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Abstract: rank correlation is a fundamental tool to express dependence

in case in which the data are arranged in order. There are, by contrast,

circumstances where the ordinal association is of a nonlinear type. In this

paper we have investigated the effectiveness of thirty measures of rank cor-

relation for assessing agreement between two evaluators in the presence of

non costant scale of terms. These measures have been divided into three

classes: unweighted rank correlations, weighted rank correlations, correla-

tions of scores. Our findings suggest that none is systematically better than

the other in all circumstances. However, a simply weighted version of the

Kendall’s τ provides plausible answers to many special situations where in-

tercategory distances are not the same.

Keywords: ordinal data, nonlinear association.

1 Introduction

Throughout this paper we will examine situations of the following type.

Consider a fixed set of n distinct items ordered according to the different

degree in which they possess two common attributes represented by X and

Y . Let us suppose that each attribute consist of a host of intangibles that can

be ranked but not measured and that the evaluations are expressed in terms

of an ordinal scale of n ranks: q = q1, q2, · · · , qn for X and s = s1, s2, · · · , sn
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for Y . In this paper we consider only a complete linear ordering case so

that si and qi take on value in the set of integers {1, 2, · · · , n}; moreover,

evaluators are asked to decide on a definite rank order for each attribute

so that no two objects are given the same rank, even if they seem equally

acceptable. In practice, the vectors s and q are elements of nPn, the set of

all n! permutations. With no essential loss of generality we may assume that

si is the rank of yi after q has been arranged in its natural order (sorted

permutation) with the corresponding ranks si aligned beneath them.

1 2 · · · i · · · n− 1 n

s1 s2 · · · si · · · sn−1 sn

(1)

A rank correlation r (q, s) is a statistic summarizing the degree of association

between two rankings q and s where q acts as a reference to the other. For

comparability, the coefficients are usually constructed to vary between −1

and 1. Their magnitude increases as the association increases with a +1 (−1)

value when there is perfect positive (negative) association from concordance

(discordance) of all pairs. The value of zero is indicative of no association.

The inverse s′ of s is the permutation obtained by interchanging the two

rows and then sorting the column into increasing order of the new top row.

The permutation inverse transforms an index vector into a rank vector and

vice versa, that is s′si
= i, i = 1, · · · , n. A plausible rank correlation statistic

should be restricted to be symmetric under inversion

r (q, s) = r (q, s′) (2)

otherwise it would be possible to change the value of r (q, s) simply by ex-

changing the reference ordering.

Rankings in [1] are referred to a classification of n items with 1 assigned

to the most preferred item, 2 to the next-to-most preferred and so forth. If

an opposite orientation of the arrangement is applied, then a rank correla-

tion statistic that change its sign, but not its absolute value is said to be

antisymmetric under reversal

r (q, s) = −r (q, s∗) (3)
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where s∗i is the antithetic ranking of si that is s∗i = n− si + 1, i = 1, · · · , n.

The usefulness of this principle is that a classification of n items can be

organized according to the types of problems that occur, enabling a user to

better focus on and control problems and thereby providing more meaningful

measurement. Condition [3] can easily be obtained by averaging a statistic

computed on the ranks with the same statistic computed on the antithetic

ranks (Salama and Quade [24], Genest and Plante [9], Cifarelli et al. [4]).

The main obiective of this paper is to examine a selection of rank corre-

lations and identify limitations and merits of each relatively to several situ-

ations of nonlinear type. The contents of the various sections are as follows.

Section 2 presents several cases of nonlinear association between rankings.

In Section 3 we will concentrate mainly on analyzing the fundamental fac-

tors which affect the behavior of some unweighted rank correlation statistics

under a nonlinear interaction. In particular, we will show the inadequacy of

unweighted rank correlation coefficients to deal with such situations. Section

4 reviews the general formulation of weighted rank correlations in which the

incorporation of a weight fucntion allows more flexibility in the tests. The

function is to be chosen so as to weigh the comparisons according to the

importance attached to various subsets of ranks. In this sense, Section 4

highlights the more salient features and the performance of several choices

of the weight function. Section 5 reports on a class of correlation statistics

obtained by computing the Pearson’s product-moment correlation coefficient

on suitably chosen scores which replace ordinary ranks. In Section 6 we

obtain the critical values of the most promising coefficients to enable such

statistics to be applied to real data.
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2 Nonlinear association

Situations in which a coefficient of agreement/disagreement should take

into account the contextual factors that affect judgement are common in

real world. In this section we describe a number of tight but nonlinear

relationships between two rankings.

Ceiling or floor effects. These represent cases of limited resource allocation

because ascribing higher importance to one item reduces the importance of

another. For example, it is more satisfactory the placing of the winner in a

race in the first position than the placing of the worst contestant last. In

other cases differences in low ranks would seem more critical. For example,

when an admission office expunges the less qualified candidates.

Bipolarity conditions. The top-down and the bottom-up process may si-

multaneously affect the same attribute giving rise to a bi-directional effect.

Let us consider, for example, the comparison of the final league tables with

expert forecasts made before the start of the season. In league football, both

the teams placed near the top (which gain promotion) and those placed near

the bottom (which risk relegation) are relevant to evaluate the accuracy of

the prediction. The teams placed in the middle part of the rankings have

negligible influence.

