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Lower Cenomanian calcareous nannofossil assemblages from Deep Sea Drilling 

Project (DSDP) Sites 137 and 547 in the proto-North Atlantic Ocean were analyzed 

quantitatively to examine the fidelity of the widely used CC and UC calcareous 

nannofossil Zonal schemes. Datasets from Ocean Drilling Program (ODP) holes 1050C 

and 1052E (Blake Nose) and Tanzania Drilling Project (TDP) Site 24 were integrated 

into this dataset. 

Four biozones spanning the upper Albian through middle Cenomanian were 

determined using the method of unitary associations (UA). Data were also used from 

these sequences to generate a ranking and scaling (RASC) optimum sequence. A new 

reliability index method that uses binomial probabilities is proposed because the existing 

method does not work well for Mesozoic taxa due to patchy distribution and lower 

abundances. Three bioevents, Gartnerago stenostaurion - LAD, Lithraphidites 

eccentricum - FAD, and Staurolithites mutterlosei - LAD, were shown to be reliable 

markers for lower Cenomanian biostratigraphy based on the new reliability index values. 

This study also corroborates the lower Cenomanian FAD of Lithraphidites eccentricum, 

whereas the FAD of Cylindralithus scultpus and the LAD Zeugrhabdotus xenotus appear 

to be more effective as regional rather than global markers, due to discrepancies in 



 
 

 
 

superpositional relationships in these sections. A biostratigraphic framework improved 

the age model for DSDP Leg 79, Site 547 by documenting an expanded section across the 

Albian/Cenomanian boundary at Site 547 based on the LAD of Corollithion kennedyi. A 

revised age model for DSDP Leg 14, Site 137 now includes an older age into the upper 

Albian - middle Cenomanian. Site 547 had a higher diversity of holococcoliths than Site 

137. Calculites anfractus, an important marker species, was proposed as a nannofossil 

marker species associated with the Global boundary Stratotype Section and Point (GSSP) 

for the base of the Cenomanian; however, it does not occur globally. Controls on 

holococcolith distribution are poorly understood and are likely controlled by oceanic 

setting. C. anfractus may be controlled by these factors, and as such, is not a reliable 

nannofossil marker for the Albian/Cenomanian boundary.  
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1. Introduction  

The mid-Cretaceous marks a time of fundamental change in Earth’s history, 

including extreme greenhouse conditions, rapid sea-floor spreading rates, and the onset of 

widespread chalk deposition (Haq et al., 1987; Clarke and Jenkyns, 1999; Huber et al., 

2002; Wilson et al., 2002; Moriya et al., 2007; Friedrich et al., 2008; Hay, 2008; Brace 

and Watkins, 2015). In order to address global paleoceanographic questions about these 

events, it is critical to be able to correlate stratigraphic sections across ocean basins. The 

Albian/Cenomanian boundary marks a transitional point during the mid-Cretaceous; 

however, the Albian and Cenomanian stages occurred during the Cretaceous polarity 

Normal Superchron (C34). Because this is a particularly long chron, magnetic reversals 

cannot be used for age control, making biostratigraphy an integral tool in correlation of 

marine strata of this age. The mid-Cretaceous is also characterized by Oceanic Anoxic 

Events (OAEs) where stratigraphic records of bulk carbonate isotopes show positive 

carbon isotope excursions that are correlatable across wide geographic regions (Jenkyns 

et al., 1994; Erbacher et al., 1996). Without these isotope excursions, it is difficult to 

correlate intervening periods, which further increases the value of biostratigraphy during 

this time.  

While biostratigraphic zonation schemes exist for the Cretaceous, the CC 

Zonations (Perch-Nielsen, 1985) and UC Zonation (Burnett et al. 1998) uses marker 

species from the Tethyan realm.  During the mid-Cretaceous, the Atlantic Ocean was 

narrow and divided latitudinally by the Equatorial Atlantic Gateway (EAG), which 

started opening at approximately 120 Ma (Hay et al., 1999; Pletsch et al., 2001; Jacobs et 

al., 2009). The proto-North Atlantic was a mid-latitude ocean that connected to the 
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Tethys Ocean, but a widely used biostratigraphic framework does not exist for this 

region. Specific goals of this study include testing the reliability of the Perch-Nielsen 

(1985) and Burnett et al. (1998) marker species in the proto-North Atlantic using a new 

Reliability Index method that is proposed in the current study. This entails correlating the 

observed bioevents across all sites, which will allow development of a biostratigraphic 

scheme using co-occurrences of these species, as well as an optimum sequence of 

bioevents. The resulting biostratigraphic framework is compared to the widely used CC 

Zonation (Perch-Nielsen, 1985) and the UC Zonation (Burnett et al., 1998). These 

zonation schemes are illustrated in Fig. 2. This study analyzes quantitatively lower 

Cenomanian samples from proto-North Atlantic sites from DSDP Leg 14, Site 137 and 

DSDP Leg 79, Site 547 (Fig.1) by obtaining absolute abundance data and applying 

probabilistic and deterministic biostratigraphic methods to this data.  In addition to 

analyzing these samples quantitatively, ODP Leg 171B, sites 1050 and 1052 (Watkins, 

unpublished) and the Tanzania Drilling Project (TDP), Site 24 (Ando et al., 2015) 

datasets are integrated with datasets from this study and analyzed statistically.  

A taxon of particular interest is Calculites anfractus because the FAD of 

Calculites anfractus was designated as a secondary calcareous nannofossil marker for the 

basal Cenomanian (Kennedy et al., 2004). However, Calculites anfractus is rarely 

reported in the literature and it is necessary to test its utility a global marker. 

Identifying discrepancies in the data will ultimately allow for greater accuracy 

and increased resolution of biostratigraphic schemes when correlating these bioevents. 

This study aims to identify and where possible, assess these discrepancies and refine the 

current biostratigraphic frameworks.  
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2. Materials  

A total of six localities were considered for this study, but only sites 137 and 547 

had high nannofossil abundances and good preservation making them ideal for a 

quantitative study.   

DSDP Leg 14, Site 137 

DSDP Leg 14, Site 137 is located in the North Atlantic Ocean at 25° 55.53' N, 

27° 03.64' W, approximately 1000 kilometers west of Cap Blanc, Mauritania, close to the 

base of the continental rise at a water depth of 5361 meters. Thirty-two samples from 

Cores 8 through 16 (267.76 to 380.82 mbsf) were examined based on Bukry’s (1972) 

original age assignment of Albian and Cenomanian. These cores consist of banded and 

partly laminated greenish to brownish nannoplankton marl to chalk, with intermittent, 

carbonate-poor silty layers. The nannofossil assemblages exhibit good to poor 

preservation.  

DSDP Leg 79, Site 547  

DSDP Leg 79, Site 547 is located in the North Atlantic Ocean at 33° 46.84' N, 

09° 20.98' W, on the West African margin west of Morocco at a water depth of 3940.5 

meters (Fig. 1). This site is located on the northeastern flank of a northwest-trending 

ridge in front of the Mazagan Plateau. Forty-one samples from Cores 40 through 64 

(431.18 to 659.28 mbsf) were examined based on the original age assignment of Albian - 

upper Cenomanian (Wiegand, 1984). The lithology is predominantly greenish to grayish 

nannofossil chalk and nannofossil-bearing claystone with layers of flat-pebble claystone 

conglomerate. The upper Albian through upper Cenomanian succession is approximately 

350 meters thick, with an average sediment accumulation rate of 29 m/m.y. (Leg 79 
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Shipboard Scientific Party, 1984). This sequence is overlain by Campanian clayey 

nannofossil and foraminiferal-nannofossil chalk and separated by a disconformity with a 

hiatus of 14 to 19 m.y. (Leckie, 1984). 

Acquired Datasets  

In order to gain more complete coverage of the proto-North Atlantic Ocean 

biostratigraphy, datasets from ODP Leg 171B, sites 1050 and 1052 from Blake Nose 

were obtained from Watkins (unpublished). Blake Nose is located in the Atlantic Ocean, 

east of Florida at 30°5.9953′ N, 76°14.0997′ W at a water depth of 2296.5 meters (Holes 

1050C and 1052E. An additional dataset, Tanzania Drilling Project (TDP) Site 24 from 

the Indian Ocean, was acquired in order to compare the proto-North Atlantic 

biostratigraphy to that of the Proto-Indian Ocean. TDP Site 24 has a lower Cenomanian 

section with exceptionally well-preserved nannofossils and planktonic foraminifera, and 

refined age-control (Ando et al., 2015).  

