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RESEARCH ARTICLE Open Access

Mapping QTLs and association of
differentially expressed gene transcripts for
multiple agronomic traits under different
nitrogen levels in sorghum
Malleswari Gelli1, Sharon E. Mitchell4,5, Kan Liu3,4,5, Thomas E. Clemente1,3, Donald P. Weeks2,3, Chi Zhang3,4,5,
David R. Holding1,3 and Ismail M. Dweikat1*

Abstract

Background: Sorghum is an important C4 crop which relies on applied Nitrogen fertilizers (N) for optimal yields, of
which substantial amounts are lost into the atmosphere. Understanding the genetic variation of sorghum in response
to limited nitrogen supply is important for elucidating the underlying genetic mechanisms of nitrogen utilization.

Results: A bi-parental mapping population consisting of 131 recombinant inbred lines (RILs) was used to map
quantitative trait loci (QTLs) influencing different agronomic traits evaluated under normal N (100 kg.ha−1 fertilizer) and
low N (0 kg.ha−1 fertilizer) conditions. A linkage map spanning 1614 cM was developed using 642 polymorphic single
nucleotide polymorphisms (SNPs) detected in the population using Genotyping-By-Sequencing (GBS) technology.
Composite interval mapping detected a total of 38 QTLs for 11 agronomic traits tested under different nitrogen levels.
The phenotypic variation explained by individual QTL ranged from 6.2 to 50.8 %. Illumina RNA sequencing data
generated on seedling root tissues revealed 726 differentially expressed gene (DEG) transcripts between parents, of
which 108 were mapped close to the QTL regions.

Conclusions: Co-localized regions affecting multiple traits were detected on chromosomes 1, 5, 6, 7 and 9. These
potentially pleiotropic regions were coincident with the genomic regions of cloned QTLs, including genes associated
with flowering time, Ma3 on chromosome 1 and Ma1 on chromosome 6, gene associated with plant height, Dw2 on
chromosome 6. In these regions, RNA sequencing data showed differential expression of transcripts related to nitrogen
metabolism (Ferredoxin-nitrate reductase), glycolysis (Phosphofructo-2-kinase), seed storage proteins, plant hormone
metabolism and membrane transport. The differentially expressed transcripts underlying the pleiotropic QTL regions
could be potential targets for improving sorghum performance under limited N fertilizer through marker assisted
selection.

Keywords: Sorghum, Agronomic traits, Differentially expressed gene transcripts, Genotyping-by-sequencing, Nitrogen
fertilizer, QTL mapping, Illumina RNA-seq

* Correspondence: idweikat2@unl.edu
1Department of Agronomy and Horticulture, University of Nebraska, Lincoln,
NE 68583, USA
Full list of author information is available at the end of the article

© 2016 Gelli et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gelli et al. BMC Plant Biology  (2016) 16:16 
DOI 10.1186/s12870-015-0696-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-015-0696-x&domain=pdf
mailto:idweikat2@unl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
proyster2
Highlight



Background
Sorghum (Sorghum bicolor (L.) Moench) is the fifth most
cultivated cereal crop worldwide (http://www.fao.org/3/
a-ax443e.pdf ) and also an important source of fodder,
fiber and biofuel [1]. Sorghum performs C4 photosyn-
thesis like maize and sugarcane, and uses Nitrogen, CO2

and water more efficiently than maize and most C3

plants [2]. Sorghum is an important model for genome
analysis among the C4 grasses because its genome is
relatively small (~818 Mbp) [3], and the cultivated spe-
cies is diploid (2n = 20). Due to its deep root system, sor-
ghum is drought tolerant and is preferentially grown in
water-limited environments [4]. Despite being a C4 crop,
sorghum still relies on applied fertilizer to achieve max-
imal yields. Nitrogen (N) is the macronutrient which is
often limiting sorghum production. N is the most abun-
dantly absorbed mineral nutrient by plant roots [5] and
75 % of the leaf N is allocated to the chloroplasts [6]. As
nitrogen is an essential part of many biomolecules, it
comprises 1.5 to 2 % of plant dry matter and 16 % of the
total plant protein [7].
N fertilizer application is expected to rise approxi-

mately three-fold in the next 40 years [8]. In general,
plants absorb less than half of the applied fertilizer [7].
Both phosphorus and potassium are immobile nutrients
in the soil and are generally not vulnerable for leaching.
However, nitrogen is a mobile nutrient and when
present in excess, it is released in to the atmosphere
through volatilization or lost through leaching and
ground water runoff, of which both have adverse envir-
onmental effects [8]. Excess N fertilizer application is a
major economic cost to farmers, and also leads to acid-
ification of soils [9]. Because of their potential positive
effects on improving economic returns and limiting glo-
bal climate change, lowering fertilizer input and breed-
ing plants with better nitrogen use efficiency (NUE) are
two major goals of research in plant nutrition [10]. As a
function of multiple interacting genetic and environmen-
tal factors, the molecular basis of NUE is complex. NUE
is defined as the grain yield [11] or fresh/dry matter pro-
duced [8] per unit of available N in the soil. Uptake of N
from the soil involves a variety of transporters, and a
number of enzymes for assimilation and transfer of the
absorbed N into amino acids and other compounds [12].
However, little is known about how these processes are
regulated especially under different N conditions.
QTL analysis, based on high density linkage maps, is a

powerful tool for dissecting the genetic basis underlying
complex traits [13]. QTL mapping studies have been
conducted under different N conditions for NUE and
other agronomic traits in maize [14], Arabidopsis [15],
and rice [16, 17]. QTLs associated with low-nitrogen tol-
erance were detected in rice [18] and barley [19] for dif-
ferent traits, at the seedling stage. In barley, Mickelson

et al. [20] mapped a QTL for grain protein concentra-
tion, which is homologous to a durum wheat grain pro-
tein QTL mapped by Joppa et al. [21]. QTLs for NUE
and enzymes involved in nitrogen metabolism were re-
ported in wheat [22] and QTLs for glutamine synthetase
(GS) activity were co-localized with those for grain N
[23] and confirmed in another population [24]. In wheat,
Quraishi et al. [25] identified 11 major regions control-
ling NUE, which co-localized with key developmental
genes such as Ppd (photoperiod sensitivity), Vrn
(vernalization) and Rht (reduced height). However, there
are no previous QTL mapping reports for agronomic
traits tested under different nitrogen levels in sorghum.
Significant genotypic differences for N utilization effi-
ciency have been documented in sorghum [26, 27]. N
utilization of genotypes varied with different nitrogen
sources, nitrogen amounts and other environmental
conditions [28]. Thus, there is good reason to believe
that improvements in N utilization efficiency in sorghum
can be achieved using genetic approaches.
Different kinds of DNA based low-throughput marker

systems such as restriction fragment length polymorph-
ism (RFLP), amplified fragment length polymorphism
(AFLP), and simple sequence repeat (SSR) markers have
been developed and used to investigate the variants and
quantitative trait loci (QTLs) controlling >150 traits in
sorghum. AFLPs, SSRs and RFLPs were used for gener-
ating the dense linkage maps [29]. Diversity Array Tech-
nology was evolved [30] as a cost effective hybridization-
based alternative to the gel-based marker technologies,
which offers a multiplexed genotyping independent of
sequence information. DArT markers were developed
for sorghum and used for genotyping a diverse set of
sorghum lines and a bi-parental mapping population
[31]. With the availability of sorghum whole genome se-
quence [32], Mace et al. [4] generated a single, reference
consensus map by integrating six independent sorghum
genetic maps containing 2029 unique loci consists of
SSRs, AFLPs, and DArT markers. Using this as a frame-
work map, Mace and Jordon et al. [33] mapped 35 major
effect genes commonly observed in segregating mapping
populations onto a common reference map to enable
sorghum researchers link the information of QTLs and
select the major genes. Furthermore, Mace et al. [34]
projected 771 QTL relating to 161 unique traits from 44
studies onto the sorghum consensus map, which is use-
ful for development of efficient marker-assisted breeding
strategies. With the advent of high-throughput DNA
sequencing technologies, it became possible to re-sequence
genomes and detect single nucleotide polymorphisms
(SNPs) which can be used for rapid genotyping [35]. Zou et
al. [36] developed a linkage map based on SNPs generated
from whole-genome re-sequencing by the Illumina
Genome Analyzer IIx as described by Huang et al. [37] and
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used it for detecting QTLs for important agronomic traits
under contrasting photoperiods in sorghum. However, it
remains costly to employ whole-genome sequencing to
evaluate multiple individuals in mapping populations. Next
generation sequencing of a reduced representation genomic
library, where fewer sequence reads are needed to obtain
meaningful information compared to whole genome
sequencing, is a convenient approach for capturing
genetic variation. Genotyping-by-sequencing (GBS) is
an efficient strategy for constructing multiplexed re-
duced representation library [38]. This technique has
successfully been applied to generate high-density gen-
etic maps and QTL mapping in several plant species
[39].
In this study, we used SNPs generated from GBS tech-

