Block Notes of Math
 The Collatz's problem ($\mathbf{3 x}+1$) The forms $4 n+3$ and the "bizarre" odd numbers

eng. Rosario Turco, prof. Maria Colonnese

Abstract

In the paper "Il problema di Collatz in N ", on database of CNR Solar (Italy), the authors have used the method of C-equivalence " to analyze the data for the algorithm of Collatz to deduce if it is convergent to 1 or, equivalently, if the algorithm has got a criteria for arrest.

With the "C-equivalence" the authors observed, however, that from one form $4 \mathrm{~m}+3$ you can get other forms $4 \mathrm{~m}+3$, which gave no clues to the criteria for arrest algorithmic.

This work, however, is a study on the forms $4 \mathrm{~m}+3$, where the authors show that they aren't a problem to the convergence of the sequence 1 , through the introduction of specific numbers, baptized "bizarre" odd numbers.

Email

INDEX

Introduction 2
Problem analysis 2
References
Sites 5
Appendix 6
TABLES
Table 1 - Bizzarre numbers and Collatz's problem 4

Introduction

With the Collatz's problem we have the following definition of algorithm "Since a number any positive integer n , where n equals the divide by 2 ; if, instead, n is odd multiply it by 3 and add 1 (or apply the formula 3n 1) And so on. "

The fundamental problem is understanding whether the succession of values obtained by this algorithm always converges to 1 .

In fact we know that a succession is an application (or function)-type f: N -> N . In particular, the function f in the game is like this:

$$
f(n)= \begin{cases}3 n+1, & \text { if } \mathrm{n} \text { is odd } \\ n / 2, & \text { if } \mathrm{n} \text { is even }\end{cases}
$$

The numbers obtained in succession are remembered as "Hailstone numbers."
The weaker Collatz conjecture says: "Not a positive integer is divergent".
The strong Collatz conjecture says: "All the positive integers are converging".
If you determine that there may be a value $n \neq 1$, for which you determine that there may be a value n cyclical, then it would be true only the weaker conjecture; if there is no counter-example then are true the weak and strong conjectures and it would be true the theorem: "Given the sequence obtained by applying f : $\mathrm{N}->\mathrm{N}$, where:

$$
f(n)=\left\{\begin{array}{l}
3 n+1, \text { if } n \text { is odd } \\
n / 2, \text { if } n \text { is even }
\end{array}\right.
$$

The sequence converges always to integer 1 (excluding 1 and odd numbers, otherwise the succession oscillates indefinitely). "

Problem analysis

If it were true the previous theorem, then the algorithm proposed in Appendix will stop itself, without a stop condition, which avoids the loop indefinitely.

But from the type of data in input N (seed of the sequence) we can reach that conclusion? Let's see.

We define $\mathrm{T}(\mathrm{n})$ the glide (or trajectory or steps associated with $\mathrm{f}(\mathrm{n})$), are true then the following properties:

Property on power of 2

If the integer n is even and power of 2 , ie $\mathrm{n}=2^{\mathrm{k}}$, then the glide $\mathrm{T}(\mathrm{n})$ is:

$$
\begin{gathered}
\mathrm{T}\left(2^{\mathrm{k}}\right)=\mathrm{k} \\
\mathrm{~T}\left(2^{\mathrm{k}+1}\right)=\mathrm{k}+1 \\
\ldots
\end{gathered}
$$

Property on "the Collatz's numbers"

If the integer n odd is expressed as $\mathrm{n}=\left(2^{\mathrm{k}}-1\right) / 3$ with $\mathrm{k} \geq 4$ (Collatz's numbers) then the glide $\mathrm{T}(\mathrm{n})$ is:

$$
\mathrm{T}(\mathrm{n})=\mathrm{k}+1
$$

K is even, otherwise n isn't a integer.
The Collatz's number are of form $4 \mathrm{~m}+1$.

Property of the "form 4m+1"

In this case the glide $T(n)$ is:

$$
\mathrm{T}(4 \mathrm{n}+1)=\mathrm{T}(\mathrm{n})+2
$$

Property of the "form $4 \mathrm{~m}+3$ "

We propose to call "bizarre odd numbers" any odd number generated from ($2^{\mathrm{k}}-4$)/4 for each k , which, in the sequence of Collatz, generates forms $4 m+3$ not consecutive.

If we indicate with the symbol \#b the number of odd numbers of form $4 \mathrm{~m}+3$ generated by Collatz with seed equal to an odd number bizarre b, we note that this number increases by 1 the number prior b ',

$$
\# \mathrm{~b}=\# \mathrm{~b}^{\prime}+1 .
$$

The bizarre numbers are derived as $\mathrm{b}=2 \mathrm{~b}^{\prime}+1$ and attach, two by two, all bizarre, the glide of a pair differs only 1 :

$$
\mathrm{T}(\mathrm{~b})=\mathrm{T}\left(\mathrm{~b}^{\prime}\right)+1
$$

Starting with a bizarre sequence b Collatz after $\mathrm{m}=\mathrm{k}-3$ numbers form $4 \mathrm{~m}+3$, such that $\operatorname{Mod}(\mathrm{b}-3$, $4)=\operatorname{Mod}(0.4)$, joins a number of form $4 q 1$. So the total is glide:

$$
T(b)=2^{*}(k-3)+T(4 q+1)
$$

Proof

The probability can help us immediately give a first insight of the theorem. If n is even, $n / 2$ may be an odd or even (2 option 3). If n is odd, $3 n+1$ is equal (1 option 3). So the probability that the values of succession grow is less than the values decreased to 1 , so the succession at the end is more likely to converge to 1 . This does not prove that the sequence does not differ whether or not converge or if it is oscillating.

To use the verification program APPENDIX without stopping criterion and the demonstration will show the same property that is never necessary.