 3. Methods 

Smear slides of 73 samples were analyzed: 32 samples from DSDP Site 137 and 

41 samples from DSDP Site 547. Samples were prepared using the double-slurry method 

(Watkins and Bergen, 2003). Species abundances were determined by counting 

approximately 500 specimens. Two additional traverses were scanned for rare species. 

Counts were obtained using an Olympus BX51 light microscope at a total magnification 

of 1250x, using cross-polarized and plane-polarized light, and a one-quarter λ gypsum 

plate. 

State of preservation was determined using the scheme of Watkins and Bowdler 

(1984). The criteria are as follows:  
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 Good - A vast majority of the specimens could be identified to the species level; 

 Moderate - A significant portion of the specimens were hard to identify due to 

overgrowth and/or dissolution; 

 Poor – A majority of the specimens could not be identified to the species level 

due to severe dissolution, fragmentation and/or overgrowth. 

Estimating nannofossil abundance as a sedimentary component follows Watkins 

and Bowdler (1984).  All abundances were estimated from smear slides of raw sediment 

using the following criteria:  

 Abundant - nannofossils comprise more than 15% of the sediment 

 Common - nannofossils comprise 5-15% of the sediment 

 Few - nannofossils comprise 1-5% of the sediment 

 Rare - nannofossils comprise less than 1% of the sediment 

 Essentially barren - nannofossils significantly less than 1% of the sediment, typically 

fewer than 10 specimen per 100 fields-of-view 

 Barren - no nannofossils observed in 100 fields-of-view 

For the purposes of counting, some nannofossils were grouped together at the 

genus level and assigned “spp.” to indicate the presence of multiple species. After 

scanning and attempting to analyze quantitatively each sample at the species level, genera 

such as Calculites, Helicolithus, Manivitella, Retecapsa, Staurolithites, Tranolithus, and 

Zeugrhabdotus were noted to have many morphotypes; however, many of the species 

have no biostratigraphic significance. Examples include Tranolithus bitraversus, 

Tranolithus exiguus, Tranolithus gabalus, and Tranolithus orionatus. In addition to 

thegenera mentioned above, unidentifiable holococcoliths were grouped together as well.  
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Unitary Associations (UA) and Ranking and Scaling (RASC) 

The CC (Perch-Nielsen, 1985) and UC (Burnett et al., 1998) zonations are 

qualitative schemes based on concurrent and partial range zones. Intervals are defined by 

documenting the lowest occurrence of one or more diagnostic taxa and the highest 

occurrence of other taxa. In order to test the validity of these zonation schemes, two 

quantitative methods, unitary associations (UA) and ranking and scaling (RASC), were 

chosen for data analysis. 

Unitary associations (UA) is a deterministic mathematical method for 

constructing a set of mutually exclusive concurrent range zones. Two species are defined 

as compatible if their chronologic co-occurrence has been observed (= real association) or 

can be deduced from biostratigraphic data (= virtual association), where a UA is a 

maximal set of compatible species (Guex, 1991).  

Ranking and scaling (RASC) is a probabilistic method that produces the order of 

biostratigraphic events that occur based on observations from multiple localities. Such 

events can be the first and/or last appearance datums (FAD and/or LAD) of a certain taxa, 

or an abundance peak (bloom). Ranking is the first step of this method, which involves 

ordering the events. This order is achieved by a 'majority vote', counting the number of 

times each event occurs above, below or together with all others. Scaling is the second 

step of this method, for which distances between consecutive events are estimated and 

stratigraphic positions at multiple localities can be determined (Gradstein et al., 1985; 

Agterberg, 1990; Agterberg & Gradstein, 1999). A total of 179 samples and 275 taxa are 

included in the raw database. The PAleontological STatistics (PAST) program was used 

to perform the UA and RASC analyses.  



 
 

 
 

7 

Reliability Indices 

 Biostratigraphic accuracy of data were analyzed using Reliability Index methods 

proposed by Bralower et al. (1988) and Bergen et al. (2013) for sites 137 and 547. The 

additional three datasets were not used in this analysis due to the requirement of absolute 

counts abundance data, which are not available for ODP Holes 1050C and 1052E. While 

fully quantitative abundance data are available for TDP Site 24, many of the markers 

discussed are absent at this site, so it is excluded.  Marker species were selected from the 

CC (Perch-Nielsen, 1985) and UC (Burnett et al., 1998) zonation schemes, as well as 

species identified from the UA and RASC analyses. 

The method proposed by Bralower et al. (1988) includes a quantitative index that 

uses average stratigraphic sample spacing and the distribution and abundance of species 

above and below the level of its first or last occurrence, respectively. The Bralower et al. 

(1988) Reliability Index, R, is calculated using the following equation:  

          n 

R= Z Σ xi ((n+1)-i)/100 

        i =1 

 

where 

 

 Z = Average number of samples per unit thickness  

 n = Number of values over which Reliability Index is calculated 

 xi = Number of specimens of marker species in the i-th sample 

 (n+1)-i = Used to scale index linearly 

 100 = Arbitrarily chosen divisor to reduce range of indices 

 

Ten was chosen for the n-value, as this is the optimal range for nearing the end of a 

species stratigraphic range (Bralower et al., 1988; Bergen at al., 2013).  

 Bergen et al. (2013) proposed two methods for calculating Reliability Index, both 

are modified versions of Bralower et al. (1988). 
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1. The number of samples in which a species was observed in either the top or bottom ten 

samples of its stratigraphic range.  

2. The percentage of samples a species was found throughout its entire documented 

stratigraphic range.  

Bralower et al. (1988) have shown that the distribution of marker species in the 

Mesozoic is patchy and abundances are lower compared to the Cenozoic, ultimately 

reflecting much lower reliability index values. A goal of this project is to test the 

reliability of marker species, and evaluate the impact of patchy distribution in reducing 

their reliability.  

An alternative method is presented here that uses binomial probabilities to 

determine the probability of success of finding a given marker over its stratigraphic 

range. This is modeled after the Bernoulli trials (or Binomial trial), where independent 

events are described as “successes” or “failures”.  The first step in this process is to 

establish the number of successes and failures for each species for a given stratigraphic 

interval.  

 

 

where 

 n = Number of fixed trials; 10 was chosen for this study 

 x = Specified number of successes 

 p = Probability of success through a stratigraphic interval 

The specified number of successes has been chosen to be 0.95; therefore, the probability 

of failure is 0.05. The following equation was used to determine the probability 

distribution for any given species over the chosen stratigraphic range: 



 
 

 
 

9 

 

Deriving the Log Base 10 for each value followed the above step; the absolute 

value for each result was used. This was done in order to make the initial values larger 

and limit them to a smaller range, ultimately making the results easier to manage. 

4. Results  

Albian - Cenomanian Biochronology 

Samples are classified biostratigraphically using modified versions (Fig. 2) of the 

CC Zonation of Perch-Nielsen (1985) and the UC Zonation of Burnett at al. (1998). In 

this study, a total of 193 taxa were identified and 16 bioevents were selected on the basis 

of the FAD and LAD for comparison to these zonation schemes. Table 1 lists bioevents 

for DSDP Site 137 (this study), DSDP Site 547 (this study), ODP Holes 1050C & 1052E 

(Watkins, unpublished) and TDP Site 24 (Ando et al., 2015). Fig.3 shows the position of 

bioevents for Site 137, and Fig. 4 shows the position of bioevents for Site 547.  

Albian - Cenomanian Biochronology for DSDP Leg 14, Site 137 

Samples 137-16R-3, 135-136 cm and 137-16R- 4, 131-132 cm (379.36 and 380.82 

mbsf, respectively) contain abundant, moderate to well-preserved nannofossil 

assemblages that include Axopodorhabdus biramiculatus, Gartnerago stenostaurion, 

Eiffellithus paragogus, Eiffellithus  turrisseiffelii, and Hayesites albiensis. Corollithion 

kennedyi was not present in these two samples. This assemblage is diagnostic of 

uppermost Albian Subzone CC9a (= BC27/UC0a). 

Samples 137-15R-1, 111-112 cm through 137-16R-2, 140-141 cm (349.12-377.91 

mbsf) contain abundant, poor to well-preserved nannofossil assemblages that include 



 
 

 
 

10 

Axopodorhabdus biramiculatus, Gartnerago stenostaurion, Eiffellithus paragogus, 

Eiffellithus turrisseiffelii. Corollithion kennedyi and Hayesites albiensis were not present 

in these samples. This assemblage is diagnostic of the uppermost Albian through the 

Albian - Cenomanian (A/C) boundary Subzone CC9b (=BC27/UC0b). 

