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Abstract Closed-form solutions are traditionally used in
computer vision for estimating rigid body transformations.
Here we suggest an iterative solution for estimating rigid
body transformations and prove its global convergence.
We show that for a number of applications involving re-
peated estimations of rigid body transformations, an itera-
tive scheme is preferable to a closed-form solution. We il-
lustrate this experimentally on two applications, 3D object
tracking and image registration with Iterative Closest Point.
Our results show that for those problems using an iterative
and continuous estimation process is more robust than using
many independent closed-form estimations.
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1 Introduction

Rigid-body transformations in 3D relate different positions
of a rigid object, or different 3D views of an object. They
are thus widely used in computer vision, and the estimation
of such transformations plays a major role in applications
involving object localization. It is well known that three
points and their image are sufficient to compute a closed-
form expression for the transform. When more points (and
their transform) are available, several methods have been
presented in the eighties and nineties to find the best trans-
form according to different criteria [3, 13, 14, 27, 28]. Those
methods have been analyzed in [18] and compared in [9] and
basic rigid-body transformation estimation is generally con-
sidered a closed research topic.

In this paper, however, we consider this problem anew
and propose an iterative scheme for estimating rigid-body
transformations. Our point is that for some applications an
iterative estimation process is advantageous over a closed-
form solution. This is especially the case for iterative ap-
plications that require the estimation of many and puta-
tively similar transformations, like tracking a moving object.
In this case, an iterative estimation procedure can be “dis-
tributed” across the iterations of the application. Instead of
having an independent estimation at each iteration of the ap-
plication, we have a single iterative estimation process that
spans those iterations, ensuring a better use of the available
information and a higher robustness to noise.

Iterative methods for estimating rigid-body transforma-
tions have been suggested before [11, 21, 22]. Those meth-
ods rely on Kalman filtering, which, as pointed out in [17]
does not guarantee to converge and may have some stability
issues. The method we suggest is simpler and does not have
such problems, as we prove that it globally converges to the
least square solution. This property derives from a more ad-
equate choice of parametrization of rotations, the so-called
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Rodrigues parametrization. Moreover, we show that this it-
erative procedure can replace closed-form solutions in im-
age registration, thus providing a more efficient and precise
algorithm.

In Sect. 2, we describe a novel iterative algorithm for
rigid-body transformation estimation called Iterative Esti-
mator of Rigid-Body Transformations (IERBT) and prove
its global convergence. We then compare its use with a stan-
dard closed-form estimator on two applications, 3D object
tracking and image registration (Sects. 3 and 4 respectively).
We conclude with a brief discussion.

2 Iterative Rigid-Body Transformation Estimation

2.1 Parametrization

Any rigid body transformation can be represented as a ro-
tation around an axis going through the origin followed
by a translation. In this paper, the translation is trivially
parametrized by a translation vector t. For the rotation, a
non-redundant vectorial parametrization [4] is adopted, as
described in [12, pp. 277–305], also called the Rodrigues
vector. Basically, the rotation is described by a vector b
given by the first three components of its quaternion:

b = sin
φ

2
a, (1)

where a is a unit-norm vector colinear to the rotation axis
and φ is the rotation angle. Note that the fourth component
of the corresponding quaternion can be easily retrieved as

cos
φ

2
=

√
1 − ‖b‖2. (2)

Using this parametrization, a rotation Rb parametrized by b
transforms a vector x into a vector u given by

u = Rb(x)

= (1 − 2bT b)x + 2
√

(1 − bT b)b × x + 2(bT x)b (3)

=
(

1 − 2 sin2 φ

2

)
x + 2 cos

φ

2
sin

φ

2
a × x + 2 sin2 φ

2
(aT x)a

= cos(φ)x + sin(φ)a × x + (
1 − cos(φ)

)
(aT x)a,

where the last expression is the Rodrigues formula.
The vector b belongs to the closed ball of radius one,

where antipodal point are merged, since rotations of −π are
equivalent to rotations of angle π (see [2] for details).

2.2 Estimation

The estimation problem is the following. Suppose that we
have a set of n pairs of points {(xi ,yi )}ni=1 such that

yi = T∗(xi ) + εi, (4)

where T∗ is an unknown rigid-body transform, the aim is to
estimate T∗ so as to minimize the errors εi (in the least mean
squares sense).