Critical region phenomena. A relationship exists within the central part of

the scale of measurement, but at the extremes no relationship is observed, ei-

ther by virtue of insensitivity of the measures, or through some more intrinsic

characteristic of the causal relationship, or because the errors of observations

are greatest at the extremes. Only the central rankings are believed to have

any practical importance. For instance, the unhealthy levels of body mass

index are at both ends of the scale and the middle is relatively safe. This

implies that both extremes of the ranking in one variable may be placed

together at one extreme of the other variable.

Quadratic trends. One of the most common nonlinear pattern is a U -

shaped or inverted U -shaped relationship in which the values in the ranking

show an increase followed by a decrease or vice versa. An example of the

former is the environmental Kuznets curve predicting that the environmental
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quality appears to deteriorate with countries’ economic growth at low levels

of income, and then to improve with economic growth at higher levels of

income. An example of an inverted U-shaped pattern is the Yerkes-Dodson

law relating the level of arousal and the expected quality of performance.

Bilinear association. Increasing degree of attribute Y are combined with

increasing degree of attribute X, but in a bilinear ascending (descending)

pattern the mean of the ranks to the left of the central rank of Y is signif-

icantly higher (lower) than the mean of the ranks on opposite side. These

situations may occur, for instance, when the evaluators tend to separate the

items into two distinct groups, but all the items in a group are considered

superior, in some sense, to all the items in the other group.

In order to get a feeling as to the nature of nonlinear association, the

relationships discussed above are illustrated in Table 1 with n = 15 fictitious

rankings. The abbreviation LH (HL) indicates that the lowest (highest)

points of the scale come first. The suffix A and D stand for ascending and

descending respectively.

Table 1: examples of nonlinear rankings

A Natural ordering 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B Inverse ordering 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
C Floor effect 1 2 3 4 15 14 13 12 11 10 9 8 7 6 5
D Ceiling effect 11 10 9 8 7 6 5 4 3 2 1 12 13 14 15
E Bipolarity/A 1 2 3 4 11 10 9 8 7 6 5 12 13 14 15
F Bipolarity/D 15 14 13 12 11 6 7 8 9 10 5 4 3 2 1
I U-shaped/LH 8 7 6 5 4 3 2 1 9 10 11 12 13 14 15
J U-Shaped/HL 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8
K Inverted U/LH 1 2 3 4 5 6 7 8 15 14 13 12 11 10 9
L Inverted U/HL 9 10 11 12 13 14 15 8 7 6 5 4 3 2 1
M Bilinear/A 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
N Bilinear/D 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9

Naturally, such nonlinearities are not exhaustive, but we believe that they

cover some of the most interesting cases.
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3 Unweighted rank correlations

Moran [19] suggested a simple technique for devising a nonlinear rank

correlation. First we define a ranking q which shows such behavior perfectly.

Given some other ranking s we measure its departure from such an ideal

behavior by quantifying the nonlinear deficit by an appropriate distance δ (.)

which does not take explicitly into account a weighting scheme for ranking

comparisons.

r (q, s) = 1− 2
δ (q, s)

max
s∈nPn

δ (q, s)
(4)

where nPn is the set of all n! permutations. Both Kendall’s τ ([15]) and

Spearman’s ρ ([28]) can be expressed using [4].

Another example (see Cifarelli et al.[4]) is the ratio between distance of s

from a reference permutation q and distance of s from the antithetic reference

permutation q∗

r (q, s) =
δ (q∗, s)− δ (q, s)

δ (q∗,q)
(5)

The Gini cograduation coefficient e the Gideon-Hollister maximal deviation

belong to this class.Table 2 reports several examples of rank correlation co-

efficients based either on [4] or on [5].

The indices r1 and r4 are well-known. The cograduation coefficient r2,

proposed by Gini [11] as an improvement over the Spearman’s footrule r14

([29]), has been recently rediscovered by Salama and Quade [25] (see also

Nelsen and Ubeda-Flores [20]). Formula [5] with the Hamming distance

yields r3 where h (x) denotes the indicator function which equals 1 if x is

true and 0 otherwise. The statistic r5, given by Gideon and Hollister [10],

derives from the principle of greatest deviation. The coefficient r6 is based on

the squared index of a permutation discussed by Knuth [16, p 16]. Salvemini

[26] described the Fechner’s coefficient r7 and introduced the rank correlation

r8. The Fechner index r7 can also be determined by the number of “runs up”

in permutation s; in fact, r7 coincides with the test of randomness devised

by Moore and Wallis [18] and with the rank correlation statistics based on

rises discussed by Salama and Quade [24].
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Table 2: unweighted rank correlations

Name Formula

Spearman r1 = 1−
6
∑n

i=1 (i− si)
2

n3 − n
Gini r2 = 2

∑n
i=1|i− s∗i |−

∑n
i=1|i− si|

n2 − kn
; kn = n mod 2

Hamming distance r3 =
∑n

i=1 h (s∗i = i)−
∑n

i=1 h (si = i)
n− kn

Kendall r4 =
2
∑

i<j sgn (sj − si)
n (n− 1)