Sample 137-14R-6, 120-121 cm (347.71 mbsf) contains abundant, well-preserved 

nannofossil assemblages that include Axopodorhabdus biramiculatus, Gartnerago 

stenostaurion, Eiffellithus paragogus, Eiffellithus turrisseiffelii, and Corollithion 

kennedyi. The FAD of C. kennedyi occurs at 100.45 Ma; this is 0.05 Ma after the 

Albian/Cenomanian boundary (Gradstein et al., 2012). This assemblage is diagnostic of 

the lowermost Cenomanian Subzone CC9b (=UC1a). It is important to note that sample 

137-14R-6, 120-121 cm (347.71 mbsf) is a part of a condensed section where numerous 

co-occurring bioevents were observed. The FAD of Corollithion kennedyi, LAD of 

Gartnerago stenostaurion, LAD of Gartnerago chiasta, FAD of Discorhabdus watkinsii, 

FAD of Lithraphidites eccentricum, and LAD of Watznaueria britannica are all observed 

in this sample. 

Samples 137Z-10R-2, 104-105 cm through 137Z-14R-6, 120-121 cm (285.55-347.71 

mbsf) contain abundant, moderate to well-preserved nannofossil assemblages that include 

Corollithion kennedyi, Helenea chiastia, and Axopodorhabdus biramiculatus occur 

through the section, while Lithraphidites acutus, the nannofossil marker for the basal 

middle Cenomanian (Gradstein et al., 2012) was not present in these samples. This 

assemblage is diagnostic of lower Cenomanian Subzone CC9b (=UC1/2).   

Samples 137Z-8R-2, 125-126 cm through 137Z-10R-1, 102-103 cm (267.76-284.03 

mbsf), contain abundant, poor to well-preserved nannofossil assemblages that include 



 
 

 
 

11 

Corollithion kennedyi, Helenea chiastia, Axopodorhabdus biramiculatus, and 

Lithraphidites acutus. This assemblage is diagnostic of the middle Cenomanian Subzone 

CC10a (=UC3a). 

Albian - Cenomanian Biochronology for DSDP Leg 79, Site 547 

Sample 547A-64-1, 27.5-29 cm (659.28 mbsf) contains abundant, moderately-

preserved nannofossil assemblages that include Axopodorhabdus biramiculatus, 

Gartnerago stenostaurion, Eiffellithus paragogus, Eiffellithus turrisseiffelii, and 

Hayesites albiensis.  Calculites anfractus and Corollithion kennedyi, were not present in 

this sample. This assemblage is diagnostic of the uppermost Albian Subzone CC9a 

(=BC27/UC0a) 

Sample 547A-63-1, 26.5 -28 cm and (649.78 mbsf) contains abundant, well-

preserved nannofossil assemblages that include Axopodorhabdus biramiculatus, 

Gartnerago stenostaurion, Eiffellithus paragogus, and Eiffellithus turrisseiffelii. 

Calculites anfractus, Corollithion kennedyi, and Hayesites albiensis were not present in 

this sample. This assemblage is also diagnostic of the uppermost Albian Subzone CC9a 

(=BC27/UC0a).  

Samples 547A-59-6, 8-9 cm through 547A-62-3, 50-51 cm (619.9-643.51 mbsf) 

contain abundant, moderate to well-preserved nannofossil assemblages that include 

Axopodorhabdus biramiculatus, Gartnerago stenostaurion, Eiffellithus 

paragogus, Eiffellithus turrisseiffelii, and Calculites anfractus. Corollithion 

kennedyi and Hayesites albiensis were not present in these samples. This assemblage is 

diagnostic of strata associated with the Albian/Cenomanian boundary. The FAD of 

Corolllithion kennedyi is observed in sample 547A-51-4, 112-113 (542.13 mbsf) and is 
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used to mark the upper limit of this zone. Therefore, the FAD of C. anfractus and C. 

kennedyi (632.51 and 542.13 mbsf, respectively) indicate the presence of strata associated 

with the boundary. 

Samples 547A-40-1, 18 cm through 547A-50-4, 22-23 cm contain abundant, poor to 

well-preserved nannofossil assemblages that include Corollithion kennedyi, Helenea 

chiastia, and Axopodorhabdus biramiculatus. Lithraphidites acutus was not present in 

these samples. This assemblage is diagnostic of lower Cenomanian Subzone CC9b 

(=UC1/2). 

Correlation of Bioevents: Cross Plots 

In order to visualize the sequence of events for the sites in this study, a cross plot 

was created to show the position of bioevents relative to each other. Three additional 

acquired datasets (DSDP holes 1050C, 1050E, and TDP Site 24) were also used for 

correlation. Bioevents that are calibrated to the geologic time scale, UC and CC Zonation 

marker species and bioevents observed in this study were used to generate the cross plots 

(Fig. 5).  

The crossing of lines indicates differences in the relative order of bioevents from 

section to section. Table 2 shows 10 of the 16 identified species with their assigned ages 

from the geologic time scale (Gradstein et al., 2012). The numbers 1- 10 indicate the 

chronological order in which these events should occur, with 1 being the oldest bioevent 

and 10 being the youngest bioevent. This is based on assignments from the 2012 geologic 

time scale (Gradstein et al., 2012) in conjunction with the type level age assignments. 

The events highlighted in grey do not occur in chronological order in these sections.  
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The LAD of Gartnerago stenostaurion was assigned to the uppermost Albian 

(Burnett at al., 1998), but G. stenostaurion has an LAD above or co-occurs with the FAD 

of C. kennedyi in two of the five sections. Gartnerago chiasta has an LAD shortly above 

the Albian/Cenomanian boundary, but the LAD of G. chiasta is observed in the upper 

interval of Sites 137 and 547. The LAD of Eiffellithus paragogus and the LAD of 

Zeugrhabdotus xenotus appear at different depths throughout the section, and a relatively 

consistent stratigraphic position is not observed. Cylindralithus sculptus is stated to have 

an FAD in uppermost lower Cenomanian (Burnett et al., 1998), but the FAD is observed 

here in the lowermost Cenomanian. These discrepancies in stratigraphic position indicate 

that the lower Cenomanian bioevents used for the UC Zonation (Burnett et al., 1998) are 

not accurate, and fail to occur in the assigned order.   

Unitary Associations 

 The initial analysis for the raw database produced 15 UAs, 24 clique cycles and 

856 contradictions. Using the UA table generated in PAST, taxa that did not occur in any 

of the UAs were removed. This includes taxa that are endemic species or identified only 

to the genus level. Poor state of preservation may result in misidentification of a species 

resulting in what appears to be an endemic taxon that may or may not actually be more 

widespread. These adjustments to the dataset resulted in 18 UAs, 12 clique cycles, and 

712 contradictions.  

Biostratigraphic ranges of taxa are generated in UAs using FADs and LADs 

(Guex, 1991). Taxa that occur throughout the investigated interval are found in 

association with all species by definition. It is assumed that a given taxon is present even 

if it is not observed in that given sample. As a result, discontinuities are produced in the 
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data (Guex, 1991). These discontinuities can cause biostratigraphic contradictions, and 

ultimately, artificial UAs (Guex, 1991). Mailliot et al. (2006) coined the term “border 

effects” and addressed this issue by using the literature to check for known 

biostratigraphic ranges and eliminating any observed “border effects”. A similar 

approach was used in the current study, in addition to removing taxa that displayed 

multiple discontinuities. “Multiple discontinuities” constitute approximately 50% virtual 

presence over the total range of a given taxon. This percentage is arbitrary and was 

chosen in order to reduce the number of species contradictions.  

This method was repeated until the number of cycles was equal to zero. Long-

ranging taxa and taxa with multiple discontinuities were again removed from the dataset. 

Cycles are produced when weak links exist in the dataset, such as superpositional 

relationship contradictions, so reduction of these cycles is essential (Guex, 1991). 

Four UAs with no contradictions and no cycles were produced with a total of 15 

taxa and 16 bioevents. These results are presented in a matrix, which displays the order in 

which the UAs occur (Guex, 1991; Fig. 6). The four UAs span the uppermost Albian, the 

Albian/Cenomanian boundary, the lower Cenomanian, and the basal middle Cenomanian; 

a total of approximately 4.7 m.y.  