The iterative estimation scheme suggested here starts
from an initial estimate T of the transform and iteratively
randomly picks a pair of point (xi ,yi ) and performs a
simple gradient descent step on the corresponding resid-
ual ‖yi − T(xi )‖2. In other words, if T(x) = Rb(x) + t is
parametrized by vectors t and b (as described in Sect. 2.1),
those parameters are iteratively updated by

�t = −ηt · gradt
1

2
‖yi − (Rb(xi ) + t)‖2, (5)

�b = −ηb · gradb
1

2
‖yi − (Rb(xi ) + t)‖2, (6)

where ηt and ηb are small learning steps. The gradients can
then be computed as follows:

∂

∂t
1

2
‖yi − (Rb(xi ) + t)‖2 = (

yi − (Rb(xi ) + t)
)T

∂

∂b
1

2
‖yi − (Rb(xi ) + t)‖2 (7)

= (
yi − (Rb(xi ) + t)

)T ∂

∂b
Rb(xi )

where ∂
∂b Rb(xi ) is obtained by deriving (3) with respect

to b:

∂

∂b
Rb(xi ) = −2xibT − 1√

(1 − bT b)
(b × xi )bT

+ 2
√

(1 − bT b)xi ↑ +bxT
i + (bT xi )I. (8)

In this equation, I is the 3 × 3 identity matrix and the unary
operator↑ is defined as

x↑ .= ∂

∂b
(b × x) =

⎛
⎜⎝

0 x(3) −x(2)

−x(3) 0 x(1)

x(2) −x(1) 0

⎞
⎟⎠ , (9)

with x = [x(1) x(2) x(3)]T . Because of the topology of the
domain of b, one must ensure that when the gradient descent
takes b out of the ball, then b enters the ball from the oppo-
site side. This can be done by multiplying b by (1 − 2/‖b‖)
when ‖b‖ > 1.

Thus the IERBT algorithm simply consists in iteratively
updating an initial estimate of parameters b and t, using (5)
and (6) with a random pair of points (xi ,yi ). The initial es-
timate may depend on the application, and short of a better
guess the identity can be used. To ensure that �b remains
small, it is advised to multiply �b by

√
(1 − bT b) and to

pick ηb such that ‖�b‖ ≤ 0.01. As for ηt , it can typically be
set to 0.01.
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2.3 Convergence

Proposition 1 For a fixed set of three or more non-aligned
data points {(xi ,yi )}, the IERBT algorithm described in
Sect. 2 converges to an optimal estimate in the least mean
square sense.

The proof is given in Appendix.

3 Object Tracking

3.1 Description

The first application of IERBT is to track a moving object,
using a set of identifiable markers. We consider the simple
case where marker positions are already given as 3D coor-
dinates, for example using range images or stereo vision.
We are thus in the “3D to 3D correspondence” case, accord-
ing to the classification given in [15]. This problem can of
course also be solved with a closed-form estimator, but there
are a number of reasons why the iterative procedure may be
advantageous. First, the iterative scheme takes advantage of
the continuity of the object trajectory as the estimate is up-
dated by a small amount each time a marker is detected.
This is likely to make IERBT less sensitive to noise than a
“memoryless” closed-form solution, especially as there are
only few markers. Second, and maybe more importantly, the
closed-form solution assumes that all points are concomi-
tant, i.e. all markers are tracked at the same time. If at a given
time only one or two markers are localized, the closed-form
cannot be applied, as opposed to IERBT. This is especially
relevant in the case of occlusions. Of course, both estimation
procedures can be combined, as done below.

3.2 Experiment

3.2.1 Data Generation

The use of IERBT for object tracking was first investigated
on simulated data. We simulated three markers on an object
following a 3D lemniscate-like trajectory (drawn in Fig. 1).
We considered two noise levels, a zero noise level and a
Gaussian noise with σ 2 = 5. In both cases, we randomly
removed 50% of the data points to simulate missing data.