nology to develop a linkage map and which then used to
map QTLs for different agronomic traits in RIL popula-
tion of sorghum. This process of QTL detection enabled
us to link variation at the trait level to the variation at
sequence level. However, a QTL may contain tens to
hundreds of genes, figuring out the genes responsible for
trait variation is a major challenge. With the advance-
ment of sequencing technology, transcriptome compari-
sons were made between different sorghum genotypes at
different tissue levels and at different growing conditions
[40–44]. In addition, Morokoshi et al. [44] compiled all
these datasets and developed a transcriptome database
for sorghum which will be useful to researchers for tran-
scriptome comparisons. The desire to identify the under-
lying genes responsible for trait variation in QTL regions
has been increasing and to this end, we used previously
generated high throughput Illumina-based RNA sequen-
cing data [43] to identify differentially expressed gene
transcripts in QTL regions. By further evaluation, the
resulting candidate genes could be potential targets for
improving N-stress tolerance and nitrogen utilization of
sorghum and related crops.

Methods
Plant material
A mapping population derived from a cross between the
inbred lines CK60 and China17 was used in this study.
CK60, a public sorghum line, which is short,
photoperiod-sensitive, late-maturing U.S. sorghum line
and an inefficient N user. China17, a photoperiod-
insensitive Chinese sorghum line was provided by Dr.
Jerry Maranville (University of Nebraska, Lincoln, USA),
uses nitrogen more efficiently than CK60 and has higher
assimilation efficiency indices at both low and high soil
nitrogen levels [45]. China17 retains higher phospho-
enolpyruvate carboxylase (PEPcase) activity than CK60
when grown under low N conditions [45]. The seedlings
of China17 had greater root and shoot mass than CK60
under both low N and normal N conditions [43]. Each

of the 131 RILs was derived from a single F2 plant fol-
lowing a single seed descent method until the F7
generation.

Experimental design
The F7 RILs and the two parents (CK60 and China17)
were evaluated in an alpha lattice incomplete block de-
sign under two N levels with two independent replicates
each for two years (2011 and 2012). The two N treat-
ments were low N (LN, 0 kg.ha−1 fertilizer) and normal
N (NN, 100 kg.ha−1 anhydrous ammonia fertilizer). The
preceding crops were soybean in the NN field and oats
or maize in the LN filed. The LN field had not received
nitrogen fertilizer since 1986. The soil testing was done
by collecting soil samples from 0 to 12 in. and 12–24 in.
randomly across the NN and LN fields and results were
described in Additional file 1. Single-row plots measur-
ing five meters long at 0.75 m row spacing were sown at
a density of 50 seeds for each RIL and parents. All en-
tries were planted on the same day in conventionally
tilled plots and maintained under rain fed conditions.

Phenotyping of important agronomic traits
Three plants were randomly selected for each genotype
for phenotypic evaluation of eleven agronomic traits.
The measured phenotypes include leaf chlorophyll con-
tent at three different stages of plant growth: before
flowering (vegetative stage, Chl1), during flowering
(Chl2) and at maturity (Chl3); plant height (PH, from
base of the plant to tip of the head, in centimeters); and
days to anthesis (AD, no. of days from planting to 50 %
anthesis). Stover moisture contents (MC1) and head
moisture contents (MC2) were calculated as the percent
difference between wet and dry weights. Total biomass
yield (BY, t.ha−1), grain yield (GY, t.ha−1), 1000 seed
weight in grams (Test weight, TW) and grain-to-stover
ratio (GS, %) were calculated and recorded from NN
and LN fields. Haussmann et al. [46] described that the
upper six leaves are a good source for measuring the
greenness of leaves since they are photosynthetically ac-
tive at anthesis and contribute nutrients to the grain
[47]. In this study, chlorophyll contents were measured
in the 3rd leaf from the top using a portable chlorophyll
meter model SPAD-502 (Minolta, Japan). In summary,
the phenotypes were classified into three groups, chloro-
phyll contents (Chl1, Chl2, and Chl3), morphological
traits (PH, AD, MC1, and MC2), and yield-related traits
(BY, GY, TW and GS).

Statistical analysis
The statistical model adopted for the alpha lattice in-
complete block design in each N condition was Yijk = μ +
gi + rj + bk(j) + eij. Yijk is the response of ith genotype in kth

bock of jth replication, μ is the grand mean, gi is the
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genotype or line effect, rj is the replication effect, bk(j) is
the random block k (k = 1…n) effect within replicate with
bk(j) ~ N(0, σ2b) and eij is the residual term with ~N(0, σ2e).
Analysis of variance (ANOVA) for eleven traits was per-
formed for each individual environment using the PROC
MIXED procedure [48] of SAS version 9.2 (SAS Institute,
2008) where the genotype was considered as fixed, replica-
tions and blocks as random effects. The phenotypic data,
from both seasons (2011 and 2012), were pooled to obtain
single trait values for each family under NN and LN [13].
ANOVA was performed on pooled data by considering
that genotype effect is fixed and environments (years), rep-
lication within environments, blocks within environments,
and genotype by environment (GxE) interaction effects
are random. Narrow-sense heritability with standard error
was estimated using the PROC MIXED procedure of SAS
version 9.2. For the heritability estimates, parental lines
data were excluded, and estimates followed a method de-
scribed by Holland et al. [49]. Pearson’s correlation coeffi-
cients between traits were calculated for the least square
genotype means using the PROC CORR procedure of
SAS. The RIL trait data were subjected to normality test
using PROC UNIVARIATE to determine its suitability for
QTL analysis.

High-throughput Genotyping and Linkage map
construction
Total genomic DNA of the RILs and their parents were
isolated from leaf tissues using a DNeasy Plant Mini Kit
(Qiagen). DNA (500 ng) from each sample was digested
with ApeKI (New England Bio-labs, Ipswich, MA), a
type II restriction endonuclease that recognizes a degen-
erate 5 bp sequence (5’-GCWGC) and creates 5’ over-
hangs. Adapters with specific barcodes [38] were then
ligated to the overhanging sequences using T4 ligase. A
set of 96 DNA samples, each sample with a different
barcode adapter, were combined and purified (Quick
PCR Purification Kit; Qiagen, Valencia, CA) according to
the manufacturer’s instructions. DNA fragments con-
taining ligated adapters were amplified with primers
containing complementary sequences for each adapter.
PCR products were then purified and diluted for sequen-
cing [38]. Single-end, 100 bp reads were collected for
one 48- or 96-plex library per flow cell channel on a
Genome Analyzer IIx (GAIIx; Illumina, Inc., San Diego,
CA) [50] at Cornell University, USA.
Raw reads obtained from GAIIx were filtered [38] and

aligned to the sorghum reference genome version 1.4
[32]. The genotypes of the population were determined
based on the procedure described by Elshire et al. [38].
The biallelic SNP markers were checked for polymorph-
ism between the parents. Prior to map construction, all
polymorphic SNPs were checked by the chi-square (χ2)
test for the goodness of fit against a 1:1 segregation ratio

at the 0.05 probability level. SNPs with >70 % missing
data were removed from data set. A total of 668 SNPs
were selected and used for constructing linkage maps
using Mapmaker/EXP 3.0 along with IciMapping (Inclu-
sive composite interval mapping) V3.2 [51]. The genetic
distance (cM) was calculated using the Kosambi map-
ping function.