A matrix is also provided that shows the reproducibility of the UAs in each of the 

sections (Fig. 7). PAST internally reduces the reproducibility graph to a unique maximal 

path (Guex, 1991) and some UAs are merged in this process.  Figure 7 shows UAs that 

are strictly identified (= real association) and occur in these sections; these UAs are 

indicated by the black boxes. The figure also shows suggested UAs (= virtual association) 

and these are indicated by the grey boxes. Merged UAs are the suggested UAs in the 
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reproducibility chart. Unitary associations 1 and 2 have a strong reproducibility, 

occurring in all 5 sections (n = 5). Unitary associations 3 and 4 have a weak 

reproducibility, occurring in only 2 of the 5 sections (n = 2).  

 Four Unitary Associations Zone assignments were produced. Species co-

occurrences that characterize these zones are discussed below. 

UA-Zone I 

 This UA is recognized by the presence of Braarudosphaera stenorhetha, 

Braarudosphaera primula, or Hayesites albiensis. It is important to note that H. albiensis 

occurs exclusively in this zone. Therefore, UA-Zone I can be correlated to the Subzones 

CC9a and UC0/BC27a. This means that UA-Zone 1 spans the uppermost Albian.  

UA-Zone II 

 The characteristic species associations for UA-Zone II include the presence of 

Calculites anfractus or the co-occurrences of L. dorothea, G. stenostaurion, B. africana, 

or W. britannica and either L. eccentricum  or C. kennedyi. (Figure 6).  Calculites 

anfractus, whose presence is one characteristic species association for UA-Zone II, is the 

secondary calcareous nannofossil marker associated with the Global boundary Stratotype 

Section and Point (GSSP) of the Cenomanian. The absence of H. albiensis and the 

presence of both C. anfractus and C. kennedyi indicates that this zone spans the 

lowermost Cenomanian. Calculites anfractus has an FAD of 100.5 Ma (Kennedy et al., 

2004) and Corollithion kennedyi has an FAD shortly after the Albian/Cenomanian 

boundary at 100.45 Ma (Gradstein et al., 2012), whereas Hayesites albiensis has an LAD 
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shortly before the boundary at 100.84 Ma (Gradstein et al., 2012). This assemblage is 

diagnostic of the lowermost Cenomanian. 

This is supported by the co-occurrence of C. anfractus, C. kennedyi, B. africana, 

W. britannica and L. eccentricum, and the absence of G. segmentatum. The FAD of G. 

segmentatum marks the middle of CC9b and the base of UC2 (both zones span the lower 

half of the lower Cenomanian). Furthermore, L. eccentricum was recently found to have 

an FAD in the lower Cenomanian (Corbett and Watkins, 2014), which corroborates that 

UA-Zone II spans the lowermost Cenomanian. Therefore, UA-Zone II can be correlated 

to the lower half of Subzone CC9b and Zone UC1. Dashed lines are used to mark the 

lower boundary of this zone because C. anfractus and C. kennedyi can co-occur, 

indicating an age ~100.45 Ma, which is slightly younger than age of the 

Albian/Cenomanian boundary. It is not possible to identify the UC Subzone because the 

UC bioevents are not observed in UA-Zone II. For example, the LAD of G. chiasta, the 

FAD of G. nanum, and the LAD of L. pseudoquadratus do not characterize this zone. 

The FAD of G. segmentatum, which marks the base of UA-Zone III, indicates that UA-

Zone II has to occur before the FAD of G. segmentatum (Fig. 6).  

UA-Zone III 

 The characteristic species associations for UA-Zone III are the co-occurrence of 

G. segmentatum and either C. alta, S. mutterlosei, or G. gammation (Figure 6). This zone 

is characterized by the co-occurrence of C. alta, S. mutterlosei, B. gammation, L. 

eccentricum, C. kennedyi, and G. segmentatum and the absence of L. dorotheae, G. 

stenostaurion, B. africana, W. britannica, and C. anfractus, Therefore, UA-Zone III can 

be correlated to the upper half of Subzone CC9b and Zone UC2. It is not possible to 
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identify the UC Subzone because the UC bioevents are not observed in UA-Zone III. For 

example, the LAD of Z. xenotus and the FAD of C. sculptus do not occur together in UA-

Zone III. The top of this zone is marked by the FAD of L. acutus, which has an FAD at 

the base of UA-Zone IV. It is assumed that the top of UA-Zone III is below the FAD of 

L. acutus (Fig. 8).   

UA-Zone IV 

The characteristic species association for UA-Zone IV is the presence of L. 

acutus. In addition, this zone can be recognized by the co-occurrence of C. kennedyi, L. 

eccentricum, or G. segmentatum, and the absence of C. alta, S. mutterlosei, and B. 

gammation. The nannofossil marker for the basal middle Cenomanian (Gradstein et al., 

2012) is L. acutus; therefore, UA-Zone IV can be correlated to Subzone CC10a and Zone 

UC3. It is not possible to identify the correlative UC Subzone because the UC bioevents 

are not observed in UA-Zone VI, for example, the LAD of I. compactus, the LAD of G. 

theta and the LAD of A. cenomanicus do not characterize UA-Zone VI.  

Ranking and Scaling (RASC) Optimum Sequence  

 The bioevents were ranked and scaled to produce an optimum sequence of 

bioevents that is summarized in Table 3. The optimum scaled sequence generated from 

the RASC analysis is shown in Figure 9 as bioevents plotted against their cumulative 

distance. One penalty point is assigned when the order of two events in the section is not 

the same order of these two events in the optimum sequence; therefore, an event 

occurring higher in the section than in the optimum sequence will be assigned a high 

score. A penalty point of 0 indicates the stratigraphic positions are accurate with no 
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discrepancies. A range of -1-1, indicates possible minor changes in the stratigraphic 

positions of the given bioevents, but, these bioevents are still reliable.  An assignment of -

3 and -4 penalty points indicates that the stratigraphic position of these bioevents are 

unreliable and often occur out of place. See Table 3 for the assigned penalty points for 

each bioevent.  

This analysis indicates that other bioevents are useful for lower Cenomanian 

biostratigraphy, which have not been previously used in the CC (Perch-Nielsen, 1985) 

and UC (Burnett et al., 1998) zonations.  Braarudosphaera primula - LAD, 

Braarudosphaera africana - LAD, Braarudosphaera stenorhetha - LAD, Laguncula 

dorotheae – LAD, Gartnerago stenostaurion - LAD, Lithraphidites eccentricum - FAD, 

Staurolithites mutterlosei - LAD, Calcicalathina alta - LAD and Broinsonia gammation - 

LAD are bioevents that are not used in these schemes. The reliability of these bioevents 

as lower Cenomanian markers were further investigated. 

5. Discussion 

DSDP Leg 14, Site 137 Age Model 

Samples 137Z-8R-2, 125-126 cm through 137Z-10R-1, 102-103 cm (267.76 - 

284.03 mbsf), contain abundant, poor to well-preserved nannofossil assemblages that 

include Corollithion kennedyi, Helenea chiastia, Axopodorhabdus biramiculatus, and 

Lithraphidites acutus. This assemblage is diagnostic of the middle Cenomanian Subzone 

CC10a (=UC3a). 

  Shipboard studies of Site 137 foraminifera by Beckmann (1972) concluded that 

Cores 7 (256 to 265 meters) through 15 (348 to 357 meters) and Section 1 of Core 16 are 

lower – upper Cenomanian (Beckmann, 1972). Roth and Thierstein (1972) and Bukry 
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(1972) assigned these samples to the upper Albian - Cenomanian. The bioevents 

observed in this study do not corroborate Beckmann’s (1972) finding, and a new age 

model with subdivisions is proposed (Fig. 3). Samples 137Z-8R-2, 125-126 cm through 

137-16R- 4, 131-132 cm (267. 76-380.82 mbsf) contain calcareous nannofossils that are 

diagnostic of the upper Albian - middle Cenomanian. Lithraphidites acutus is the 

nannofossil marker for the basal middle Cenomanian (Gradstein et al, 2012) and its FAD 

occurs in 137Z-10R-1, 102-103 cm (284.03 mbsf). The FAD of Corollithion kennedyi 

and Lithraphidites acutus were used to constrain the lower Cenomanian.  