Gideon-Hollister r5 = 2

max
1≤i≤n

i∑
j=1

h
(
s∗j > i

)
− max

1≤i≤n

i∑
j=1

h (sj > i)

n− kn

MacMahon r6 = 1−
12
∑n−1

i=1 i
2h (si > si+1)

2 (n− 1)3 3 (n− 1)2 + n− 1

Fechner r7 =
∑n

i=2 sgn (si − si−1)
n− 1

Salvemini r8 =
sn − s1∑n

i=2|si − si−1|
Quadrant association r9 =

n1 − n2

n1 + n2

Dallal-Hartigan r10 =
λn − γn

n− 1

Average slope r11 = 2

∑
i<j

(
sj − si

j − i

)
n (n− 1)

Median slope r12 = median

{
bij |bij =

sj − si

j − i
, 1 ≤ i < j ≤ n

}
Inversion table r13 = 1− 2

√
6
∑n

i=1 b
2
i

2 (n− 1)3 + 3 (n− 1)2 + (n− 1)

Spearman’s footrule r14 = 1−
4
∑n

i=1|i− si|
(n2 − kn)

Gordon r15 = 2
(
λn − 1
n− 1

)
− 1

Bhat-Nayar r16 = 1−
2 max1≤i≤n

∑i
j=1 h

(
s′j > i

)
bn

2
c

Let the (q, s) plane be divided into four regions by the lines q = (n+ 1) /2

and s = (n+ 1) /2. The statistics r9, developed by Blomqvist [3], is cal-

culated on the basis of concordance/discordance in the number of pairs n1

belonging to the first and third quadrants compared with the number n2
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belonging to the second and fourth quadrants. The coefficient r10 has been

suggested by Dallal and Hartigan [7] as a measure of monotone association for

a bivariate sample. The symbols λn and γn indicate the maximum length of a

subsequence
(
qij , sij

)
, j = 1, · · · , λn such that both qij and sij are increasing

or decreasing respectively. The slopes statistic r11 is the average pairwise

slope between observation (i, si) and (j, sj). An analogous concept to r11 is

the median r12 of the slopes between all combinations of two points in the

data. Coefficient r13 depends on the Euclidean distance between the inversion

table of the current ranking and the inversion table of the sorted permuta-

tion si = i for i = 1, 2, · · · , n. An inversion table uniquely determines the

corresponding permutation (Knuth, [16, p. 12]). A similar coefficient based

on the city-block distance gives the same values as the median slope statis-

tic. The coefficient r15 is a linear transformation of the Gower’s measure

[13] of similarity for variables measured on an ordinal scale. Coefficient r16,

given by Bhat and Nayar [1], is based on the distance between the identity

permutation q and the inverse permutation s′ of s.

The coefficients in Table 2 have been computed for the rankings in Table

1 and the results are reported in Table 3.

The findings reveal that unweighted rank correlation coefficients are not

well suited to measure the association in nonlinear cases. The Spearman’s

r1 and Kendall’s r4 obtain a high value for the bipolarities E, F and for the

inverted U relationship, but the other nonlinearities turn out not to have a

large impact on r1 and r4. The values of the Gini’s r2 are very similar to those

produced by r1. The Hamming distance r3, the Gideon-Hollister coefficient

r5, the Salvemini’s index r8 and the index based on the inversion table r13

have low values for nearly all rankings. Coefficient r6 describes properly the

bilinear relationships M and N and the floor effect C, but gives low resolution

over the set of all permutations.

The Fechner index r7 focuses its attention on the bilinear configurations

M and N. The quadrant association r9 illuminates quadratic and bilinear

relationships but the other patterns went undetected; in fact, r9 has a large

negative value for too many patterns which can be misleading. Coeffcient r10

indicates a fairly high degree of similarity between the sorted permutation
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Table 3: values of unweighted correlation coefficients

C D E F G H I J K L M N
r1 0.21 0.21 0.80 −0.93 0.01 −0.19 0.70 −0.70 0.80 −0.80 −0.50 0.50
r2 0.25 0.25 0.57 −0.79 0.18 −0.25 0.71 −0.71 0.79 −0.79 −0.50 0.50
r3 0.36 0.36 0.14 −0.43 0.43 −0.43 0.50 −0.50 0.57 −0.57 −0.07 0.07
r4 −0.05 −0.05 0.60 −0.81 0.14 −0.26 0.47 −0.47 0.60 −0.60 −0.07 0.07
r5 −0.14 −0.14 0.14 −0.43 0.43 −0.29 0.43 −0.43 0.57 −0.57 −0.43 0.43
r6 −0.94 0.24 0.30 −0.55 0.41 −0.29 0.72 0.72 −0.60 −0.82 0.90 −0.87
r7 −0.43 −0.43 0.14 −0.43 0.43 −0.43 0.00 0.00 0.14 −0.14 0.86 −0.86
r8 0.17 0.17 0.54 −0.64 −0.04 −0.04 0.33 −0.33 0.40 −0.40 −0.04 0.04
r9 0.00 0.00 0.14 −0.43 0.43 −0.43 0.86 −0.86 1.00 −1.00 −0.86 0.86
r10 −0.43 −0.43 0.14 −0.43 0.36 −0.36 0.00 0.00 0.14 −0.14 0.43 −0.43
r11 0.24 0.24 0.85 −0.95 −0.02 −0.17 0.66 −0.66 0.75 −0.75 −0.41 0.41
r12 −1.00 −1.00 1.00 −1.00 0.67 −0.71 0.88 −0.88 1.00 −1.00 −0.25 0.25
r13 −0.23 −0.23 0.40 −0.87 −0.04 −0.33 0.26 −0.38 0.40 −0.91 −0.24 0.05
r14 −0.07 −0.07 0.57 −0.79 0.07 −0.36 0.43 −1.00 0.57 −1.00 −1.00 0.00
r15 −0.43 −0.43 0.14 −0.43 0.14 −0.71 0.00 0.00 0.14 −0.14 0.00 −0.86
r16 −0.43 −0.43 0.14 −0.43 0.43 −0.43 −0.14 −1.00 0.14 −1.00 −1.00 −0.14