QTL analysis
The composite interval mapping method of WinQTL-
cart2.5 [52] was used for QTL detection. QTL analysis
was performed based on averaged mean values of each
trait across two NN and two LN environments respect-
ively. The walking speed chosen for all traits was 1 cM.
Cofactors were determined using the forward and back-
ward step-wise regression method with a probability in
and out of 0.1 and a window size of 10 cM. A thousand-
permutation test was applied to each data set to decide
the LOD (logarithm of odds) thresholds (P ≤ 0.05) to de-
termine significance of identified QTLs [53]. A 2-LOD
support interval was calculated for each QTL to obtain a
95 % confidence interval. Adjacent QTLs on the same
chromosome for the same trait were considered different
when the support intervals were non-overlapping. The
contribution rate (R2) was estimated as the percentage
of variance explained by each QTL in proportion to the
total phenotypic variance. The additive effect of a puta-
tive QTL was estimated by half the difference between
two homozygous classes. QTLs were named according
to McCouch et al. [54] and alphabetical order was used
for QTLs on the same chromosome. QTLs with a posi-
tive or negative additive effect for a trait imply that the
increase in the phenotypic value of the trait is contrib-
uted by alleles from CK60 or China17.

Detection of differentially expressed gene transcripts in
the QTL intervals
In an earlier study [43], we detected several common
DEG transcripts between the transcriptomes of seven
sorghum genotypes (four low-N tolerant and three low-
N sensitive) using Illumina RNA sequencing. Transcrip-
tomes were prepared from root tissues of 3 week old
seedlings grown under N-stress from four N-stress toler-
ant (China17, San Chi San, KS78 and high NUE bulk)
and three sensitive (CK60, BTx623 and low NUE bulk)
genotypes. In the present study, we used the RNA-seq
data generated earlier in order to check the differential
expression of gene transcripts between CK60 and
China17 in the QTL regions. Pair-wise comparison was
made between the transcriptomes of CK60 and China17
to detect DEG transcripts. The cutoff of log2-fold value >1
(2-fold absolute value) and adjusted P-value <0.001 (FDR)
were used for determining significant DEG transcripts.
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Results
Statistical analysis of phenotypic data
Mean values of 11 traits measured for parents (CK60, and
China17) and the RIL population under NN and LN envi-
ronments are given in Tables 1 and 2, respectively. The
mean chlorophyll content was higher at flowering than at
vegetative and mature stages under both N-conditions.
CK60 retained more chlorophyll at all stages compared to
China17 and the mean chlorophyll content of the RIL
population was lower under LN compared to NN condi-
tions. The plant height of CK60 was reduced by 23 cm,
while that of China17 remained the same under LN com-
pared to NN. Days to anthesis for the two parental lines
were also significantly affected by N-condition, and LN
delayed flowering in both parents. Compared to China17,
the flowering was delayed more in CK60 under both N-
levels. The biomass yield of CK60 was lower than China17
in both N conditions. The grain yield was also significantly
different between the two parents; CK60 had lower grain
yield under the two N-conditions. The average values of
biomass and grain yield for the RILs were greatly reduced
from NN to LN conditions, respectively. Similarly, the test
weight of China17 was higher than CK60 under both N-
conditions. The grain/stover ratio of China17 was
decreased almost half, while no significant change was ob-
served for CK60 under LN compared to NN. In contrast,
the stover and head moisture contents of CK60 were
higher than China17 under both N-conditions. The aver-
age of grain/stover ratio and stover moisture contents of
the RILs remained the same under both N conditions but
the average of head moisture content in the RIL popula-
tion was increased under LN conditions.
The narrow sense heritability (h2) was estimated for each

trait measured under both N conditions (Tables 1 and 2).
Under NN, the heritability estimates of the 11 traits ranged
from 39 to 71 %. Chlorophyll at the vegetative stage had
the highest h2 value followed by plant height and test
weight. Grain/stover ratio had the lowest heritability esti-
mate. Under LN, h2 values ranged from 32 to 80 %. Plant
height had the highest h2 values and grain/stover ratio had
the lowest h2 value. ANOVA showed significant phenotypic
variation for all the traits among RILs (Tables 1 and 2).
GxE interaction was mainly associated with differences in
magnitude of effects between years. Therefore, phenotypic
data from 2011 and 2012 seasons were averaged separately
for NN and LN conditions. GxE interactions were signifi-
cant for all the traits except chlorophyll at the vegetative
stage across two LN environments. Genotype variance was
greater than GxE interaction variance for all traits across
NN and LN environments (Tables 1 and 2).

Correlation of the traits
The focus of this work was evaluation of the genetic
control of traits under NN and LN conditions in

sorghum. Correlation coefficients based on the line
means among three chlorophyll contents, yield-related
traits and other morphological traits showed that most
of the traits tested under the contrasting N conditions
were significantly correlated (P < 0.05) (Table 3). Inter-
estingly, leaf chlorophyll contents measured at three dif-
ferent stages of plant growth were negatively correlated
with most of the yield-related (biomass yield, grain yield
and test weight) and morphological traits (plant height,
days to anthesis and head moisture content) in both N-
conditions (Table 3). Under NN conditions, significant
positive correlations were observed between chlorophylls
and stover moisture content (P < 0.01). In addition, plant
height had significant positive correlation with biomass
and grain yield in both N conditions. Highest positive
correlation was observed between biomass and grain
yield in both NN and LN environments. Days to anthesis
was positively correlated with stover and head moisture
contents under both N conditions. Grain/stover ratio
was not significantly correlated with many traits, but it
had significant positive correlation with grain yield.

Linkage mapping and QTL analysis
Polymorphic SNP markers between CK60 and China17
were identified by the GBS pipeline. A linkage map was
developed with 642 polymorphic SNPs (Additional file 2)
with an average inter marker distance of 2.55 cM. The
resulting linkage map comprised of 10 linkage groups and
map spanning a total length of 1641 cM. Composite
interval mapping detected a total of 38 QTLs for 11
traits analyzed across NN and LN environments. No
significant QTLs were detected on chromosomes 2, 3, 4
and 10 (not shown in Fig. 1). The number of QTLs per
trait ranged from one to four, and is listed in Tables 4
and 5 and shown in Fig. 1. Across two NN conditions,
four QTLs for chlorophyll contents were detected in-
cluding one QTL each for chlorophyll at vegetative and
flowering stage, and two QTLs for chlorophyll at ma-
turity explaining phenotypic variation range from 7.1 to
50.8 % (Table 4). Six QTLs were identified for four
morphological traits including one major QTL for days
to anthesis on chromosome 1, for which the CK60 al-
lele delayed flowering by 3.6 days. Two QTLs each for
stover and head moisture contents were detected under
NN conditions. For all these QTLs, the CK60 allele
contributed to increase the chlorophyll contents and
the moisture contents. In contrast, the China17 allele
contributed to an increase in the plant height by
39.8 cm for the QTL detected on chromosome 9. Simi-
larly, we detected eight significant QTLs for yield-
related traits. Of the eight detected, two QTLs are for
biomass yield, three for grain yield, one for test weight
and two for grain/stover ratio. For the two QTLs de-
tected for biomass yield, China17 allele increased the
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Table 1 Descriptive statistics, h2, and mean squares of ANOVA results for the traits measured across two normal-N conditions in CK60 x China17 RIL population

Category Source of variation Df Chl1 Chl2 Chl3 PH AD MC1 MC2 BY GY TW GS

Descriptive statistics CK60 49.8 55.6 53.6 99 71.5 68.6 24.8 7.69 2.89 20.3 0.52

China17 46.6 52.7 48.3 150 66.3 65 19.5 14.6 6.25 31.6 0.95

RIL Mean 47.8 53.3 47.2 161.3 67 66.5 19.4 11.2 3.39 23.6 0.47

Std 4.09 3.72 5.85 35 4.2 3.32 6.34 3.99 1.49 3.15 0.16

Min 38.7 38.2 32.3 70 55.1 52.8 8.16 3.09 0.4 14.4 0.05

Max 58.4 62.2 62.5 236.5 85.9 76.1 46.8 24.2 9.04 29.9 0.88

h2 (%) 71 56 51 64 61 40 53 62 55 64 39

SE (%) 6 9 10 7 8 12 9 0.8 9 7 12

ANOVA Env 1 626.9 4276*** 17016*** 40478 11333*** 347.6 4500 271.6 32.8* 946.9 0.07