Another biostratigraphic discrepancy was observed in that Planomalina buxtorfi, 

a planktonic foraminifera restricted to the upper Albian occurs above the 

Albian/Cenomanian boundary. Petrizzo et al. (2015) also observed an LAD above the 

A/C boundary at Blake Nose. This finding is attributed to diachroneity of the LAD of P. 

buxtorfi and confirms that it is an unreliable regional and global marker. This lower 

Cenomanian LAD is also observed in Mediterranean area (Sigal, 1977), North 

Madagascar (Collignon et al., 1979), and Central Tunisia (Robaszynski et al., 2008).  

DSDP Leg 79, Site 547 Age Model 

Wiegand (1984) analyzed calcareous nannofossils in site 547 and produced an age 

model indicating the middle - late Cenomanian is present in this section. A subsequent 

study by Nederbragt et al. (2001) concluded that Cores 40 (431 mbsf) through 64 (659.28 

mbsf) are uppermost Albian and lower Cenomanian, including the Albian/Cenomanian 

Boundary at approximately 628 mbsf. This current study corroborates the Nederbragt et 

al. (2001) overall age model.  
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Corollithion kennedyi has an FAD at 542.13 mbsf, indicating an expanded section 

across the A/C boundary. This difference in stratigraphic position is attributed to possible 

varying taxonomic definitions for this taxon. Corollithion kennedyi has a characteristic 

crossbar in the central area that is optically split in the light microscope (LM) (Crux, 

1981). A transitional morphotype between C. signum and C. kennedyi is observed in this 

section close to the Albian/Cenomanian boundary. One specimen was observed at 659.28 

mbsf, it was absent until 619.9 mbsf, where 3 specimens where observed. These 

transitional morphotypes are referred to as Corollithion sp. cf. C. kennedyi in this study. 

These transitional morphotypes exhibit a thick central crossbar and a more hexagonal 

shape, similar to that of C. kennedyi. This morphotype lacks optically split crossbars; 

however, this indicates that this is not C. kennedyi. If Nederbragt et al. (2001) identified 

these transitional morphotypes as C. kennedyi, this would explain the apparent 

discrepancy in their placement of the FAD at approximately 628 mbsf in their study. 

Plate 1 (photos 13 – 16) shows the differences between C. kennedyi and Corollithion sp. 

cf. C. kennedyi. In these photos, it is evident that the C. kennedyi bar is more complex 

than that of the transitional morphotype.  

UA and RASC Comparisons 

 Four unitary associations zone assignments were produced and 16 bioevents were 

identified using RASC. Figure 11 shows the dendrogram produced by scaling, to which 

the UA Zones are being compared.  A total of six clusters were identified on the scaling 

dendrogram.  

Cluster 1 is distinct and can be separated easily from the other zones. 

Braarudosphaera primula - LAD, Hayesites albiensis - LAD and Braarudosphaera 
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stenorhetha - LAD form a cluster of datums and occur exclusively in this zone, which 

can be correlated to UA-Zone I. UA-Zone I is recognized by the presence of 

Braarudosphaera stenorhetha, Braarudosphaera primula or Hayesites albiensis. 

Hayesites albienis exclusively occurs in both zones.   

It is more difficult to discern bioevents that co-occur in Clusters 2-5. Clusters 2 - 

5 correspond to UA-Zones II and III. In Clusters 2 and 3, Calculites anfractus - FAD, 

Laguncula dorotheae - LAD, Gartnerago stenostaurion - LAD, Braarudosphaera 

africana - LAD, Calculites anfractus - LAD, Lithraphidites eccentricum - FAD, 

Corollithion kennedyi - FAD and Watznaueria britannica - LAD co-occur; these clusters 

are correlated to UA-Zone II. In Clusters 4 and 5, Staurolithites mutterlosei - LAD and 

Gartnerago segmentatum - FAD, Calcicalathina alta - FAD and Broinsonia gammation - 

LAD co-occur; these clusters are correlated to UA-Zone III. Cluster 6 can be correlated 

to UA-Zone IV, for which the characteristic species association is the presence of L. 

acutus. 

With the exception of single UA bioevents, such as Braarudosphaera primula - 

LAD, Hayesites albiensis - LAD and Braarudosphaera stenorhetha - LAD, Calculites 

anfractus - FAD/LAD and Lithraphidites acutus - FAD, most of the bioevents occur in 

more than one UA zone, which is described as “overlapping” (Agterberg, 1990). 

Overlapping bioevents follow a similar pattern to that of the clusters, which indicates that 

the UA Zones are similar to the optimum sequence produced by RASC (Fig. 9). The only 

discrepancy is that Gartnerago segmentatum - FAD belongs to UA-Zone IV, yet, it 

occurs before Lithraphidites acuctus - FAD. This can be attributed to the scarcity and 
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uncertainties in the true FAD of Gartnerago segmentatum. These relationships are shown 

in Fig. 9.  

 The UA and RASC methods correlate well, regardless of being deterministic and 

probabilistic methodologies, respectively.  These correlations indicate that the 

biostratigraphic schemes proposed for the lower Cenomanian are reproducible and 

reliable. 

Reliability Indices  

 The results of the reliability indices for DSDP sites 137 and 547 are presented in 

Tables 4 and 5. According to Bralower et al. (1988), all the calculated values for Sites 

137 and 547 are considered to have very low reliability indices given that values for 

Cenozoic species exhibit average values of 20 or more. For Site 137, reliability index 

values could only be calculated for Lithraphidites eccentricum and Staurolithites 

mutterlosei, each yielding a value of 0.165 and for Site 547, Corollithion kennedyi, 

Gartnerago stenostaurion and Staurolithites mutterlosei, each being assigned a value of 

0.09.  The two methods presented by Bergen et al. (2013) used semi-quantitative data, as 

a result, it is difficult to rank the values on a basis of a “Strong to Weak”.  

For the proposed binomial probabilities method, values were calculated for DSDP 

sites 137 and 547. An arbitrary rating scale was assigned to the reliability index values. 

“Strong” reliability values range from 13.02 – 14.78, “Moderate” reliability index values 

range from 9.43 – 11.98, and “Weak” reliability index values range from 1.99 – 6.20 

(Tables 4 and 5).   

 It is important to note that Site 137 has a condensed interval at 347.71 mbsf 

where Corollithion kennedyi - FAD, Discorhabdus watkinsii – FAD, Gartnerago 
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stenostaurion - LAD, Gartnerago chiasta – LAD, Lithraphidites eccentricum - FAD and 

Watznaueria britannica – LAD bioevents are observed. A condensed section can 

potentially affect the full stratigraphic range for a given taxon; however, the binomial 

probability method allows for reliability index values to be calculated in such sections. 

The Bralower et al. (1988) method requires high-resolution sampling and spacing through 

an expanded section and cannot be applied to sections with condensed intervals. 

Gartnerago stenostaurion, Lithraphidites eccentricum and Staurolithites mutterlosei are 

species that occur consistently through their stratigraphic range, and can serve as reliable 

markers for lower Cenomanian biostratigraphy.  

Other Findings and Implications for Lower Cenomanian Biostratigraphy  

 In addition to bioevents derived from the quantitative biostratigraphic analysis, 

other bioevents were identified in this study that appear to have biostratigraphic 

significance in the lower Cenomanian. These bioevents were recorded as having different 

age ranges when compared to the assigned type levels, UC/CC Zonation schemes and/or 

the geologic time scale. Note that the LAD of Gartnerago stenostaurion, LAD 

Gartnerago chiasta, FAD Discorhabdus watkinsii and the LAD Watznaueria britannica 

are not discussed in the context of Site 137. This is because these bioevents occur 

simultaneously in a condensed interval in this section; therefore, this does not allow for 

the true order of events to be observed. 

According to the UC Zonation, the LAD of Gartnerago stenostaurion is placed in 

Subzone UC0b, which is equivalent to the upper Albian. In this study, G. stenostaurion 

has its FAD in the lower Cenomanian. The LAD of G. stenostaurion almost coincides 

with the LAD of Gartnerago chiasta (99.94 Ma [Gradstein et al., 2012]). An early 
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Cenomanian extinction also corroborates Hill’s (1976) finding in which G. stenostaurion 

was assigned a type level of middle Albian - lower Cenomanian. Watkins et al. (2005) 

estimated that G. stenostaurion has an LAD of 99.73 Ma indicating an early Cenomanian 

extinction. Bown (2005) also reported a mid-Albian (upper Zone NC8) to lower 

Cenomanian (Zone UC1/UC2) at Sites 1207, 1213 and 1214 (Leg 198, Shatsky Rise).  