A and the descending bilinear pattern N, but not for the bilinear ascending

pattern M. The average slope r11 draws attention to the dual character in E

and F and to the quadratic relationships I, J, K, L.

Satisfactory results have been obtained by the median slope r12 which

allows a correct evaluation of most of the effects (it fails, however, to charac-

terize the bilinear condition in M and N); more importantly, r12 has the same

magnitude, but opposite sign for (I, J) and (K, L). The Spearman’s footrule

r14 understates ceiling, floor, and bilinear descending effects. Moreover, it

is not very sensitive to change in ranks since it assigns the minimum value

−1 non only to the association of A with the inverse of the natural order

B, but also to other very different arrangements: J, L, M. The Bhat-Nayar

coefficient r16 has a similar behavior. The Gordon [12] index r15 detects the

sign and the magnitude of the bilinear descending pattern N and the de-

scending critical region phenomenon H but it also indicates a false absence

of association in I, J, M. In addition, r15 does not distinguish between ceeling

and floor effects since r15 (A,C) = r15 (A,D) making very difficult to offer

an explanation.
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The main drawbak of the rank correlations included in Table 2 is that they

implicitly assume that the level of any one of the items is of equal importance

with the level of any other item. In fact, the Kendall’s τ corresponds to assign

the same weight regardless of how nearer separated are the items. Hence we

are crediting rankings with possessing more information than is intended.

This perhaps explains their general failure to assess concordance in ranking

affected by a critical region phenomenon.

4 Weighted rank correlation

The decision to weight or not to weight rank comparisons is a controversial

issue. Those in favour of using “neutral” methods prefer not to weight com-

parisons; other recognize that giving more weight to agreement on certain

comparisons and less weight to others increases flexibility. The use of the

weights, as a matter of fact, avoids a direct assumption that there is a linear

relation between two rankings and thus uncovers a potential nonlinear asso-

ciation, should it exist. By contrast, some measure of rank correlations has

an implicit weighting scheme. For instance, the Salvemini’s r8 attributes zero

weight to intermediate ranks. Also, the Spearman’s r1 gives greater weight

to differences between items separated by more members of the ranking.

At least part of the problem is how to decide on a plausible set of weights.

Quade and Salama [22] showed that the numerous statistical methods for

measuring association when the magnitude of intercategory distances cannot

be ignored, group naturally in two classes: weighted rank correlation and

correlation of scores. This section is devoted to the first type, whereas the

second one will be treated in the next section.

The following formula is a weighted version of Spearman’s ρ that includes

several special cases.

ρw = 1− 2
∑n

i=1wi (i− si)
2

max
nPn

{
n∑

i=1

wi (i− si)
2

} (6)
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An alternative generalization can be stated in the following terms

ρ′w =

∑n
i=1 (wi − w̄) si∑n
i=1 (wi − w̄) i

with w̄ = n−1

n∑
i=1

wi (7)

The Spearman’s ρ is obtained for wi = i.

Quade and Salama [22] discussed two weighted versions of Kendall’s τ

additive τw,a =

∑n
i<j (wi + wj)h (si < sj)∑n

i=1 (n− i)wi

− 1 (8)

multiplicative τw,m =
2
∑n

i<j wiwjh (si < sj)∑n
i<j wiwj

− 1 (9)

The usual Kendall’s τ is obtained from [9] for wi = 0.5, i = 1, 2, · · · , n.

Table 4 shows some special cases of [6]-[9] that have already been consid-

ered in literature.

Coefficient r17 is based on the mean rate of change between the identity

permutation q and the actual permutation s. Index r18, suggested by Salama

and Quade [23], gives special attention to high-ranked items (1, 2, · · · , ). r19

and r20 were proposed by Quade and Salama [22] as variants of the standard

Spearman’s ρ. Costa and Soares [6] recommend r21 which is based on the

weights wi = [2 (n+ 1)− (i+ si)]; such a scheme represents not only the im-

portance of the sorted values but also the importance of the current ranking.

The values of r17 · · · r21, however, are not antisymmetric under reversal.

The Mango index r22 is a special case of [7] with weights wi = i2 and thus

places emphasis on the relative importance of high ranks (, · · · , n− 2, n− 1, n).