Rep(Env) 2 89.1* 9.93 57.8 10976** 55.6* 191.1** 2501*** 34.6 2.57 1483*** 0.02

Blk(Env*Rep) 44 12.5 12.0* 40.4*** 429* 11.3 14.8 31.7 13.1 2.43* 5.69 0.02

Line 130 50.9*** 41.9*** 105.3*** 4037*** 49.6*** 34.3** 123.9*** 49.4*** 6.8*** 28.0*** 0.08**

Env*Line 104 15.6** 18.1*** 58.2*** 1634*** 20.5** 21.8** 59.3*** 19.6*** 3.2*** 10.5*** 0.048***

Residual 190 9.74 8.06 16.7 290 12.8 12.7 26.7 10.5 1.54 5.2 0.02

Df, degrees of freedom; chlorophyll contents at vegetative stage (Chl1), at anthesis (Chl2), and at maturity (Chl3); PH, plant height (cm)
AD, days to anthesis; MC1, % stover moisture content; MC2, % head moisture content; BY, biomass yield (t.ha−1); GY, grain yield (t.ha−1)
TW, test weight (g); GS, grain/stover ratio (%). Std, standard deviation; h2 (%), narrow sense heritability; SE (%), standard error %; ***P < 0.0001; **P < 0.01; *P < 0.05
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Table 2 Descriptive statistics, h2, and mean squares of ANOVA results for the traits measured across two low-N conditions in CK60 x China17 RIL population

Category Source of variation Df Chl1 Chl2 Chl3 PH AD MC1 MC2 BY GY TW GS

Descriptive statistics CK60 31.8 39.5 40.2 76.3 90.5 68.6 34.4 3.75 1.21 20.2 0.49

China17 32.7 33.9 28.7 153.1 77.1 60.7 23.8 6.83 2.72 28.3 0.46

RIL Mean 33.3 36.8 31.8 131.7 82.6 66.2 27.4 6.43 1.86 20.3 0.42

Std Dev 3 3.9 5.4 38.7 7.8 3.2 9 2.1 0.79 3.3 0.14

Min 27.3 25.2 12.3 55.9 66.7 55.5 13.4 2.91 0.06 12.1 0.01

Max 40.2 48.1 46.2 214 108.2 74.6 57.8 13.2 5.02 27.8 0.96

h2 (%) 59 43 50 80 75 71.6 76 48 47 75 32

SE (%) 8 12 10 4 5 6 5 10 10 5 14

ANOVA Env 1 360.5 16104*** 24768** 4740.9 54521*** 186 264 435.9* 163*** 368.1 6.32*

Rep(Env) 2 87.7* 23.3 131.7* 771.4 48.85 129*** 670.5** 21.4 0.16 1779*** 0.22**

Blk(Env*Rep) 44 16.6* 19.1 18.66 412.3** 36.67 7.8 35 5.9 0.69 6.14 0.01

Line 130 27.2*** 45.6** 87.7** 4475*** 167.4*** 31.7*** 238.0*** 15.0** 1.97** 32.7*** 0.05*

Env*Line 104 12.1 27.3*** 44.03*** 1001*** 46.8* 9.9*** 66.2*** 8.87** 1.17** 9.48** 0.03***

Residual 190 10.7 13.9 15.13 189.9 31.78 6.58 34.2 5.5 0.75 5.67 0.02

Df, degrees of freedom; chlorophyll contents at vegetative stage (Chl1), at anthesis (Chl2), and at maturity (Chl3); PH, plant height (cm); AD, days to anthesis; MC1, % stover moisture content; MC2, % head moisture
content; BY, biomass yield (t.ha−1); GY, grain yield (t.ha−1); TW, test weight (g); GS, grain/stover ratio (%). Std, standard deviation; h2 (%), narrow sense heritability; SE (%), standard error %; ***P < 0.0001;
**P < 0.01; *P < 0.05
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biomass yield by 1.8 t.ha−1. For grain yield, CK60 allele
increased grain yield by 0.5 t.ha−1 for the two QTLs on
chromosome 1 and China17 allele increased grain yield
for the other QTL on chromosome 9. CK60 allele re-
sponsible for an increase in the test weight of seeds for
the major QTL detected on chromosome 5 for test
weight. In contrast, the China17 allele increased the
grain/stover ratio for two QTLs.
Under LN conditions, 20 QTLs were found to be sig-

nificant for 11 traits studied (Table 5, Fig. 1). We de-
tected four QTLs for chlorophyll content including two

each for chlorophyll at flowering and maturity. No sig-
nificant QTLs were detected for chlorophyll content at
the vegetative stage. For these QTLs, the China17 allele
increased the chlorophyll content at flowering for the
QTL on chromosome 1 and the CK60 alleles increased
the chlorophyll contents for the other QTLs. We de-
tected seven significant QTLs for morphological traits.
One major QTL explaining 13.2 % of the phenotypic
variation was associated with plant height with the allele
from China17 increasing plant height by 16.4 cm. Two
QTLs were detected for days to anthesis. The CK60

Table 3 Correlation coefficient of the traits investigated

Chl1 Chl2 Chl3 PH AD MC1 MC2 BY GY GS TW

Chl1 0.76*** 0.65*** −0.35*** −0.17* 0.134 −0.065 −0.069 0.066 0.144 −0.065

Chl2 0.77*** 0.73*** −0.38*** −0.36*** 0.08 −0.23** −0.18* 0.085 0.30** −0.016

Chl3 0.57*** 0.58*** −0.51*** 0.077 0.22* 0.163 −0.162 −0.016 0.118 −0.24**

PH −0.62*** −0.51*** −0.52*** −0.16 −0.22* −0.40*** 0.54*** 0.39*** 0.022 0.43***

AD −0.26** −0.30** 0.15 0.13 0.34*** 0.76*** 0.003 −0.19* −0.28** −0.47***

MC1 0.28** 0.16 0.38*** −0.40*** 0.19* 0.39*** −0.046 −0.097 0.037 −0.21*

MC2 −0.003 −0.21* 0.27** −0.078 0.51*** 0.38*** −0.04 −0.35*** −0.45*** −0.49***

BY −0.64*** −0.56*** −0.37*** 0.63*** 0.25** −0.24** 0.12 0.75*** 0.033 0.38***

GY −0.56*** −0.36*** −0.35*** 0.50*** 0.142 −0.31** −0.27** 0.73*** 0.60*** 0.40***

GS −0.078 0.04 −0.1 0.043 −0.132 −0.151 −0.53*** −0.094 0.52*** 0.26**

TW −0.23** 0.02 −0.166 0.20* −0.1 −0.24** −0.21* 0.23** 0.31** 0.064

The numbers below the diagonal are correlation coefficients under normal N environments and numbers above the is diagonal are correlation coefficients under
low N environments. Chlorophyll contents at vegetative stage (Chl1), at anthesis (Chl2), and at maturity (Chl3); PH, plant height (cm); AD, days to anthesis; MC1, % stover
moisture content; MC2, % head moisture content; BY, biomass yield (t.ha−1); GY, grain yield (t.ha−1); TW, test weight (g); GS, grain/stover ratio (%).
***P < 0.0001; **P < 0.01; *P < 0.05

Fig. 1 QTLs mapped to the linkage groups for 11 agronomically important traits across two normal N and two low-N conditions. Chr, indicate
chromosome. Chlorophyll contents at vegetative stage (Chl1), at anthesis (Chl2), and at maturity (Chl3); plant height (PH, cm), days to anthesis
(AD, days), stover moisture content (MC1,%), head moisture content (MC2,,%), biomass yield (BY, t.ha−1), grain yield (GY, t.ha−1), test weight (TW,
g), and grain/stover ratio (GS, %); each trait was shown with different color; open bars indicates QTLs detected under NN, closed bars indicates
QTLs detected under LN and open bar with strikes indicates QTLs detected consistently across environments. Supported intervals for each QTL
are indicated by the length of vertical bars. Chr doesn’t contain QTLs not shown here. Left side scale is in cM
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allele associated with the QTL on chromosome 1 de-
layed heading by 3.6 d, while the China17 allele, associ-
ated with the QTL on chromosome 9, delayed heading
by 3 d. Two QTLs for stover moisture content and head
moisture content were identified with presence of the
CK60 alleles resulting in increasing the moisture con-
tents. Nine significant QTLs were found for yield-related
traits under LN conditions. Two QTLs were detected
for biomass yield, of which the China17 allele contrib-
uted for increased biomass yield by 1.0 t.ha−1 for QTL
on chromosome 5, while the CK60 allele increased bio-
mass yield at other QTL. Four QTLs were identified for
grain yield, of which the CK60 allele increased the grain
yield for one QTL on chromosome 5 and China17 alleles
improved the grain yield for all other QTLs. One signifi-
cant QTL explaining 17.9 % of the phenotypic variation
was detected for test weight on chromosome 1 with the
China17 allele increasing test weight by 1.8 g. Two
QTLs were found for grain/stover ratio on chromo-
somes 1 and 5. The China17 allele contributed to an in-
crease the grain/stover ratio for QTL on chromosome 1
while the CK60 allele was responsible for increasing the
grain/stover ratio at the other QTL on chromosome 5.
The additive effect of a single QTL could explain 7 to
20.3 % of the total phenotypic variation.