For Sites 137 and 547, the LAD of Lithraphidites alatus occurs in the lower 

Cenomanian. Lithraphidites alatus was assigned a Cenomanian type level, but no 

subdivisions were indicated (Thierstein, 1972). Therefore, it is plausible that L. alatus 

had an early Cenomanian extinction and can be used as a zonal marker.  

Discorhabdus watkinsii was described as a rare species restricted to the 

Cenomanian section in the Bounds core, western Kansas; it was assigned an upper 

Cenomanian type level (Bergen, 1998). In this study, D. watkinsii was observed in 

multiple samples for both localities, which suggests that D. watkinsii may not be as rare 

as previously believed, and in fact, its FAD can be used as an early Cenomanian zonal 

marker for regions such as the western proto-North Atlantic Ocean.  

Staurolithites mutterlosei is a morphologically distinct species with LAD in the 

lower Cenomanian. The species was assigned a Hauterivian – Barremian range by Crux 

(1989), but the present study places the LAD of S. mutterlosei in the lower Cenomanian. 

Watkins et al. (2005) corroborates this finding, as the LAD of S. mutterlosei is observed 

after the FAD of C. kennedyi (100.45 Ma [Gradstein et al., 2012]). 

The FAD of Cylindralithus sculptus is in the lower Cenomanian, before the 

assigned age of 97.31 Ma (Gradstein et al., 2012). For example, at both DSDP sites 137 

and 547, C. sculptus has an FAD below that of C. kennedyi (100.45 Ma [Gradstein et al., 
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2012]) (Table 2). Cylindralithus sculptus has also been shown to be a poor marker based 

on the calculated reliability index.  

The range of Zeugrhabdotus xenotus in this study supports the idea that the 

subzone between the LAD of Z Zeugrhabdotus xenotus and the FAD of C. sculptus 

cannot be identified in oceanic sequences (Gradstein et al., 2012). In addition to the 

problems associated with the FAD of C. scultpus in this study, Z. xenotus co-occurs with 

C. sculptus at both localities, indicating that Subzone UC2b of Burnett et al. (1998), 

based on the interval between the LAD of Z. xenotus and the FAD of C. sculptus, is not 

valid, as their co-occurrence violates the definition of the subzone.  At Site 137, Z. 

xenotus also co-occurs with L. acutus, a species that marks the base of the middle 

Cenomanian (96.16 Ma [Ogg and Hinnov, 2012]). This implies that Z. xenotus may have 

gone extinct later than previously believed, or the LAD is diachronous. Because the 

middle - upper Cenomanian is not present at all the localities used in this study, the 

absolute LAD cannot be determined. With these findings, it is necessary to revisit the 

biostratigraphic significance of Z. xenotus in the lower Cenomanian.  

Calculites anfractus as a proposed GSSP Secondary Calcareous Nannofossil Marker 

for the Basal Cenomanian 

The FAD of Calculites anfractus was designated as a secondary calcareous 

nannofossils marker for the basal Cenomanian (Kennedy et al., 2004). However, 

Calculites anfractus is not a reliable marker as it is very rare, with only 4 specimens 

found between 630.51 and 619.9 mbsf at Site 547. The genus Calculites is a 

holococcolith, representing the coccolithophore haploid phase of the life cycle, and have 

skeletons comprised of numerous minute (<0.1 µm) crystallites that are all of similar 
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shape and size. Holococcoliths do not occur in all oceanic settings and are more 

susceptible to dissolution than heterococcoliths.  

 Sites used in this study are both located off the west coast of North Africa, 

however, there is a noticeable difference in species diversity between the two sites. At 

Site 547, a total of 11 holococcolith species were identified; this excludes specimens that 

were only identified to the genus level. At Site 137, a total of 2 holococcolith species 

were identified. While both of these sites are located in similar latitudes, the geological 

and paleoceanographic settings are different. Site 137 was drilled at a water-depth of 

5361 meters and recovered an upper Albian through the lowermost upper Cenomanian 

section characterized by nannofossil marl to chalk ooze deposited in an area virtually free 

of terrigenous influx (Leg 14 Shipboard Scientific Party, 1972). Site 547 was drilled at a 

water-depth of 3940.5 meters and recovered a sediment sequence interpreted to have 

been deposited on the continental slope at mid-bathyal depth. The average rate of 

sediment accumulation was about 29 m/m.y. (Winterer and Hinz, 1984). Higher 

holococcolith abundance and diversity could result from greater terrigenous input, and/or 

higher sediment accumulation rates, which led to exceptional preservation of the 

nannofossil assemblage. In addition, deposition at Site 137 presently located 

approximately 1421 meters deeper than Site 547, likely occurred at greater paleodepth 

where dissolution would be higher. These potential controls on the distribution and 

preservation of holococcoliths makes C. anfractus an unreliable marker for the base of 

the Cenomanian.  
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Biostratigraphic Significance of Lithraphidites eccentricum 

 Watkins and Bowdler (1984) first described L. eccentricum as a subspecies of L. 

acutus from a middle Cenomanian sample from DSDP Site 540 (Gulf of Mexico). 

Lithraphidites acutus marks the base of Zones CC10 and UC3, which are basal middle 

Cenomanian. Lithraphidites eccentricum was believed previously to have an FAD in the 

middle Cenomanian because it was assigned an age based on its co-occurrence with 

planktonic foraminifera from the Rotalipora cushmani Zone and Rotalipora appenninica 

Subzone; these foraminiferal assemblages are diagnostic of the middle Cenomanian 

(Premoli Silva and McNulty, 1984). However, a taxonomic review later showed that the 

FAD of L. eccentricum co-occurs with foraminifer Hedbergella libyca (Premoli Silva and 

McNulty, 1984) (= Paracostellagerina libyca Georgescu and Huber, 2006); however this 

taxon went extinct shortly after the Albian/Cenomanian boundary. This indicates that 

Lithraphidites eccentricum has a FAD in the early Cenomanian, which is supported by 

the position of the FAD of L. eccentricum at TDP Site 24 (Ando et al., 2015). The present 

study corroborates this finding as the FAD of L. eccentricum is observed at 594.13 mbsf 

in sample 547A-57-2, 12-13 cm, 52 meters below the FAD C. kennedyi, which indicates 

an FAD in the lower Cenomanian. 

Comments on Gartnerago segmentatum 

Gradstein et al. (2012) use the LAD of Gartnerago chiasta (99.94 Ma [Gradstein 

et al., 2012]) and the FAD of Gartnerago segmentatum (98.26 Ma [Gradstein et al., 

2012]) as marker taxa for the lower Cenomanian. Gartnerago segmentatum also marks 

the base of Zone UC2 (Burnett et al., 1998). In this study, G. chiasta occurs consistently 

through both sites, disappearing before the FAD of G. segmentatum; however, 
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Gartnerago segmentatum is very rare in both sites examined here with only two 

specimens observed at Site 137 and one specimen at Site 547.  

The low abundance of Gartnerago segmentatum appears to be controlled by 

paleoceanographic and regional conditions (Hardas et al., 2012). At Shatsky Rise (Hole 

1207B, ODP Leg 198) the FAD of G. segmentatum was observed higher than expected, 

as a result, Subzones UC2c–UC1b could not be differentiated (Lees and Bown, 2005), 

while it was observed in the Middle Cenomanian Event (MCE) at Demerara Rise (Site 

1260, ODP Leg 207, Hardas et al., 2012). This indicates that G. segmentatum may have a 

diachronous FAD and should only be used as a regional, rather than a global marker. 

Mosher et al. (2006) described local paleoceanographic events at Demerara Rise that 

affected evolution of the Gartnerago genus. 

6. Conclusions  

Four Unitary Associations Zones and sixteen bioevents for the upper Albian-

lower Cenomanian were generated using RASC optimum sequencing. From this 

sequence, in conjunction with binomial probability reliability index calculations, 

Gartnerago stenostaurion, Lithraphidites eccentricum and Staurolithites mutterlosei were 

identified as strong reliable markers for lower Cenomanian biostratigraphy. These 

markers are morphologically distinct and occur consistently through their stratigraphic 

ranges. A comparison of the UA and RASC results indicates that these methods 

(deterministic and probabilistic, respectively) produce similar results. Overlapping of 

these bioevents in Clusters 2 -5 also follows a similar pattern produced by the UAs. 

