-IL 2881 2881 0% 1405.67 7.16e+012 1489.04 100% 1h

di-yuan-70-IL 383 383 0% 75.81 - 21.50 - 1h

pdh-70-IL 1135 1135 0% 45.64 1629 424.3 73.95% 1h

cost266-70-IL 38370 19266 49.78% 1h - - - 1h

nobel-eu-70-IL 2233 1622 27.36% 1h - - - 1h

atlanta-100-IL 3258 2140 34.31% 1h - - - 1h

nobel-germany-100-IL 7534 4983 33.85% 1h - - - 1h

nobel-us-100-IL 1478 1205 18.47% 1h - 410.28 - 1h

polska-100-IL 2915 2910 0.17% 1h - 1669.39 - 1h

di-yuan-100-IL 383 383 0% 60.04 - 22.74 - 1h

pdh-100-IL 1146 1146 0% 136.87 1.07e+013 456.22 100% 1h

cost266-100-IL 42460 19281 54.59% 1h - - - 1h

nobel-eu-100-IL 2384 1623 31.92% 1h - - - 1h

Table 6: results for implicit lightpath instances

not incident to the disconnected node is active in s if there is a path in Gs between its endpoints.
We partitioned the original demands K into two subsets: protected commodities (PK) and simple
commodities (SK). We generated instances where 50%, 70% and 100% of the original demands
are protected. For every scenarios s ∈ S, s 6= s0 we set Ks = PK − IPKs, where IPKs is the set
of protected commodities that are not active in scenario s. A commodity k is active in scenario s,
if sk and tk are active and there is a path in the logical network Hs between sk and tk. We set
Ks0 = K. We chose to generate Ks in this way according to [18], but the proposed algorithm can
be used for every possible definition of Ks.

In Tables and 3, 4, 5 we summarize computational results for explicit lightpath instances when
50%, 70%, and 100% respectively of the demands are protected. We compare the results obtained
by our branch-and-cut algorithm with one ones obtained by CPLEX. CPLEX solves formulation
(EFF ) and it is used with default settings and a time limit of 1 hour. The tables can be read
as follows. Column problem is the instance name. Column bestUB reports the best lower bound
for the problem produced by the given algorithm. Column bestLB is the best lower bound. Col-
umn gap indicates the gap between the best lower bound and the best upper bound computed as
100 ∗ (bestUB − bestLB)/bestUB. Column sec is the computational time (in seconds) needed to
solve the problem, a value 1h in this column means that the time limit has been reached. CPLEX
is not able to solve any of the problems to optimality. A missing result (-) for an instance means
that (i) either CPLEX is not able to solve the LP relaxation within the given time limit, or (ii)
it goes out of memory, or (iii) it is not possible to build/load the problem within the given time
limit. On the other hand, results for the branch-and-cut algorithm are very good. We are able to
solve to optimality most of the instances and to obtain small gap values for the others, including
the ones of group 3. Before starting branch-and-bound for 3-hop instances, we use algorithm 2 to
find a first feasible solution for the problem. We use the 3-hop solution in the 5-hop problem, and
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the solution of the 5-hop problem in the T -hop problem. In our experience, the improvement in
the objective function due to long lightpaths is minimal, at least for the tested instances.

In Table 6, we summarize computational results for implicit lightpaths instances. CPLEX solves
formulation (IFF ) and it is used with default settings and a time limit of 1 hour. The columns
have the same meaning of the ones in Tables 3, 4 and 5. Also in this case, CPLEX is not able
to solve any of the instances to optimality. Results for the branch-and-cut algorithm for implicit
lightpaths problems are interesting, even if not as good as the ones for explicit lightpaths. We think
that this is due to the nature of the problem. In fact, in the case of explicit lightpath, for each
lightpath a path in the physical layer is given in advance. This lead to a more rigid structure of the
problem and to a very strict connection between the two layers: given optimal logical capacities,
optimal physical capacities can be easily determined using physical capacity constraints. The im-
plicit lightpath problem instead, has more degrees of freedom, since the physical paths associated
to the lightpaths are not set in advance and must be computed during the optimization process.
Unlike the previous case, given optimal logical capacities, it is necessary to solve an optimization
problem to compute the corresponding optimal physical capacities.

There is no common testbed for optical network design problems and many variants of the problem
has been proposed, making difficult to compare computational results. In [3] instances based on
NSFNET, a network having 14 nodes/22 edges, are considered. They do not solve the problem
to optimality but use truncated branch-and-bound to produce feasible solutions. In [6] randomly
generated instances and instances derived from SNDlib networks are used. The randomly generated
networks have 8 nodes/14 edges, 9 nodes/16 edges, 10 nodes/20 edges, respectively. The largest
network picked from the SNDlib has 15 nodes/22 edges. In [25] instances based on six SNDlib
networks are used. Here the largest network has 40 nodes/89 edges, but they propose MIP-based
primal heuristics, while we propose an exact approach. The largest network used in [18] has 17
nodes/26 edges. In [13] instances based on NSFNET and on EON, a network having 19 nodes/39
edges are presented. It is not possible to directly compare the results of the above papers with the
ones presented in this paper, since different versions of the problem are solved. However, we notice
that optimal solutions are produced only in very few cases and for small size instances. On the
other hand, we are able to solve most of the problems to optimality. We can not solve to optimality
the problems on big instances, but in some cases gap values are really very small.

6 Conclusions and future research

In this paper we address the problem of designing a two-layer network with survivability require-
ments. We presented mathematical models and solution algorithms for two versions of the problem:
when explicit lightpaths are given, and when the implicit lightpath approach is used.

For both problems we proposed a branch-and-cut algorithm based on a capacity formulation of the
problem that uses metric inequalities. We also presented a heuristic algorithm to compute feasible
solutions that can be used both within a branch-and-cut framework, and as a stand alone heuristic.

We presented computational results on 84 instances derived from SNDLib networks. The results
show the proposed approach can be attractive to solve both problems, even if the results for the
explicit model are better than the ones for the implicit case.

A direction for further research could be a polyhedral study of the proposed models, and a com-
parison of this approach with a branch-and-price algorithm based on the path formulation.
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