From another point of view, r22 can be interpreted in terms of the sum of

the nC2 second order minors extracted from the (nx2) matrix having s as

first column and the natural ordering q as second column. The index r23

proposed by Blest [2] derives from [7] with weights wi = (n+ 1− i)2 and it

can be interpreted as the differences between the accumulated ranks of the

two orderings q and s. The weighting scheme of r23 favors low-ranked items

(1, 2, · · · , ). Furthermore, (r22 + r23) = 2r1.

In their important survey, Quade and Salama [22] formulated a new ver-

sion r24 of the Kendall’s τ which involves the harmonic weights [8]. Shieh
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Table 4: weighted rank correlations

Name Formula
Weighted Spearman

Mean rate r17 =
2
∑n

i=1

(i− si)
si

(n+ 1)L1 − 2n
− 1 ; L1 =

∑n
i=1 i

−1

Salama-Quade 82a r18 = 1−
2
∑n

i=1 (i− si)
2 (
i−1 + s−1

i

)
(n+ 1)

∑n
i=1

[2i− (n+ 1)]2

isi

Salama-Quade 82b r19 = 1−

∑n
i=1

(i− si)
2

isi

(n+ 1)L1 − 2n

Salama-Quade 92 r20 = 1− 6
n (n− 1)

∑n
i=1

(i− si)
2

i+ si

Costa-Soares r21 = 1−
6
∑n

i=1 (i− si)
2 [2 (n+ 1)− (i+ si)]

n4 + n3 − n2 − n

Mango r22 = 1−
3
[
n2 (n+ 1)2 − 4

∑n
i=1 i

2si

]
n (n− 1) (n+ 1)2

Blest r23 = 1−

[
12
∑n

i=1 (n+ 1− i)2 si − n (n+ 2) (n+ 1)2
]

n (n− 1) (n+ 1)2

Weighted Kendall

Quade-Salama r24 =
2
∑n

i<j

(
i−1 + s−1

j

)
h (si < sj)∑

i<j

(
i−1 + s−1

j

) − 1

Shieh/a r25 =
2
∑n

i<j (i ∗ j)2 sgn (sj − si)
n (n5/9 + 2n4/15− 5n3/36− n2/6 + n/36 + 1/30)

Shieh/b r26 =
2
∑n

i<j [(n+ 1− i) (n+ 1− j)]2 sgn (sj − si)
n (n5/9 + 2n4/15− 5n3/36− n2/6 + n/36 + 1/30)

[27] analyzed [9] with weights wi = h (i ≤ b(n+ 1) pc) where p = m/n and

m = b(n+ 1) pc. The value of m must be determined on a case-by-case

basis. For this reason, it appears to be unsuitable for a general use and

we preferred using the weighting schemes applied to the Blest and Mango

indices. The weighted rank correlation coefficients included in Table 4 have

been computed for the rankings of Table 1.

Even in this case, the results leave something to be desired. The mean

rate r17 depicts well the bipolarity conditions, the U-shaped/HL and the

inverted U/LH pattern, but it fails to identify all the other structures. The
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Table 5: values of weighted rank correlations

C D E F G H I J K L M N
r16 −0.77 0.23 −0.91 0.97 0.37 0.46 −0.27 0.94 −0.96 0.42 0.36 −0.23
r17 0.75 0.20 0.93 −0.71 −0.00 −0.08 0.64 −0.27 0.95 −0.35 0.12 0.60
r18 0.77 −0.23 0.91 −0.97 −0.24 −0.32 0.27 −0.60 0.96 −0.69 −0.29 0.23
r19 0.37 −0.05 0.80 −0.93 −0.01 −0.21 0.47 −0.77 0.87 −0.86 −0.62 0.33
r20 0.41 0.02 0.80 −0.93 0.01 −0.19 0.57 −0.70 0.90 −0.80 −0.50 0.47
r21 0.02 0.41 0.80 −0.93 0.05 −0.25 0.83 −0.83 0.70 −0.70 −0.53 0.53
r22 0.41 0.02 0.80 −0.93 −0.08 −0.12 0.57 −0.57 0.90 −0.90 −0.47 0.47
r23 0.47 −0.30 0.76 −0.89 −0.13 −0.37 0.18 −0.65 0.84 −0.45 −0.10 0.03
r24 −0.89 0.68 0.72 −0.88 0.27 −0.01 0.95 0.52 −0.33 −0.98 0.55 −0.38
r25 0.68 −0.89 0.72 −0.88 −0.12 −0.40 −0.52 −0.95 0.98 0.33 0.38 −0.55

Spearman formula with harmonic weights r18 is relatively large for C, E, and

K where the high-ranked items are in the first positions. A moderate degree

of anticorrelation is attributed to F but for the other permutations there is

no tendency for the ranks to run with or against each other. Coefficients r19

and r20 are in line with r18 but show a wider variety of values than that of

r18. In addition, they assign a large negative value to J and L characterized

by high-ranked items in the last positions. From another standpoint, r18, r19,

r20 do not stress the inherent concordance for several nonlinearities or have

the wrong sign or are confused (e.g. for the ceiling effect). The coefficient

of Costa and Soares r21 yields values of the same type as the Blest index r23

but provides a better description of the U-shaped/HL permutation.

Since r22 (q, s) = −r23 (q, s∗), the index of Mango and the index of Blest

act as complementary statistics in cases of limited resource allocation because

ascribing higher importance to one item reduces the importance of another.