The proposed Reliability Index from this current study is a viable option for 

assessing the Mesozoic marker species. Bralower et al’s. (1988) method produced low 
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values for Mesozoic taxa because the method is designed for high-resolution sampling, a 

scale not feasible here due to patchy abundance and distribution of Mesozoic marker 

species (Bralower et al., 1988). The binomial probability method and the associated 

reliability index values should be used for Mesozoic taxa because this method produces a 

reasonable range of values that can also be used in condensed intervals.  

The validity of the CC (Perch-Nielsen, 1985) and UC (Burnett et al., 1998) 

zonations is confirmed because the above methods produce a similar zonation scheme; 

however, the CC Zones of Perch-Nielsen (1985) lack the biostratigraphic resolution 

produced herein. Braarudosphaera primula - LAD, Braarudosphaera stenorhetha – 

LAD and Hayesites albiensis – LAD are bioevents that can be used to improve the 

resolution of Zone CC9a. Calculites anfractus - LAD, Laguncula dorotheae - LAD, 

Gartnerago stenostaurion - LAD, Braarudosphaera africana - LAD, Calculites 

anfractus - LAD, Lithraphidites eccentricum - FAD, Watznaueria britannica – LAD, 

Staurolithites mutterlosei - LAD, Gartnerago segmentatum - FAD, Calcicalathina alta - 

LAD and Broinsonia gammation - LAD are bioevents that can improve the resolution of 

Zone CC9b. Some of the UC Zonation Subzones (Burnett et al., 1998) cannot be 

recognized easily. For example, it is not possible to split Zone UC1 because the LAD of 

Gartnerago chiasta, the FAD of Gartnerago nanum, and the LAD of Lithraphidites 

pseudoquadratus do not characterize any of the zones produced in this study. In addition, 

the LAD of Zeugrhabdotus xenotus co-occurs with Cylindralithus sculptus at sites 137 

and 547, indicating that Subzone UC2b of Burnett et al. (1998), based on the interval 

between the LAD of Z. xenotus and the FAD of C. sculptus, is not valid, as their co-

occurrence violates the subzone definition. 
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Other species are suggested markers for the lower Cenomanian in the proto-North 

Atlantic Ocean. Watkins and Bowdler (1984) first described subspecies of Lithraphidites 

eccentricum as a subspecies of Lithraphidites acutus and assigned a middle Cenomanian 

age. Lithraphidites acutus marks the base of Zones CC10 and UC3 from the basal 

Cenomanian. Lithraphidites eccentricum was assigned an early Cenomanian age based 

on co-occurrence with planktonic foraminiferal assemblages of the Rotalipora cushmani 

Zone and Rotalipora appenninica Subzone. A taxonomic review later showed that the 

FAD of L. eccentricum co-occurs with Hedbergella libyca, a foraminiferal species that 

went extinct shortly above the Albian/Cenomanian boundary, suggesting that L. 

eccentricum has an FAD in the lower Cenomanian. This study corroborates these 

findings as Lithraphidites eccentricum was noted above the Albian/Cenomanian 

boundary, with a FAD occurring before the FAD of C. kennedyi at Site 547. Other 

significant bioevents include the LAD of Lithraphidites alatus and the FAD of 

Discorhabdus watkinsii. These observations are not based on statistical methods; as a 

result, these bioevents need to be further explored.  

Because holococcoliths are poorly understood and restricted by depositional 

environment and paleoceanographic settings, they are not reliable primary markers and 

should not be used to represent global events. For example, only four specimens of 

Calculites anfractus were noted between 630.51 and 619.9 mbsf at Site 547. Therefore, 

C. anfractus cannot serve as a global basal marker for the Cenomanian. 

New biostratigraphic information revises the age models for DSDP Site 137, by 

identifying an upper Albian interval, and for Site 547 with the recognition of an expanded 
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Albian/Cenomanian boundary section, based on the FAD of C. kennedyi. These results 

advance the mid-Cretaceous biostratigraphic framework for future work.  

7. Taxa List for Taxa Discussed in this Study 

Braarudosphaera africana Stradner, 1961 

Braarudosphaera primula Black, 1973 

Braarudosphaera stenorhetha Hill, 1976 

Broinsonia gammation Hill, 1976 

Calcicalathina alta Perch-Nielsen, 1979 

Calculites anfractus (Jakubowski, 1986) Varol & Jakubowski, 1989 

Corollithion kennedyi Crux, 1981 

Cylindralithus sculptus Bukry, 1969 

Discorhabdus watkinsii Bergen in Bralower & Bergen, 1998 

Eiffellithus paragogus Gartner in Robaszynski et al. (1993) 

Gartnerago chiasta Varol, 1991 

Gartnerago segmentatum (Stover, 1966) Thierstein, 1974 

Gartnerago theta (Black, 1959) Jakubowski, 1986 

Gartnerago stenostaurion Hill, 1976 

Hayesites albiensis Manivit, 1971 

Laguncula dorotheae Black, 1971 

Lithraphidites acutus subsp. acutus Verbeek & Manivit in Manivit et al., 1977 

Lithraphidites alatus subsp. alatus Thierstein in Roth & Thierstein, 1972 

Lithraphidites eccentricum (Watkins in Watkins and Bowdler 1984) Corbett & Watkins, 

2014 
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Staurolithites mutterlosei Crux, 1989 

Watznaueria britannica, (Stradner, 1963) Reinhardt, 1964 

Zeugrhabdotus xenotus (Stover, 1966) Burnett in Gale et al., 1996 
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Fig.1. Paleogeographic reconstruction of the Cenomanian (100.5 Ma) modified from 

Ocean Drilling Stratigraphic Network (ODSN) plate tectonic reconstruction. 
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Fig. 2. Comparison of the CC (Perch-Nielsen, 1985) and UC (Burnett et al., 1998) Zonation schemes.  
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Fig. 3. Bioevents identified at DSDP Site 137. 
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Fig. 4. Bioevents identified at DSDP Site 547. 
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Fig. 5. Crossplot diagram correlating bioevents between DSDP sites547 and 137, ODP 

holes 1050C and 1052E, and TDP Site 24. The numbers are depth in meters below sea 

floor (mbsf).The light red line representing the LAD of Cylindralihtus sculptus and the 

dark pink line representing the FAD of Discorhabdus watkinsii are discontinuous because 

these bioevents could not be traced through all the sections. In this case, the FAD of 

Discorhabdus watkinsii at holes 1050C and 1052E occurs before the LAD of Hayesites 

albiensis, while this superpositional relationship is not observed in the other sections.
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Fig. 6. Unitary Associations Zones and associated bioevents. The black boxes indicate species that can occur in the given zone.  
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UA - 

Zone 
UA 

DSDP Hole 

547A, 

Magazan 

Plateau, 

Morocco 

(this study) 

DSDP Site 

137, 1000 km 

West of Cap 

Blanc, 

Mauritania  

(this study) 

ODP Hole 

1050C, Blake 

Nose 

(Watkins, 

unpublished) 

ODP Hole 

1052E, Blake 

Nose 

(Watkins, 

unpublished) 

TDP Site 

24, 

Tanzania 

(Ando et 

al., 2015) 

n 

IV 4           2 

III 3           2 

II 2           5 

I 1           5 

 

  UAs that are strictly identified 

  Potentially identified UAs  

 

Fig. 7. Sections in which Unitary Associations I-IV Zones are observed.    
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Fig. 8. Unitary Associations Zones compared to the CC Zonation (Perch-Nielsen, 1985) and UC Zonation (Burnett et al., 1998) 

schemes.  
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Fig. 9. Optimum sequence of events produced by scaling. Each bioevent was plotted against its interevent depth. Each number 

represents the stratigraphic position of the bioevent. 
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Figure 10. Photos 1-3, 5-6, 8-9, 11, 13-18, 21, 23-34, 36, and 38 were taken in cross-

polarized light (XPL). Photos 4, 10, 12, 19, 20, 22, 35 and 37 were taken in plane-

polarized light (PPL). Photo 7 was taken using a one-quarter λ gypsum plate under 

crossed-polarized light. The magnification is 2000x. Scale bar = 10 mm. 
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1. Braarudosphaera stenorhetha Sample 547A-64-1, 27.5-29 cm. 2. Braarudosphaera 

primula Sample 547A-64-1, 27.5-29 cm. 3, 4.  Hayesites albiensis Sample 547A-64-1, 

27.5-29 cm. 5-7. Calculites anfractus Sample 547A-62-3, 50-51 cm 8. Braarudosphaera 

africana Sample 547A-59-6, 8-9 cm. 9, 10. Cylindralithus sculptus Sample 137-14R-6, 

120-121 cm. 11, 12. Laguncula dorotheae Sample 137-14R-6, 120-121 cm. 13, 14. 