Differential expression of gene transcripts in the QTL
regions
The previously generated Illumina RNA-sequencing data
[43] was used to determine the variations in transcript
abundance between nitrogen use inefficient (CK60)
and efficient (China17) genotypes of sorghum. False
discovery rate (FDR) ≤ 0.001 and the absolute value of
|log2 -Ratio| ≥ 1 were used as thresholds to judge the
significance of differences in transcript abundance of
the same gene between two genotypes. Pair-wise com-
parison of the transcriptomes of CK60 and China17
seedling root tissues grown under N-stress revealed a
total of 726 DEGs detected using v1.4 sorghum gen-
ome (Additional file 3). The sequences of all these
DEGs compared to v2.1 sorghum genome and respect-
ive gene IDs were listed in Additional file 3. In
addition, compared the sequences of polymorphic
SNPs between CK60 and China17 to the sequences of
DEG transcripts, and differential expression levels
were listed in Additional file 2.
Out of 726 DGE transcripts observed between CK60

and China17 (Additional file 3), 108 DEGs were located
in the vicinity of the QTL confidence intervals on
chromosome 1, 6, 7, 8, and 9 (Additional file 3) and
some of those were listed in Table 6. The QTL interval

Table 4 QTLs detected for 11 traits using the SNP linkage map across two normal N conditions

Trait QTL Chr Position (cM) Flanking marker Interval (cM)a LOD score Additiveb R2 (%)c

Chl-1 qChl1-7 7 97.8 S7_60490830 - S7_60947414 91.1–106.6 2.76 1.18 7.1

Chl-2 qChl2-9a 9 167.4 S9_45363122 - S9_58417131 159.9–174.4 10.2 3.20 50.8

Chl-3 qChl3-1 1 157.6 S1_50614823-S1_50837764 147.6–168.1 3.72 2.77 8.10

qChl3-9 9 169.4 S9_45363122 - S9_58417132 163.6–182.6 2.64 2.13 11.8

PH qPH-9 9 171.4 S9_45363122 - S9_58417133 165.8–177.2 4.33 −39.8 44.2

AD qAD-1 1 213.9 S1_61836509 – S1_62490042 208.7–218.3 5.15 3.6 16

MC1 qMC1-6a 6 45.6 S6_48858797 - S6_49609588 44–46.8 13.5 2.39 29.1

qMC1-6b 6 54.6 S6_52982294 - S6_54274803 49.3–61.9 4.84 1.47 16.2

MC2 qMC2-1 1 203 S1_55726325 - S1_57821154 191.3–210.9 4.57 2.70 15.3

qMC2-6 6 91.6 S6_57001245 - S6_57540748 88.8–95.5 3.19 1.96 8.56

BY qBY-1 1 204 S1_55726325 - S1_57821154 197.3–220.9 2.60 −1.82 10.8

qBY-9 9 167.4 S9_45363122 - S9_58417134 157.6–177.7 5.34 −2.41 33.8

GY qGY-1a 1 28.3 S1_2983876 - S1_3356469 16.7–32.3 3.84 0.52 9.84

qGY-1b 1 223 S1_64266923 - S1_71768492 215.9–232.7 3.59 0.92 17.3

qGY-9 9 161.4 S9_45363122 - S9_58417134 157.6–170.9 4.82 −0.67 17.6

TW qTW-5 5 22 S5_44956096 - S5_45759643 20–23.1 4.51 1.72 15.0

GS qGS-1a 1 190 S1_54743129 - S1_54776428 173.1–206.4 3.30 −0.06 11.3

qGS-8 8 56.5 S8_398073 - S8_5494183 49.6–63.3 3.84 −0.09 17.6

Chlorophyll contents at vegetative stage (Chl1), at anthesis (Chl2), and at maturity (Chl3); PH, plant height (cm)
AD, days to anthesis; MC1, % stover moisture content; MC2, % head moisture content; BY, biomass yield (t.ha−1)
GY, grain yield (t.ha−1); TW, test weight (g); GS, grain/stover ratio (%). a2.0-LOD drop support interval of the QTL; bAdditive effect: positive values of the additive
effect indicate that alleles from CK60 were in the direction of increasing the trait score and vice versa; c Percentage of phenotypic variation explained by the QTL.
The SNP underlined is the corresponding SNP of QTL
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on chromosome 1 has 40 DEGs and chromosome 9 has
28 DEGs. Gene transcripts related to nitrogen metabol-
ism (Ferredoxin-nitrate reductase), glycolysis (Phospho-
fructo-2-kinase), seed storage proteins, plant hormone
metabolism (Gibberellin receptor GID1L2, Auxin re-
sponse factor 2) were differentially expressed between
CK60 and China17. The majority of these gene tran-
scripts were expressed higher in CK60 than China17
under N-stress conditions in the seedling stage. For ex-
ample, transcripts of Frigida, Auxin response factor 2
and translation elongation factor expressed six-fold
higher in CK60 than China17. In contrast, magnesium
transporter6, HSP21 and senescence associated protein
were expressed higher in China17. A ferredoxin-nitrite
reductase gene transcript which had higher expression
in China17, coincided with the pleiotropic QTL region
on chromosome 9.

Discussion
Trait variation in the mapping population under different
N regimes
The RILs showed transgressive segregation for all the
traits measured and in most cases, the mean value of the

traits was intermediate between the parental lines, CK60
and China17 (Tables 1 and 2), suggesting a polygenic in-
heritance of the traits. Transgressive segregation can be
caused by both parental lines contributing favorable or
unfavorable alleles for a particular trait and is common
in inbred populations [55]. In both N conditions, the
genetic variance was greater than genotype by environment
interaction variance for all the traits (Tables 1 and 2). This
finding is in agreement with earlier studies [56]. The more
marked contribution of genetic variance to trait determin-
ation suggests the opportunity for more robust detection of
QTLs that govern nitrogen use efficiency [14]. Here, for
both parental lines and RILs marked reductions were ob-
served in mean values for chlorophyll contents measured at
three different stages, plant height, biomass and grain yield
traits grown under LN compared to NN. In maize, a 38 %
reduction in grain yield was observed in plants grown
under low-N compared to high-N conditions [14]. This de-
crease was caused by a significant reduction in kernel num-
ber, but has little effect on kernel size. Kernel number is
very susceptible to N-stress because ovules are susceptible
to abortion soon after fertilization [57], a possible result of
limitation in supply of photosynthetic products [58].