In facts, the quadratic and the bilinear patterns are consistently reflected by

the two coefficients. The signs of r22 and r23 are concordant with the sole

exception of G where both are near to zero. Nevertheless, the Mango and

Blest coefficients misstate the actual amount of agreement due to a ceiling or

to a floor effect. On the other hand, a high value in both indices constitutes

a clear symptom that the permutation is ruled by antagonistic forces.

The weighted Kendall index r24 takes into account the bipolarities E, F
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and, at least partially, the quadratic interactions J and K, but other patterns

are almost completely ignored (e.g. H and I). The coefficient r25 omits the

strength of the linkage in G, K and N, but all the other values are well above

0.5. The coefficient r26 captures the floor effect in C, the ceiling effect in

D, the duality effect in E and F, and the quadratic relationship in J and K.

In addition, r25 and r26 give the same sign (but a different magnitude) to

the pairs (I, J) and (K, L). Note that none among the indices has been able

to give an accurate image of the relationship between the central levels of

the sorted permutation A and the corresponding ranks in G or H. Moreover,

r17, · · · , r26 do not take into account the fact that the highest five ranks and

the lowest five ranks are put together in the first ten positions.

5 Correlation of scores

Scoring methods have been developed specifically for the analysis of or-

dered categorical data. A common procedure to measure agreement between

two observers consists of first assigning arbitrary equal-interval scores to the

ordinal levels (unless the particular case requires otherwise) and then ap-

plying classical statistical methods based on these scores. See, among the

others, Nikitin and Stepanova [21]).

For fixed n, consider the set of sample pairs {(xi, yi) , i = 1, 2, · · · , n} from

an absolutely continuous bivariate distribution function H (X, Y ) having

marginal distribution functions F (X) and G (Y ). Assume further that F

and G have a finite mean and do not contain unknown parameters. The hy-

pothesys to be tested is H0 : H (X, Y ) = F (X)F (Y ). The rank correlation

statistics which suggest themselves to test H0 are of the form

Tn =
n∑

i=1

aqi:nbsi:n (10)

where qi (si) is the i-th order stastistic for a sample of size n drawn from F

(G ). Constants {ai:n}, {bi:n} , i = 1, 2, · · · , n are two sets of real numbers
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depending on the ranks and satisfying the constraints

n∑
i=1

aqi:n =
n∑

i=1

bsi:n (11)

ai ≤ ai+1, bi ≤ bi+1 i = 1, 2, · · · , n (12)

In this section we are interested in exploring [10] when {ai:n} and {bi:n} are

the expected value of order statistics E (xi:n) =F mi:n and E (yi:n) =G mi:n

respectively. In particular, we consider constants in the form

aqi:n =
Fmi:n − µF√∑n

i=1 (Fmi:n − µF )2
; bsi:n =

Gmi:n − µG√∑n
i=1 (Gmi:n − µG)2

(13)

with µF = E (X) , µG = E (Y ). The degree of concordance/discordance

between two rankings is determined by calculating Pearson’s product moment

coefficient of correlation with {Fmi:n} and the {Gmi:n} in place of the ranks

rn (F,G) =

∑n
i=1 (Fmi:n − µF ) (Gmi:n − µG)√∑n

i=1 (Fmi:n − µF )2∑n
i=1 (Gmi:n − µG)2

(14)

The statistic rn (F,G) has a maximum value of 1 achieved when the model

F and G are a linear transform of each other. The minimum possible value

is attained if the rankings are exactly invertered, but it is not necessarily −1

because it depends on F and G. For intermediate values, rn (F,G) provides a

measures of the dependence between the two rankings. In general, in carrying

out the test, we reject the hypothesis of independence if the absolute value

of [14] is too large.

The models F and G generate the scores and may be chosen to conform to

one’s judgement about the general charateristics of the measurement. Iman

and Conover [?] proposed a rank correlation coefficient which emphasizes the

concordance for the top-ranked items (1, 2, 3, · · · )

Fmi:n =G mi:n = −
n∑

j=i

j−1 = Mi → r27 =

∑n
i=1MiMsi

− n
n+M1

(15)

which is generated by reflected exponential distributions F (x) = G (x) =

ex, x < 0. Conversely, by using a positive exponential distribution F (X) =
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G (x) = 1− e−x, x > 0 we obtain

Fmi:n =G mi:n = −
n∑

j=n+1−i

j−1 = Li → r28 =

∑n
i=1 LiLsi

− n
n+ Ln

(16)

which can be interpreted as a bottom-up rank correlation because it is espe-

cially sensitive to the concordance for low-ranked items (· · · , n− 2, n− 1, n).

The coefficients r27andr28 are not antisymmetric under reversal and have a

mean value different from zero.

Crathorne [5], Fieller et al. [8], and many other used the expected values

of the standard normal order statistics (or approximations of them) to de-

fine a measure of rank correlation corresponding to the Pearson’s correlation

coefficient, that is, the Fisher-Yates coefficient.

Fmi:n =G mi:n = Li → r29 =

∑n
i=1NiNsi∑n

i=1N
2
i

(17)

Where Ni are the expected value of the i-th standard normal order statistic.