To evaluate the algorithm in a real setting, we also gen-
erated data using a simple experimental setup consisting of
a WAM robot and two USB cameras, as depicted in Fig. 2.
Three color markers were sticked to the robot end-effector
which was moved within the field of view of the cameras.
The marker positions were tracked using an OpenCV-based
stereo vision software, running at about 5 fps. The joint tra-
jectories of the robot were also recorded. Since the robot en-
coders sensing the joint positions are very precise, they were

Fig. 1 The 3D trajectory used for simulating the data

Fig. 2 The experimental setup for the tracking experiment. Two cam-
eras track the end-effector of a WAM robot. The chessboard is used for
camera calibration

used to compute the true position and orientation of the end-
effector, using the robot forward kinematics. About thirty
minutes of data were recorded, amounting to more than ten
thousands frames. As truth value, the trajectory of the end-
effector was computed using the positions recorded by the
robot.

For the simulated as well as the real data, three methods
were then used to locate the end-effector from the marker
positions obtained by the stereo vision system. The closed-
form method [13] (CF), the iterative scheme (IERBT), and
a combined scheme (CF+IERBT), which uses the iterative
scheme only if less than three markers were tracked at a
given time.

3.2.2 Results

To estimate the accuracy of the tracking, two measures were
used to quantify respectively the error on the translation and
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Fig. 3 The tracking accuracy
on simulated data. For the
estimation of the translation as
well as the rotation, the
closed-form method performs
better without noise, but the
iterative method is more
accurate in the presence of noise

Table 1 The overall results of the real tracking experiment. For the
translation, the closed-form method performs worse than the combined
scheme and the iterative method. For the rotation, the iterative method
performs worse than the closed-form and the combined method. Over-
all, the combined scheme is the most precise

Method Average translation error
[mm] (original data)

Average rotation error
[deg]

IERBT 18.89 55.84

CF 21.58 52.71

CF+IERBT 18.24 52.98

on the rotation. For the translation, the mean Euclidean dis-
tance between the true and estimated translation was used.
For the rotation, we use the mean Riemannian distance (in
the group of rotations) between the true (R∗) and the es-
timated (R̂) rotations, given by the angle of the rotation
R̂−1R∗ [20].

The results for the simulated data are shown in Fig. 3.
One sees that for noiseless data, the closed-form solution
yields more accurate estimations of translations as well as
rotations. However, for noisy data, the iterative method is
more accurate, indicating that this method is more robust to
noise. In both cases the combined method yields intermedi-
ate results. Similar results were obtained without simulating
missing data (data not shown).

For the real experiment, the data were obtained by sam-
pling the true trajectory at 20 Hz and each sample was com-
pared to the last position estimated by the tracking algo-
rithm. The results are summarized in Table 1. One sees that
with respect to the translation, the closed-form solution (CF)
does not perform as well as the iterative and the combined
schemes, whereas for estimating the rotation, the iterative
method (IERBT) performs worse than the two others. So in

Fig. 4 Tracking results for a short sample of the data, showing the
true end-effector position (thick line), the iterative (IERBT) estimation
(thin line), the closed-form (CF) estimation (dots) and the combined
(CF+IERBT) estimation (crosses). For the closed-form scheme (CF),
many positions cannot be updated due to occlusions or poor tracking

this experiment, overall, the combined method is the most
precise.

As illustrated in Fig. 4 at time 800–810 (solid arrow), the
iterative and the combined methods can produce meaning-
ful estimates of the position for a given frame, even if one or
two marker positions are missing, which the closed-form so-
lution cannot. The main handicap of the iterative solution is
that it can sometimes not keep up with a rapid displacement,
as can be seen in Fig. 4 at time 780 (dotted arrow).

The results of Table 1 show that the errors on the esti-
mates of the rotations, unlike the translations, are quite large
for all methods, probably indicating that the markers were
placed somewhat too close from one another.
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3.3 Discussion

Those results show that the IERBT is a useful tool in the
case of visual 3D object tracking. Its main advantages is
that it does not require the simultaneous localization of three
points and that it filters out the noise. Its drawback is that,
like any filter, it has some “inertia” and one must adapt the
learning step to the expected speed of the object. But we
have shown that using a simple combination of the iterative
and closed-form estimation scheme, it is possible to signif-
icantly improve the tracking accuracy. More sophisticated
combinations would probably further improve the method.
In order to make the tracking robust to noise, Kalman fil-
tering is often used with closed-form solutions. However,
this assumes linear trajectories and requires the tuning of the
process and measurement noises. Extended or Unscented
Kalman filtering methods have also been suggested [11, 21]
to deal with missing data, but they also assume a known
measurement noise and an appropriate motion model. Our
method does not make such assumptions and is much sim-
pler to implement and use.