Power of 2

$256=2^{8}$
 $T(256)=8$

Collatz's numbers
$85=\left(2^{8}-1\right) / 3$
$\mathrm{T}(85)=\mathrm{k}+1=8+1=9$
$5=2^{4}-1 / 3$ and $5=4^{*} 1+1(4 m+1)$.
Examples on $4 m+1$
$\mathrm{n}=7, \mathrm{~T}(7)=16$
$4 * 7+1=29, T(29)=16+2=18$
$4 * 29+1=117, T(117)=18+2=20$
$4 * 117+1=469, T(469)=20+2=22$
$469-1 / 4=117-1 / 4=29-1 / 4=7$: 3 iterazioni per arrivare a 7
$\mathrm{T}(469)=16+2 * 3=22$
$4 \mathrm{~m}+3$
We see the next table with the bizarre numbers with $\left(2^{\mathrm{k}}-4\right) / 4$ and the associated numbers $4 \mathrm{~m}+3$ (including the bizarre).

\mathbf{k}		Bizzarre	\#4m+3		T(n)
5	7		$\mathbf{2}$		16
6	15		$\mathbf{3}$		17
7	31		$\mathbf{4}$		106
8	63		$\mathbf{5}$		107
9	127		$\mathbf{6}$		46
10	255		$\mathbf{7}$	47	
11	511		$\mathbf{8}$	61	
12	1023		$\mathbf{9}$	62	

Table 1 - Bizzarre numbers and Collatz's problem
The table shows that for every k , odd or belonging to N :

- To moving from a bizarre to he next b is: $b=2 b^{\prime} 1$. Example if $b^{\prime}=7 \mathrm{~b}=2 * 7+1=15$.
- The colored bands in Table 1 underline twin bizarre numbers and you see that the glide of a pair differs only by 1 .
- To moving from a bizarre to the next it will increase by 1 the number of forms $4 \mathrm{~m}+3$ consecutive obtained in the problem of Collatz
- The number of steps in more than a number of form $4 m+1$, is given by $2 *(k-3)$, for example $\mathrm{k}=10$ is $\mathrm{k}-3=7$ bizarre numbers.

To quickly verify that there are numbers of form $4 m+3$ generated in a sequence of Collatz with PARI / GP we will exploit $\operatorname{Mod}(n-3,4)$: if equals $\operatorname{Mod}(0,4)$ then it is a form $4 m+3$; otherwise if it is a form $4 \mathrm{~m}+1$ we will obtain $\operatorname{Mod}(2,4)$ and stops the sequence of $4 \mathrm{~m}+3$.

154623703510653160804020105168421 \#step: 17

> 31944714271214107322161484242121364182912741374122061033101 5546623370035017552626379039511865931780890445133666833416750 2251754377113256628385042512766383199584791438719215810793238 1619485824297288364418229112734136741022051615430779232461623081 15457717328664331300650325976488244122611849246237035106531 60804020105168421
> \#step: 106

631909528614343021564632397048514567283641829127413741220610 3310155466233700350175526263790395118659317808904451336668334 1675022517543771132566283850425127663831995847914387192158107 9323816194858242972883644182291127341367410220516154307792324616 23081154577173286643313006503259764882441226118492462370351 0653160804020105168421 \#step: 107

Conclusions

This paper shows that there is no possibility $4 \mathrm{~m}+3$ loop infinitely and if that increases the size of odd number certainly increases the number of steps but it is a finite number of steps.

That concludes that from any integer n in N , the sequence of Collatz always ends in a finite number of steps and an algorithm does not need a criterion to stop, because the problem whatever the given input is N stops by itself and therefore the theorem is true of departure

References

- J. C. Lagarias: "The 3x+1 Problem: An annotated Bibliography"
- C. A. Feinstein: "The Collatz 3n+1 Conjecture is Unprovable
- Sergio Faccia (blog Eureka! di katawebihttp://serghej.blog.kataweb.iti' "Sul problema $3 n+1$ o di Collatz" del 14 Giugno $2 \overline{0} \overline{0} \overline{6}$
- R. Turco, M. Colonnese "ll problema di Collatz in N" CNR Solar
- Gruppo ERATOSTENE - Vari articoli (tra cui "Dimostrazione della Congettura di Collatz - rivista METODO n. 22-2006") sul sito gruppo ERATOSTENE e su CNR Solar.

Sites

CNR SOLAR

hhtp://150.146.3.132/

Prof. Matthew R. Watkins
'http://www.secamlocal.ex.ac.uk

[^0]
Dr. Michele Nardelli

http://xoomer.alice.it/stringtheory/

Appendix

```
/*********************************************************
* Collatz
* Rosario Turco
*********************************************************/
{printCollatz(n) = local (j, k, f);
    if( n<2 , error("printCollatz(n): You must insert an integer n>1"));
    print1(n, " ");
    j=0;
    k=0;
    f=0;
    while( n>1,
    f=0;
    if( n%2 != 0 & f==0, n=3*n+1; f=1;);
    if(n%2 == 0 & f==0, n=n/2; f=1;);
    j++;
    if( (n-1)%4== 0, k++;);
    print1(n, " ");
        );
        print(" #step: ", j, "\n");
        if( k>0, print("4m+3: ", k, "\n"););
}
{getCollatz(n) = local (j);
    if( n<2 , error("getCollatz(n): You must insert an integer n>1"));
    j=0;
    while( n>1,
            if( n%2 != 0, n=3*n+1;);
            if( }\textrm{n}%2==0,n=n/2;)
            j++;
        );
        return(j);
}
```


[^0]: Aladdin's Lamp (eng. Rosario Turco)
 'Www.geocities.com/SiliconValley/Port/3264' menu MISC section MATEMATICA
 ERATOSTENE group