Since F and G are symmetric about x = 0 and y = 0, respectively, then

Fmi:n +F mn−i+1:n = 0 and Gmi:n +G mn−i+1:n = 0 implying that a similar

score is attached to ordered position at equal depths from the extremes for

each distribution. Furthermore, the absolute value of the scores increases

as we go from the mediocre item to extreme items so that [17] is equally

sensitive to agreement in both extremes but not in the center.

Table 6 reports the value of r27 and r28. The scores [15] and [16] have been

rescaled so that the extreme values of [14] will lie in the interval from −1 to

1. In addition, we have computed r29 for three different approximations to

the normal scores.

Van der Waerden Fmi:n =G mi:n = Φ−1

(
si

n+ 1

)
Blom Fmi:n =G mi:n = Φ−1

(
si − 0.375

n+ 0.25

)
Tukey Fmi:n =G mi:n = Φ−1

(
si − 1/3

n+ 1/3

) (18)

Where Φ−1 (.) is the inverse cumulative normal distribution.

The values of r27 convey the information that there is agreement for con-

figurations dominated by the concordance between low-ranked items (e.g.
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Table 6: values of rank correlation of scores

C D E F G H I J K L M N
r27 0.72 −0.39 0.89 −0.96 −0.24 −0.35 0.07 −0.74 0.96 −0.82 −0.56 0.02
r28 −0.39 0.72 0.89 −0.96 −0.20 −0.31 0.93 −0.74 0.22 −0.82 −0.56 0.15
r29,a 0.25 0.25 0.86 −0.95 −0.08 −0.22 0.65 −0.65 0.74 −0.74 −0.39 0.39
r29,b 0.26 0.26 0.87 −0.96 −0.10 −0.23 0.64 −0.64 0.73 −0.73 −0.37 0.37
r29,c 0.26 0.26 0.87 −0.96 −0.10 −0.23 0.64 −0.64 0.73 −0.73 −0.37 0.37

K). Coefficient r28 emphasizes the dependence in configuration characterized

by the concordance between top-ranked items (e.g. I). A high positive value

for both r27 and r28 is a signal of a bipolarity ascending pattern whereas a

large negative value for both r27 and r28 may indicate either a bipolarity de-

scending pattern or a quadratic link. Rank correlations based on the normal

distribution r29 depict sufficiently well bipolarity conditions and quadratic

relationships but perform ineffectively for the other comparisons. The last

three columns of Table 6 show that do not exist meaningful differences be-

tween the three alternatives in [18].

6 Choice of a rank correlation

The setting up of a rank correlation statistic for all the alternative simul-

tanously is, perhaps, an impossible task since the regions of rejection tend

to overlap. Although the notion of a specific measure of dependence for each

reference permutation has some merits, the comparability of different scenar-

ios would be enhanced by a rather general coefficient. The easiest method

to overcome this dilemma is to limit ourserlves arbitrarily to a definite class

of statistics which has desirable properties over a broad range of hypotheses

of association and then to choose an optimum statistic from this class.

When the value of any typing method for r (q, s) is assessed, the two main

characteristics that need to be considered are the robustness and the sensi-

tivity. The former determines the degree of rank order inconsistency that can

be withstood by the method before mismatches begin to occur. The sensi-
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tivity of r (q, s) is an estimate of its ability to differentiate between rankings.

Robustness and sensitivity are antithetical requirements where more robust

indices give greater stability against random change of the ranks whereas

more sensitive coefficients offer a richer source of information on association

patterns. In order, therefore, to choose a “good” index, some balancing of

conflicting objectives will be required. A reasonable solution can be obtained

by considering that ranking is an intrinsically robust process; thus, the choice

of a rank correlation should privilege its discriminatory power.

It is plain that a given value of a rank correlation coefficient does not in

general define a unique permutation to be associated with the natural order

permutation, except perhaps the maximum value of the coefficient. Never-

theless, the values of the unweighted rank correlations included in Table 2

have a “resistance-to-change” property which appears to be of little value

for the purposes of rank comparisons. Moreover, only r1, · · · , r4, r11, r12 are

antisymmetric under reversal. The weighted coefficients seem more flexible

and can discriminate more easily between permutations than the unweighted

rank correlations. It remains unclear, however, how to effectively choose

among the various indices of the second type. As a preliminary matter, we

note that the sensitivity possessed by r17, · · · , r21, also in consideration that

they fail to verify condition [3], seems inadequate to evaluate the majority of

the situations described in Table 1. Finally, the weighted Kendall coefficient

r24 has a negative bias that precludes its usage and application. As a conse-

quence, the indices r1, · · · , r21 and r24 are not considered suitable statistics

to use when the capacity of an index to respond to changes in a permutation

is of concern.

Correlations of scores have received attention in a wide range of research

disciplines because their definition gives us the freedom to choose a suit-

able rank scores. We studied strengh and weakness of some correlations of

scores defined as product-moment correlation between the expected value

of the order statistics from two identical distribution. Our analysis would

suggest that this approach is less satisfactory than weighed rank correlation

in reflecting certain patterns of agreement/disagreement between rankings.