4 Iterative Closest Point

4.1 Description

The second application deals with the image registration al-
gorithm called Iterative Closest Point (ICP). It addresses
a problem very similar to the tracking problem described
above, but here the correspondence of each point across the
two sets is not known and must be inferred from the data.
More formally, one has two sets of points {xi} and {yj } re-
lated by a rigid-body transformation. Typically, those points
are obtained by sampling two surfaces related by a rigid-
body transformation. The aim is to recover this transforma-
tion from the two sets of points.

The original algorithm suggested by [6] is the following:

1. Start with an estimate T of the transform.
2. Pair each point xi with the point yj that minimizes the

Euclidian distance ‖yj − Txi‖. This results in a mapping
j = J (i).

3. Estimate T using a closed form solution that minimizes
the sum of squared error

∑
i ‖yJ (i) − Txi‖2.

4. If T has changed, go back to 2, otherwise keep T as the
final estimate T̂.

Since then, many variants and improvements of this algo-
rithms have been suggested (see [23, 24]). For example, to
speed up the pairing of the points, it was suggested to sub-
sample the points [19] and to use a dedicated data structure,
the k-d tree [5]. In [26], other metrics than the Euclidean
distance were used to pair the points, to match points with

similar features (e.g. curvature). The original algorithm can-
not handle case of poorly overlapping data sets, i.e., if only a
subset of the {xi} has its image in the {yj }. To deal with this,
a Least Median Square [19] and a Trimmed Least Squares
[7] approaches were suggested, where only the best match-
ing pairs are considered. In [10], the precision of the esti-
mates was improved by estimating the (possibly anisotropic)
noise in the data and in [1] a lookup matrix was introduced to
ensure that J is bijective. A probabilistic matching was used
in [16], and more recently a version of ICP for the affine case
was also presented in [8].

However, all the suggested improvements used a closed-
form solution for updating the estimate T of the transform.
The modification we suggest here is, at each iteration to pick
only one point xi find its counterpart yj and update T us-
ing that single pair of points, using the iterative update rule
(7), (8). This way, the updates of T proceed in a continuous
manner as it only slightly varies between each iteration. This
is in contrast to standard ICP, where T can vary discontin-
uously. In the rest of this paper, we thus refer to this new
version of ICP as continuous ICP. Continuous ICP can thus
be summarized as follows:

1. Start with an estimate T of the transform.
2. Randomly pick one point xi and pair it with the point yj

that minimizes the Euclidian distance ‖yj − Txi‖.
3. Update T with points xi and yj using the iterative esti-

mation scheme (7), (8).
4. If T is not stationary go back to 2, otherwise keep T as

the final estimate T̂.

To estimate the stationarity of T, the last values of T are
kept in a buffer. It is clear that the improvements mentioned
above made to standard ICP can also be applied to contin-
uous ICP, be it for speeding up the pairing process, using
more informed metrics, or trimming the data set. Therefore,
in the next section we only compare standard ICP to contin-
uous ICP, assuming that further improvements will equally
affect both algorithms.

4.2 Experiments

4.2.1 Data Generation

In order to estimate the possible advantages of continuous
ICP, the algorithms were compared on generated data. For
each comparison, a polynomial surface of degree 4 was ran-
domly generated and 10,000 points sampled from this sur-
face, yielding a set of points {xi} (see Fig. 5 for exam-
ples). A reference rigid body transformation T∗ was ran-
domly generated and the image set {yi} was computed as
yi = T∗xi + εi , where εi was generated from a centered
Gaussian distribution with variance σ 2. An initial estimate T
was then also randomly generated and the algorithm was run
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once using standard ICP (using a subsample of 6,000 points
at each iteration), and once using continuous ICP, yield-
ing two estimates T̂ of the transformation. A large number
(18,000 for σ 2 = 0.2 and 3,000 for σ 2 ∈ {0,0.4,0.6,0.8}) of
such comparisons were made and statistics were gathered.

4.2.2 Results

Standard and continuous ICP were compared with respect
to convergence rate, convergence time and the precision of
the registration. Convergence of the algorithm was assessed
by looking again at the angle of the rotation Rd = R̂−1R∗,
where R̂ is the final estimate of the rotation matrix (the Rie-
mannian distance in group of rotations [20]). So if this dis-
tance as well as the distance between the estimated and true
translations are below a threshold, the algorithm is assumed
to have converged.