Table 5 QTLs detected for 11 traits using the SNP linkage map across two low-N conditions

Trait QTL Chr Position (cM) Flanking marker Interval (cM)a LOD score Additiveb R2 (%)c

Chl-2 qChl2-1 1 211 S1_61786623 - S1_61836509 208.1–217.7 3.28 −1.26 8.69

qChl2-9b 9 136 S9_55230722 - S9_56646280 126.1–142.2 3.07 1.25 8.49

Chl-3 qChl3-1 1 157.8 S1_50614823 - S1_50837764 150.6–178.1 3.29 1.79 10.1

qChl3-7 7 87.7 S7_57772979 - S7_60426792 85.9–97.8 4.57 2.71 14.2

PH qPH-6 6 30.8 S6_41970042 - S6_43222258 28.9–34.8 5.30 −16.4 13.2

AD qAD-1 1 210.8 S1_61709596- S1_61786623 206.5–218.1 5.15 3.63 16.7

qAD-9a 9 159.4 S9_45363122 - S9_58417131 148.8–176 3.29 −3.00 16.4

MC1 qMC1-1 1 211 S1_61786623 - S1_61836509 208.1–217.7 3.14 1.44 10.0

qMC1-6b 6 54.6 S6_52982294 - S6_54274803 49.3–61.9 2.69 1.14 6.97

MC2 qMC2-1a 1 203 S1_55726325 - S1_57821154 201.3–220.9 4.74 4.74 16.4

qMC2-1b 1 209.4 S1_59080688- S1_59595161 198.2–219.4 8.10 4.44 20.3

BY qBY-5 5 20 S5_44956096 - S5_45759643 14.5–28.4 2.95 0.72 9.04

qBY-7 7 85.9 S7_57557894 - S7_57772979 79.3–95.1 3.86 −1.01 12.5

GY qGY-5 5 78.6 S5_59373257 - S5_59373316 75.3–82.2 3.22 0.37 10.8

qGY-6a 6 15.8 S6_3799293 - S6_8141493 12.7–17.8 3.06 −0.25 9.83

qGY-6b 6 22.3 S6_13884102 - S6_37768125 20.6–25.6 3.03 −0.38 11.0

qGY-6c 6 30.8 S6_41970042 - S6_43222258 28.9–34.8 2.73 −0.23 8.00

TW qTW-1 1 209.4 S1_59595161- S1_61709496 201.3–220.9 5.79 −1.79 17.9

GS qGS-1b 1 212.7 S1_61786623 - S1_61836509 204.1–219.7 4.67 −0.08 14.4

qGS-5 5 78.6 S5_59373257 - S5_59373316 76.2–80.1 5.30 0.07 14.6

Chlorophyll contents at vegetative stage (Chl1), at anthesis (Chl2), and at maturity (Chl3); PH, plant height (cm); AD, days to anthesis; MC1, % stover moisture
content; MC2, % head moisture content; BY, biomass yield (t.ha−1); GY, grain yield (t.ha−1); TW, test weight (g); GS, grain/stover ratio (%). a2.0-LOD drop support
interval of the QTL; bAdditive effect: positive values of the additive effect indicate that alleles from Ck60 were in the direction of increasing the trait score and vice
versa; c Percentage of phenotypic variation explained by the QTL. The SNP underlined is the corresponding SNP of QTL
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Table 6 Differential expression of gene transcripts associated with QTLs detected using RNA-seq

Gene id
(v1.4)

Chr Start (bp) logFC Annoatation Low N QTLs Normal N QTLs

Sb01g032875 1 55828932 6.3 Translation elongation factor EF1B qMC2-1a qMC2-1, qBY-1

Sb01g032880 1 55840286 4 SPX domain-3 qMC2-1a qMC2-1, qBY-1

Sb01g032920 1 55885605 6.84 Frigida putative expressed qMC2-1a qMC2-1, qBY-1

Sb01g033010 1 56047918 9.1 Retrotransposon protein, qMC2-1a qMC2-1, qBY-1

Sb01g033090 1 56202769 3.98 Mannose-binding lectin superfamily qMC2-1a qMC2-1, qBY-1

Sb01g033360 1 56595053 −5.2 Acetoacetyl-CoA thiolase 2 qMC2-1a qMC2-1, qBY-1

Sb01g033410 1 56731990 4.27 Cation/carnitine transporter 3 qMC2-1a qMC2-1, qBY-1

Sb01g033620 1 56944250 2.77 Metacaspase 1 qMC2-1a qMC2-1, qBY-1

Sb01g034190 1 57636134 2.49 O-Glycosyl hydrolases qMC2-1a qMC2-1, qBY-1

Sb01g035910 1 59529076 9.28 Glutathione S-transferase qMC2-1b

Sb01g036330 1 59936853 −3.38 Ribosomal protein L16p/L10e family qTW1

Sb01g036790 1 60395728 2.56 Late embryogenesis abundant protein 1 qTW1

Sb01g037480 1 61031332 4.1 Nicotianamine synthase 4 qTW1

Sb01g038720 1 62214256 −7.69 LHT1 lysine histidine transporter 1 qAD-1

Sb01g041180 1 64497962 −3.32 HSP21 Heat shock protein 21 qGY-1b

Sb01g041350 1 64653444 2.63 Subtilisin-like serine protease 2 qGY-1b

Sb01g041390 1 64692370 −2.39 Senescence associated protein qGY-1b

Sb01g041640 1 64933485 2.04 Oxidoreductase superfamily protein qGY-1b

Sb01g041810 1 65045823 3.75 STRUBBELIG-RECEPTOR FAMILY 7 qGY-1b

Sb01g042500 1 65775142 1.99 Caleosin-related family protein qGY-1b

Sb01g042530 1 65792345 2.89 MA3 domain-containing protein qGY-1b

Sb01g044230 1 67360823 2.26 Polyamine oxidase 1 qGY-1b

Sb01g044810 1 67970813 3.04 MADS-box transcription factor family qGY-1b

Sb01g045620 1 68676107 2.29 Lectin protein kinase family protein qGY-1b

Sb01g047250 1 70350087 2.412 Leucine-rich repeat transmembrane protein kinase qGY-1b

Sb01g047550 1 70645925 2.215 Tetratricopeptide repeat (TPR)-like superfamily protein qGY-1b

Sb01g047650 1 70741548 −3.156 CCT motif family protein qGY-1b

Sb01g047780 1 70919577 −8.348 Magnesium transporter 6 qGY-1b

Sb01g048000 1 71075448 1.861 Glutathione S-transferase qGY-1b

Sb01g048030 1 71101357 3.126 Cytochrome P450, family 78, qGY-1b

Sb01g048100 1 71159986 −4.194 LYM2 lysm domain GPI-anchored protein 2 precursor qGY-1b

Sb01g048640 1 71596638 6.418 Leucine-rich repeat family protein qGY-1b

Sb06g002090 6 3921155 3.276 F-box/RNI-like/FBD-like domains-containing protein qGY-6a

Sb06g002180 6 4089379 −2.511 UDP-glucosyltransferase qGY-6a

Sb06g003180 6 6636307 3.018 CAP (Cysteine-rich secretory proteins qGY-6a

Sb06g005420 6 13588101 6.889 expressed protein

Sb06g006920 6 16373350 −2.546 purple acid phosphatase 27 qGY-6b

Sb06g008990 6 26359064 2.375 Oxidoreductase, zinc-binding dehydrogenase family
protein

qGY-6b

Sb06g010870 6 30379011 3.616 Cytochrome P450, family 71 qGY-6b

Sb06g011767 6 32144416 6.478 auxin response factor 2 qGY-6b

Sb06g011770 6 32145882 6.844 C2H2-like zinc finger protein qGY-6b

Sb06g012040 6 32755618 2.708 Minichromosome maintenance (MCM2/3/5) family
protein

qGY-6b
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Table 6 Differential expression of gene transcripts associated with QTLs detected using RNA-seq (Continued)

Sb06g012280 6 33774679 2.815 UDP-Glycosyltransferase superfamily qGY-6b

Sb06g012290 6 33921889 4.708 Galactose oxidase/kelch repeat superfamily protein qGY-6b

Sb06g014250 6 39313831 4.128 multidrug resistance-associated protein 9 qGY-6b

Sb06g014400 6 39867816 −3.085 HSP70 Heat shock protein 70

Sb06g015520 6 43082617 3.501 B-block binding subunit of TFIIIC qPH-6, qGY-6c

Sb06g016160 6 44576681 2.202 seed storage 2S albumin superfamily qPH-6, qGY-6c

Sb06g016230 6 44708205 2.164 Late embryogenesis abundant hydroxyproline-rich
glycoprotein

qPH-6, qGY-6c

Sb06g016260 6 44735351 2.5 Aluminium activated malate transporter qPH-6, qGY-6c

Sb06g019470 6 49032854 1.3 Copper transport protein family qMC1-6a

Sb06g019600 6 49168975 4.279 Cytochrome P450 superfamily protein qMC1-6a

Sb06g019610 6 49174004 2.452 phosphofructokinase 2 qMC1-6a

Sb06g024400 6 53535970 1.683 NUDIX family, domain containing protein qMC1-6b qMC1-6b