It must be noted, however, that the two approaches: rank correlation and
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correlation of scores are not necessarily different. The Spearman’s ρ, in fact,

can be obtained from [14] by using the order statistics from the uniform ditri-

bution. The Blest index can be well approximated (Genest and Plante [9])

by a reflected power-function distribution F (x) = 1−
√
−x for −1 < x < 0,

and G (x) = x for 0 < x < 1. On the other hand, the Mango index can be

approximated by a power-function distribution F (x) =
√
x and G (x) = x

for 0 < x < 1. In this sense, the results achieved with correlations based

on scores do not appear an effective improvement over weighted rank cor-

relations. Moreover, a specification of realiable models is required and any

such choice implies a further variant of the index which may be discourag-

ing for a non-expert user. Consequently, even the indices r26, · · · , r28, are

not considered further here. In summary, we have restricted our attention to

r22, r23, r25, r26 which are the most promising indices discussed in the previous

sections.

Let us suppose that the values of r (q, s) are rounded after the m-th de-

cimal place
br (q, s) 10m + 0.5c

10m
(19)

The discriminatory power of r (q, s) can be quantified by the fraction of values

assumed by [19] in relation to the maximum potential number of values.

ψ =
m

min {nPn, 2(10m) + 1}
(20)

where m is the number of distinct values that [19] takes on over nPn. Thus

ψ = 1 would indicate that r (q, s) has the minimum number of repeated

values at the given level of approximation. Conversely, ψ u 0 would indicate

that virtually all members of nPn are considered of an identical type from

the point of view of r (q, s). A value of ψ around 0.50 would mean that if

one ranking is chosen at random then there would be a 50% probability that

the next ranking chosen at random would be indistinguishable from the first.

A summary of [20] for r22, r23, r25, r26 is given in Table 7 for n = 8, · · · , 11.

Included in the table, for comparative purposes, are the results of r1, r4, r29a.

In particular, column 3-6 show the mean, the standard deviation, the stan-

dardized third moment γ1 and the standardized coefficient of kurtosys γ2.
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The last column reports the ratio [20] where the values have been rounded

after the 4th decimal place to keep computations at a feasible level.

Table 7: summary statistics

n Coefficient µ σ γ1 γ2 ψ
8 r1 −0.0416 0.344 0.02 2.80 0.42

r4 −0.0312 0.260 −0.05 3.13 0.14
r22 −0.0509 0.345 0.01 2.81 3.66
r23 −0.0324 0.359 0.03 2.72 3.70
r25 −0.0682 0.340 −0.12 2.78 56.82
r26 −0.0015 0.377 −0.00 2.69 61.03
r29a −0.0467 0.339 0.01 2.74 27.44

9 r1 −0.0333 0.326 0.02 2.82 0.60
r4 −0.0247 0.244 −0.04 3.11 0.18
r22 −0.0411 0.329 0.01 2.82 5.87
r23 −0.0256 0.359 0.02 2.72 5.92
r25 −0.0557 0.320 −0.10 2.80 87.42
r26 −0.0010 0.351 −0.00 2.73 92.86
r29a −0.0382 0.322 0.01 2.76 69.65

10 r1 −0.0273 0.310 0.02 2.84 0.83
r4 −0.0200 0.230 −0.03 3.10 0.23
r21 −0.0339 0.314 0.01 2.78 8.94
r22 −0.0207 0.323 0.02 2.78 9.00
r24 −0.0464 0.304 −0.09 2.82 95.37
r25 −0.0006 0.329 −0.00 2.77 98.33
r29a −0.0319 0.307 0.01 2.78 88.55

11 r1 −0.0227 0.297 0.01 2.85 1.10
r4 −0.0165 0.218 −0.02 3.09 0.28
r22 −0.0284 0.301 0.01 2.85 13.05
r23 −0.0170 0.308 0.01 2.80 13.12
r25 −0.0392 0.289 −0.08 2.83 97.93
r26 −0.0004 0.310 −0.00 2.79 99.60
r29a −0.0271 0.294 0.01 2.80 93.71

The results suggest that the rank correlations are negatively biased al-

though the bias diminishes as the number of ranks increases. For large n,

the distributions is nearly normal. The best rate of convergence is achieved

by r26. It may be also observed that the sensitivity of all the indices increases

as n increases, but r26 can discriminate most easily between individual per-
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mutations.
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7 Conclusion

From the discussion and evaluation presented in the previous sections it

is clear that important factors such as the context in which we do associa-

tion analysis, the properties of the items to be ranked, the purpose of the

study, may influence the choice of a particolar weighting scheme for a rank

correlation coefficient. There are many methods of rank correlation, from

simple ones such as the Blomqvist’s coefficient to relatively complicated ones

invoking one or two system of weights and/or special rank transformations.

Any of these methods describes a different aspect of ordinal association. The

flexibility of the formula and the high resolution over the set of all rankings

are primary factors for a general coefficient of rank correlation.

We analyzed several measures which emphasize or de-emphasize certain

part of the scale by considering special characteristics of the ranks or by

attaching to each comparison a weight that reflects the judgement of the

evaluator about how much a rank matters.

In response to the special needs arising from the peculiar situations dis-

cussed in our paper, a reasonably general answer could be given by a modified

weighted Kendall’s τ . However, the question of how to weight and integrate

impacts on the different ranks is not trivial. After all, if one needs to know

the proper set of weights before one can choose the proper measure of rank

correlation, the strategy of avoiding bias seems circular.
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