The results are presented in Fig. 6. One sees that continu-
ous ICP has an overall better convergence rate than standard

Fig. 5 Two examples of randomly generated polynomial surfaces. The
coefficients of the polynomials as well as the two polynomial variables
are comprised between −1 and 1

ICP. This improvement is very small if there is no noise,
but it gets more and more important, as the noise increases.
Moreover, continuous ICP converges about four times faster
than standard ICP as it requires less pairings before reaching
convergence (pairing is by far the slowest step in ICP).

The precision of the estimation of the rotation and trans-
lation are shown in Fig. 7. For all noise levels, continuous
ICP provides, on average, a more precise estimation than
standard ICP.

Focusing on σ 2 = 0.2, our results indicate that the con-
tinuous ICP yields an increase in performance for good as
well as poor initial guesses, as shown in Fig. 8. This im-
provement was shown to be statistically significant using a
t-test (α = 5%).

4.3 Discussion

The above results indicate that continuous ICP is advanta-
geous over standard ICP in terms of precision, convergence
rate and convergence time. In standard ICP, at each iteration
the present estimate of the transformation is only used indi-
rectly, through the pairings of the points, thus requiring an
extensive use of those pairings to refine the estimate. Con-
trastingly continuous ICP makes a direct use of the current
estimate, and thus the estimation can be refined using a sin-
gle point. Hence no choice need to be made about the proper
number of points needed for the estimation, which may ex-
plain the faster convergence.

It is beyond the scope of this paper to compare our con-
tinuous to the standard discrete estimation approach for all
the many variants of ICP. In principle they could all be ap-
plied to continuous ICP as well. For example, Trimmed ICP
[7] that only uses the closest pairs for the estimation could

Fig. 6 Left: the ratio of the
overall convergence rates for the
continuous ICP over standard
ICP as a function of noise level.
A ratio higher than 1 indicates a
better convergence rate of the
continuous ICP over standard
ICP. The higher the noise, the
bigger is the improvement
brought by continuous ICP over
standard ICP. Right: The mean
number of pairings needed
before reaching convergence.
Continuous ICP is about four
times faster than standard ICP
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Fig. 7 The mean error of the estimates of the translation (top) and
the rotation (bottom) using continuous and standard ICP. For all tested
noise levels, continuous ICP converges to a more precise estimation
than standard ICP, for the translation as well as for the rotation. Means
where computed over all of samples where both methods converged to
a correct estimate

Fig. 8 The convergence rate as a function of the distance between
the initial estimate of the true transformation for a given noise level
(σ 2 = 0.2). Continuous ICP performs better for good as well as for
poor initial estimates

be implemented by only performing the update step if the
current pairs is among the closer of the last n visited pairs.
A priori, there is no reason why the advantages of the contin-
uous approach would not carry over to other variants of ICP.

5 Conclusion

Closed-form solutions are generally considered preferable
to iterative solutions as they are usually more precise and

require less computations. Focusing on rigid-body transfor-
mation estimation, we have shown that in some cases an
iterative estimation scheme is advantageous over a closed-
form estimation method. When considering iterative algo-
rithms including repeated estimations of a rigid-body trans-
formation, IERBT, unlike a closed-form estimate can take
advantage of estimates of previous algorithm iterations. It
is thus likely to produce better results. This was experimen-
tally verified on two applications relying heavily on the es-
timation of rigid-body transformation, 3D object tracking
and 3D registration using real and simulated data. Those re-
sults could only be achieved because IERBT is guaranteed
to converge to the optimal estimate, as we have formally
proven.

This proof also shows that for the above parametrization
of rotations, the extrema in the total squared Euclidean dis-
tance between the true and the estimated transformed set of
points

∑
i (T

∗(xi ) − T(xi ))
2 correspond to the extrema of

the squared Euclidean distance between the representations
of the true and estimated rotations (b∗ − b). This correspon-
dence, that is not necessarily true for other representations
of rotations such as the Euler angles, provides an additional
reason to use the Rodrigues parametrization when using the
Euclidean distance for rotation estimation as in [21, 25].
It is thus probably possible to improve existing algorithms
simply by changing to a Rodrigues representation of rota-
tions.