Sb06g024590 6 53686490 1.958 tonoplast intrinsic protein qMC1-6b qMC1-6b

Sb06g024650 6 53730735 4.367 expansin B2 qMC1-6b qMC1-6b

Sb06g025220 6 54190773 −2.114 calcium-dependent protein kinase 29 qMC1-6b qMC1-6b

Sb06g025250 6 54207289 2.782 Prolyl oligopeptidase family protein qMC1-6b qMC1-6b

Sb06g025330 6 54262137 2.362 expressed protein qMC1-6b qMC1-6b

Sb06g028210 6 57045616 2.252 Terpenoid cyclases/Protein prenyltransferases superfamily
protein

qMC2-6

Sb06g028480 6 57260405 2.019 unknown qMC2-6

Sb06g028760 6 57496434 1.729 Leucine-rich receptor-like protein kinase qMC2-6

Sb07g022670 7 57311597 2.956 Glutamate decarboxylase qChl3-7, qBY-7

Sb07g022800 7 57514740 2.625 aspartyl protease family protein qChl3-7, qBY-7

Sb07g023140 7 57977647 4.794 Gibberellin receptor GID1L2 qChl3-7, qBY-7

Sb07g023220 7 58087984 −3.707 phospholipase A qChl3-7

Sb07g023300 7 58178273 2.495 expressed protein qChl3-7

Sb07g023770 7 58722654 11.097 rotamase qChl3-7

Sb07g024200 7 59189842 −7.492 Ribosomal protein L1p/L10e family qChl3-7

Sb07g025190 7 60212195 4.048 MATE efflux family protein qChl3-7

Sb07g025240 7 60280418 −2.248 hydroxymethylglutaryl-CoA synthase qChl3-7

Sb07g025843 7 60959427 2.544 ethylene-responsive transcription factor ERF114, putative,
expressed

qChl1-7

Sb08g000550 8 482761 −2.111 ferritin-1, chloroplast precursor qGS-8

Sb08g002590 8 2673615 −2.004 WRKY DNA-binding protein 55 qGS-8

Sb08g002660 8 2779571 2.726 Protease inhibitor/seed storage/LTP qGS-8

Sb08g003170 8 3513569 3.001 Chalcone and stilbene synthase family qGS-8

Sb08g003820 8 4423015 −3.008 zinc finger superfamily protein qGS-8

Sb08g004500 8 5410066 −2.127 fructose-bisphosphate aldolase 2 qGS-8

Sb09g018440 9 46098300 6.288 methyl esterase 3 qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g020000 9 49032969 8.222 inosine-uridine preferring nucleoside hydrolase family
protein

qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g020240 9 49471823 3.041 Major facilitator superfamily protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g021016 9 50446536 3.241 ethylene-responsive transcription factor qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9
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Comparison of QTL regions under contrasting N
environments
In this study, a total of 38 QTLs were identified using a
SNP based genetic map in the RIL mapping population
tested under two different nitrogen levels. However, al-
most half of these QTLs were detected under one N
level, indicating that these traits were controlled by dif-
ferent genes under different N conditions. Major QTLs
detected across two normal and two low-N environ-
ments were considered as consistent across environ-
ments. However, five QTLs for four morphological traits
were detected consistently under both N conditions.
These included, one QTL each for chlorophyll at matur-
ity, day to anthesis and stover moisture content and two
QTLs for head moisture content. For all these QTLs,

the CK60 alleles increased chlorophyll content, delayed
flowering, and increased stover and head moisture
contents under NN and LN. This indicates that these
traits shared a similar genetic basis under different N
conditions.

Co-localization of QTLs between traits and associated
differentially expressed gene transcripts
Co-localization may suggest pleiotropy whereby a gen-
omic region contains genes that affect a number of traits
[59]. In this study, co-localized QTLs affecting different
traits were detected on chromosomes 1, 5, 6, 7, and 9
(Fig. 1). For example, the support intervals of ten QTLs
explaining 8.1 to 20.3 % of phenotypic variation for eight
traits were overlapping in the distal end of chromosome 1.

Table 6 Differential expression of gene transcripts associated with QTLs detected using RNA-seq (Continued)

Sb09g021250 9 50714173 2.158 alpha/beta-Hydrolases superfamily protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g021490 9 50944384 4.533 Subtilase family protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g021720 9 51194456 −1.869 histone deacetylase 8 qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g022390 9 52044973 8.308 Ribosomal protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g023150 9 52794183 2.46 ribonuclease P family protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g023320 9 52948577 6.593 Major facilitator superfamily protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g024840 9 54319624 −2.168 ferredoxin–nitrite reductase qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g025530 9 55006797 2.719 O-methyltransferase family protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g025540 9 55018768 2.155 O-methyltransferase family protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g025730 9 55141225 3.406 non-symbiotic hemoglobin 2 qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g025900 9 55284480 −2.24 HSP101 Heat shock protein 101 qAD-9a,
qChl2-9b

qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g026590 9 55803666 1.86 RING/U-box superfamily protein qAD-9a,
qChl2-9b

qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g027380 9 56449825 −2.508 serine/threonine-protein kinase SNT7, chloroplast
precursor

qAD-9a,
qChl2-9b

qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g027470 9 56561299 7.612 Disease resistance protein qAD-9a,
qChl2-9b

qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g027590 9 56662520 2.783 seed storage 2S albumin superfamily qAD-9a,
qChl2-9b

qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g028890 9 57684814 2.326 Iron-sulfur cluster, SufE/NifU family protein qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g028960 9 57721281 3.573 ribosomal protein L13 qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Sb09g029540 9 58186320 5.903 AMP-dependent synthetase qAD-9a qGY-9, qChl2-9a, qBY-9, qChl3-9,
qPH-9

Chr, chromosome number; log2 ratio; number of folds the gene transcript is differentially expressed in RNA-seq. Log2 ratio >0 indicates, positive values indicates
gene transcript expressed high in CK60. ns, indicate the transcript is not differentially expressed between CK60 and china17
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Of the ten QTLs detected, two QTLs are for grain mois-
ture content, one QTL each for test weight, chlorophyll
content at anthesis, stover moisture content and grain/
stover ratio detected under LN conditions, biomass
yield under NN and for days to anthesis detected under
NN and LN conditions. An additive effect from CK60
increased days to anthesis (delayed flowering), stover
and head moisture content and grain yield. These traits
were highly correlated (Table 3) and the correlations
resulted in co-localization. Within this co-localized re-
gion, QTLs for green leaf area at maturity [60], days to
anthesis [60, 61] fresh panicle weight, plant height [59,
62], and panicle architecture [63] were reported earlier.
Stay green QTLs and the Ma3 gene encoding phyto-
chrome B, which is involved in photoperiod sensitivity
[64], were also reported in this region.
In this co-localized region containing ten QTLs, RNA-

seq detected 19 differentially expressed gene transcripts
between CK60 and China17, of which only six DEGs
had higher expression in China17 (Table 6). Some of
these DEGs including SPX domain-3, Frigida, late em-
bryogenesis abundant protein 1 (LEA) were expressed
higher in CK60, and lysine histidine transporter 1
(LHT1) had higher expression in China17. An SPX do-
main gene-3 was reported to be up-regulated and plays
an important role in plant adaptation to phosphate star-
vation [65]. This region containing a major QTL for days
to anthesis, was detected under both N conditions
explaining 16 % of phenotypic variation. The CK60 allele
contributed to flowering delay by three days. This region
contained the flowering time gene transcript, Frigida,
Which showed more abundant expression in CK60. It
was reported earlier that ethylene insensitive 3-Like 1
(EIL-1), key regulator of ethylene biosynthesis, underlies
the QTL cluster for days to anthesis, and green leaf area
at maturity [60]. However, this gene is not differentially
expressed in the root tissues of young seedlings in our
RNA-seq analysis (not listed in Table 6). Together, these
data suggest that high expression levels of the Frigida
gene may contribute to the delayed flowering in CK60,
but this is not the only gene influencing this phenotype.
Similarly another DEG transcript, LEA had two-fold
higher expression in CK60 under N-stress condition.
Transgenic expression of a barley LEA protein in rice re-
sulted in increased growth rate of transgenic plants than
non-transformed plants under stress conditions [66].
Thus, LEA proteins play an important role in protection
of plants under stress, a potential tool for genetic im-
provement towards stress tolerance. In contrast, a DEG
transcript encoding high affinity amino acid transporter,
lysine histidine transporter (LHT1), was massively
expressed in China17 compared CK60 (Table 6). It was
reported that being expressed in the root, LHT1 is re-
sponsible for uptake of amino acids from soil into root