Corollithion sp. cf. C. kennedyi Sample 547A-59-6, 8-9 cm (13); Sample 547A-58-3, 78-

80 cm (14). 15-17. Corollithion kennedyi Sample 547A-51-4, 112-113 cm (15); Sample 

137-9R-3, 146-147 cm (16); Sample 137-8R-2, 125-126 cm (17). 18, 19. Watznaueria 

britannica Sample 137-16R-3, 135-136 cm. 20-22. Lithraphidites eccentricum Sample 

137-8R-2, 125-126 cm. 23. Discorhabdus watkinsii Sample 547A-47-3, 137-138 cm. 24. 

Gartnerago chiasta Sample 547A-53-3, 34-35 cm. 25. Eiffellithus paragogus Sample 

137-14R-4, 138-139 cm. 26. Lithraphidites alatus Sample 547A-60-3, 32.5-34 cm. 27. 

Gartnerago stenostaurion Sample 547A-57-6, 33-34 cm. 28, 29. Staurolithites 

mutterlosei Sample 547A-47-3, 137-138 cm. 30, 31. Zeughrabdotus xenotus Sample 137-

14R-6, 120-121 cm. 32, 33. Calcicalathina alta Sample 547A-59-6, 8-9 cm. 34-37. 

Lithraphidites acutus Sample 137-9R-3, 146-147 cm (34, 35); Sample 137-8R-2, 125-

126 cm (36, 37). 38. Gartnerago theta Sample 547A-54-2, 78-79 cm.  
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Fig. 11. Comparison of UA-Zones I-IV (current study) to the scaling dendrogram produced from RASC. Cluster 1 correlates to UA-

Zone I, Clusters 2 and 3 correlate to UA-Zone II, Clusters 4 and 5 correlate to UA-Zone III and Cluster 6 correlates to UA-Zone IV.  
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Table 1. Depths (in mbsf) of bioevents for DSDP sites and 137137, ODP holes 1050C & 

1052E, and TDP Site 24. Blank cells indicate that the corresponding bioevent was not 

observed in that section. 
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FAD Lithraphidites acutus   284.03 510.4     

LAD Broinsonia gammation   285.55 544.05     

LAD Zeughrabdotus xenotus     544.05   15.08 

LAD Staurolithites mutterlosei  460.51 297.68 548.95     

LAD Lithraphidites alatus 497.74 340.4 510.4   60.58 

LAD Eiffellithus paragogus   287.09 554.79   60.58 

LAD Gartnerago stenostaurion 501.88 347.71 554.79 504.32   

LAD Gartnerago chiasta 507.53 347.71   
 

  

FAD Discorhabdus watkinsii 536.64 347.71 
 

  54.38 

FAD Lithraphidites eccentricum  575.81 347.71 551.02 489.08 27.31 

LAD Watznaueria britannica 600.34 347.71 527.3   25.46 

LAD Braarudosphaera africana 619.9   540.6 516.57 47.51 

FAD Corollithion kennedyi 542.13 347.71 548.95 489.08 59.66 

FAD Cylindralithus sculptus 623.83 350.89     41.98 

FAD Calculites anfractus 643.51     494.08   

LAD Hayesites albiensis 659.28 379.36 558.72 526.8   
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Table 2. Bioevents and their assigned ages according to the geologic time scale (Gradstein et al., 

2012). The events highlighted in grey do not occur in chronological order in the corresponding 

sections. 
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10 96.16 FAD Lithraphidites acutus   284.03 510.4     

9 97.31 FAD Cylindralithus sculptus 623.83 350.89     41.98 

8 97.93 LAD Zeughrabdotus xenotus     544.05   15.08 

7   LAD Eiffellithus paragogus   287.09 554.79   60.58 

6 99.94 LAD Gartnerago chiasta 507.53 347.71       

5 100.03 LAD Watznaueria britannica 600.34 347.71 527.3   25.46 

4 100.45 FAD Corollithion kennedyi 604.8 347.71 548.95 489.08 59.66 

3 100.5 FAD Calculites anfractus 643.51     494.08   

2   LAD Gartnerago stenostaurion 501.88 347.71 554.79 504.32   

1 100.84 LAD Hayesites albiensis 659.28 379.36 558.72 526.8   
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Position Range Event 

16 0 Lithraphidites acutus-FAD 

15 -1 Broinsonia gammation-LAD 

14 0-1 Calcicalathina alta-LAD 

13 0 Staurolithites mutterlosei-LAD 

12 0 Gartnerago segmentatum-FAD 

11 0 Watznaueria  britannica-LAD 

10 -4 Calculites anfractus-LAD 

9 0-1 Corollithion kennedyi-FAD 

8 0 Lithraphidites eccentricum-FAD 

7 0 Gartnerago stenostaurion -LAD 

6 -1 Laguncula dorotheae-LAD 

5 -3 Calculites anfractus-FAD 

4 0-1 Braarudosphaera africana-LAD 

3 0 Braarudosphaera stenorhetha-LAD 

2 0 Hayesites albiensis-LAD 

1 0 Braarudosphaera primula-LAD 

 

Table. 3. Bioevent ranking derived from unitary associations (UA) analysis; “Range” indicates 

the number of penalty points assigned to each bioevent.  

 

 



 
 

 
 

                                                             4
8 

 

 

 

Table 4. Calculated reliability indices for methods proposed by Bralower et al. (1988), Bergen et al. (2013) and this study for DSDP 

Site 137. Species whose range did not span 10 samples were excluded from this calculation and are identified as emboldened. 

Asterisks denote species that are absent in the sample above their FAD or below their LAD. 

 

 

 

 

Species Event 
Depth of 

bioevent 

Bralower 

et al. 

(1988) 

Method A 

Bergen et al. 

(2013) 

Method B 

Bergen et al. 

(2013) 

Probability of 

Success (this study) 

Lithraphidites acutus FAD 269.47 

    Staurolithites mutterlosei LAD 299.43 0.165 7 45.8 13.87 (Strong) 

Gartnerago segmentatum*  FAD 302.79 

 

1 15.4 

 Corollithion kennedyi* FAD 346.32 

 

3 61.5 6.2 (Weak) 

Lithraphidites eccentricum FAD 346.32 0.165 10 96.2 14.78 (Strong) 

Laguncula dorotheae* LAD 347.71 

    Watznaueria  britannica LAD 349.12 

    Broinsonia stenostaurion* LAD 349.12 

 

1 18.5 

 Gartnerago chiasta LAD 349.12 

    Cylindralithus sculptus* FAD 349.12 

 

4 25.0 7.91 (Weak) 

Hayesites albiensis LAD 380.82 
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Table 5. Calculated reliability indices for methods proposed by Bralower et al. (1988), Bergen et al. (2013) and this study for DSDP 

Site 547. Species whose range did not span 10 samples were excluded from this calculation and are identified as emboldened. 

Asterisks denote species that are absent in the sample above their FAD or below their LAD. 

 

 

 

 

 

Species Event 
Depth of 

bioevent 

Bralower 

et al. 

(1988) 

Method A 

Bergen et al. 

(2013) 

Method B 

Bergen et al. 

(2013) 

Probability of Success  

(this study) 

Gartnerago theta* LAD 442.86 

 

3 18.9 6.2 (Weak) 

Staurolithites mutterlosei LAD 469.13 0.09 8 50.0 13.87 (Strong) 

Gartnerago segmentatum* FAD 497.74 

 

1 6.7 

 Broinsonia stenostaurion  LAD 507.53 0.09 9 90.0 14.5 (Strong) 

Gartnerago chiasta* LAD 509.27 

 

5 63.6 10.78 (Moderate) 

Corollithion kennedyi  FAD 536.64 0.09 10 100.0 14.78 (Strong) 

Laguncula dorotheae* LAD 547.13 

 

3 22.2 6.2 (Weak) 

Lithraphidites eccentricum* FAD 588.62 

 

8 59.4 13.87 (Strong) 

Watznaueria  britannica LAD 604.80 0.08 

   Braarudosphaera africana LAD 623.83 0.04 

   Cylindralithus sculptus* FAD 623.83 

 

3 34.3 6.2 (Weak) 

Calculites anfractus LAD 632.51 

    Braarudosphaera stenorhetha LAD 659.28 

    Hayesites albiensis LAD 659.28 

    Braarudosphaera primula LAD 659.28 
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