Appendix: Proof of Convergence of IERBT

Proof Let T∗ be the true rigid body transformation mapping
a finite set of points {xi} = V into their corresponding image.
If V contains at least three unaligned points, there is only one
such transformation. Let T �= T∗ be the current estimate of
this transformation.

We then define the following function E(T)

E(T) =
n∑

i=1

Ei (T), with Ei (T) = 1

2
‖Txi − T∗xi‖2. (10)

Here and in the following, the parentheses around xi are
omitted to lighten the notation. We first notice that for suf-
ficiently small η the algorithm performs a gradient descent
on E, because

∑
i grad Ei = grad

∑
i Ei = grad E. As E has

a zero lower bound, the algorithm converges to a solution.
In order to show that the algorithm converges to the

right solution T∗, we have to show that it is the only min-
imum of E. So we show that for any T, T∗, V , such that
T �= T∗ there is a transformation T† belonging to a neigh-
borhood of T such that E(T†) < E(T). This amounts to say-
ing that there is no local minimum for E(T), only a global
one.
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We assume, without loss of generality, that the xi are cen-
tered and distributed with a covariance matrix C of rank two
or three, i.e., they are not aligned.

Let the transformation T be defined by a translation t and
a rotation R. We now consider the transformation T† in the
neighborhood of T, defined by translation vector t† and ro-
tation R† respectively in the neighborhoods of t and R.

t† = t + ε(t+), R† = εR+ ◦ R with ε > 0, (11)

where εR+ is an infinitesimal rotation of unit rotation axis
given by b+. If ε is small enough, we have, see [2, p. 80],

R†x = Rx + ε(b+ × Rx), (12)

and we can thus define

εT+x .= T†x − Tx = ε(t+ + b+ × Rx). (13)

The fixed points of the algorithm are given by T for which
E(T†) = E(T) for any b+. The variation in E when moving
from T to T† is given by

�E = E(T†) − E(T) =
∑

i

‖T†xi − T∗xi‖2

−
∑

i

‖Txi − T∗xi‖2

=
∑

i

‖εT+xi + Txi − T∗xi‖2 − ‖Txi − T∗xi‖2

=
∑

i

2ε(T+xi )
T (Txi − T∗xi ) + ε2‖T+xi‖2. (14)

If ε is small enough, we can discard terms in O(ε2).

�E 	
∑

i

2ε(t+ + b+ × Rxi )
T (Rxi − R∗xi + t − t∗)

= 2ε

(
− n(t+)T (t∗ − t) + (t+)T

(∑
i

(Rxi − R∗xi )

)

+
∑

i

(b+ × Rxi )
T (Rxi − R∗xi )

)

+
∑

i

(b+ × Rxi )
T (t∗ − t)

= −2ε

(
n(t+)T (t∗ − t)

−
∑

i

(b+ × Rxi )
T (Rxi − R∗xi )

)
, (15)

since the
∑

i xi = 0. The translation and rotation compo-
nents can thus be separated and �E = 0 for all t+ only if
t = t∗. Assuming this is the case, defining B .= b+↑, see (9),

and using matrix representations, we can now consider the
rotation component

�E = −2ε
∑

i

(b+ × Rxi )
T R∗xi = −2ε

∑
i

(BRxi )
T R∗xi

= 2ε
∑

i

xT
i RT BR∗xi = 2εTr

(∑
i

xT
i RT BR∗xi

)

= 2εTr

(∑
i

BR∗xixT
i RT

)
= 2nεTr(BR∗CRT ). (16)

In the above equations the “trace trick” is used, and the fact
that Tr(XYZ) = Tr(YZX).

Since the matrix B is skew-symmetric with a zero diago-
nal, the trace in (16) is zero for all B if and only if R∗CRT

is symmetric. Hence,

�E = 0 ⇔ R∗CRT = RC(R∗)T

⇔ C = (R∗)T RC(R∗)T R

⇔ (R∗)T R = ±I, (17)

as C has at least two non-zero eigenvalues. If (R∗)T R = I,
R = R∗, which corresponds to the minimum of E(T). If
(R∗)T R = −I, R = −R∗, which corresponds to the maxi-
mum of E(T). Thus, we have shown that E(T) has a single
minimum, which proves the convergence of our algorithm
as it performs a gradient descent on E(T). �
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