tissue [67], and distributes from roots to shoots through
xylem [68] for further metabolism especially under N-
stress conditions. The amino acid uptake, and thus ni-
trogen use efficiency could be higher with increased
LHT1 expression under limited inorganic N supply.
A QTL for grain yield is located on distal end of

chromosome 1. In this region QTLs for kernel weight
[69], maturity [60], number of kernels/panicle and pan-
icle length [70] and panicle architecture [71] were re-
ported earlier. In this region, our RNA seq data detected
20 DEG transcripts including caleosin-related (Ca+2

binding) protein, a MADS-box transcription factor, poly-
amine oxidase 1 were expressed higher in CK60. Gene
transcripts for magnesium transporter 6, a heat shock
protein (HSP21) and senescence associated protein were
more abundant in China17 (Table 6). Polyamines (PAs)
and ethylene are endogenous plant growth regulators
mediating many physiological processes such as growth,
senescence, and responses to environmental stresses
[72]. High levels of PAs were reported to be associated
with higher kernel set and better seed development in
maize [73] and increased grain-filling rates in rice [74].
On chromosome 5, QTLs for biomass yield detected
under LN and test weight under NN are co-localized
(Fig. 1). For these QTLs, the positive allele from China17
increased biomass yield by 1.0 t.ha−1 under LN condi-
tions. In this co-localized region, QTLs for stay green
[75, 76], fresh panicle weight and plant height [62] were
detected earlier. In this region, RNA seq didn’t detect
any significant DEG transcripts between Ck60 and
China17.
On chromosome 6, co-localization was observed be-

tween major QTLs for plant height and grain yield
under LN conditions. For these QTLs, the positive allele
from China17 increased plant height by 16.4 cm as well
as grain yield. In this region, QTLs for culm height and
kernel weight [61], maturity and total dry matter [59],
panicle architecture [63] and a major photoperiod sensi-
tivity locus, Ma1 [77, 78] were reported earlier. Also, a
major QTL for plant height, QPhe-sbi06-1, conditioned
by the Dw2 gene was detected earlier by [60], and
showed pleiotropic effects on panicle length, yield, and
seed weight [79]. Transcriptome comparison showed
that a Dw2 transcript encoding a multidrug resistance-
associated protein 9 homolog showed higher expression
levels in CK60, which may be involved in regulating
plant height under N-stress in the seedlings (Table 6). In
addition, RNA-seq found several differentially abundant
gene transcripts in this co-localized region, including
auxin response factor 2, seed storage 2S albumin,
aluminum activated malate transporter, copper trans-
porter and phosphofructokinase 2, all of which were
expressed higher in CK60 and HSP70 was expressed
higher in China17. Phosphofructo-2-kinase is the
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principle enzyme regulating the entry of metabolites into
glycolysis [80] through conversion of fructose-6-
phosphate to fructose-1,6-bisphosphate. This results in
an increase of hexose phosphate, supplying more energy
and substrates that are necessary for strong seedling de-
velopment. It would be of interest to see whether differ-
ential expression of these transcripts holds true with the
adult tissues and use them in marker assisted selection
to regulate the pleotropic regions under LN conditions.
On chromosome 7, QTLs for biomass yield, chloro-

phyll content at vegetative and maturity were co-
localized. For these QTLs, the positive allele from
China17 increased biomass yield by 1.0 t.ha−1 under LN
conditions. In this region, QTLs for fresh total biomass
yield and dry total biomass yield was reported by Murray
et al. [81]. In this co-localized region, a major plant
height gene, Dw3 (Sb07g0232730), is located. Dw3 en-
codes a phosphoglycoprotein auxin efflux carrier ortho-
logous to PGP1 in Arabidopsis [82]. QTL for panicle
architecture [61, 69], total biomass yield t.ha−1 [81] and
plant height [60] were reported earlier. In this region,
RNA seq detected 12 DEG’s between CK60 and China
17 (Table 6). Glutamate decarboxylase, gibberellin recep-
tor GID1L2 and ethylene responsive transcription factor
ERF114 were expressed higher in CK60 and ribosomal
protein L1p/L10e was abundant in China17. Glutamate
decarboxylase (GAD1) was reported to be expressed in
roots and catalyze the synthesis of γ-aminobutyric acid
(GABA) under heat stress, disruption of GAD1 gene
prevented accumulation of GABA in roots in response
to heat stress [83].
A co-localized region at the distal end of the chromo-

some 9 contains QTLs for chlorophyll at flowering and
days to anthesis across two LN and chlorophyll at ma-
turity, plant height, biomass and grain yield traits across
two NN. This clustering of QTLs is supported by the
negative correlation observed between the chlorophyll
contents at flowering and maturity, morphological and
yield-related traits. In this region, alleles from China17
increased plant height, biomass and grain yield but
caused negative effects on chlorophyll content at flower-
ing and maturity. QTLs for stay green [76, 84], total seed
weight [63], plant height [62], maturity [61, 78] were re-
ported previously in this region. Moreover, a QTL inter-
val for plant height (Sb-HT9.1) was fine mapped to
~100 kb region through association mapping [85], Dw3
and Sb-HT9.1 were consistently identified as two of the
most important plant height loci in crosses between tall
and dwarf sorghum [69, 78]. Our RNA-seq data showed
that this region contains 28 DEG transcripts including
those encoding ferredoxin-nitrite reductase (FNR),
chloroplast localized serine/threonine-protein kinase,
and a SufE/NifU family protein. FNR gene transcripts
were highly expressed in China17 root tissues compared

to CK60. In general nitrate is absorbed from soil, reduced
to nitrite and then to ammonia by FNR in the plastids of
root cells. The ammonia produced is incorporated into
amino acids via the glutamine synthetase-glutamate syn-
thase (GS-GOGAT) pathway. This region of chromosome
9 harbors the highly expressed gene encoding NADH-
GOGAT and a glutamine-rich protein. However, these
genes are not differentially expressed between the root tis-
sues of CK60 and China17 according to RNA-seq data.
Further, it would be important to check whether the ex-
pression levels of NADH-GOGAT between China17 and
CK60 are changed in the shoots because most of the nitro-
gen assimilation takes place in shoots rather than root tis-
sues. Transgenic over-expression of NADH-GOGAT in
rice resulted in an increase in grain weight, indicating that
NADH-GOGAT is indeed a key enzyme in nitrogen
utilization and grain filling in rice [86]. In wheat, Quraishi
et al. [25] validated the NUE QTL on chromosome-3B, and
proposed that a GOGAT gene is conserved structurally and
functionally at orthologous positions in rice, sorghum and
maize genomes and that this gene likely contributes signifi-
cantly to NUE in wheat and other cereals. It will be of inter-
est to determine if breeding that allows for higher
expression of FNR and GOGAT can increase biomass and
grain yield by increasing nitrate assimilation and ammo-
nium production.

Conclusion
QTLs detected for the different agronomic traits in the
same genomic regions were consistent with previous
QTL mapping studies conducted in diverse genetic and
environmental backgrounds in sorghum. RNA-seq ana-
lyses detected differential expression of gene transcripts
in the pleiotropic QTLs related to nitrogen uptake and
metabolism and their expression levels were influenced
by the availability of nitrogen. These potential DEG tran-
scripts can possibly be used for improving sorghum
performance through marker-assisted selection (MAS)
strategies under N-stress conditions by further valid-
ation in other mapping populations. The markers and
genes reported in this study will have applications in
QTL mapping studies, diversity studies, and associ-
ation mapping studies in sorghum and other members
of the Poaceae family collectively aimed at improving
nitrogen utilization.
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