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Aeolian cliff-top deposits and buried soils
in the White River Badlands, South
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Abstract: Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-
environmental records. Although there are extensive studies on loess and dune records in the region, little is
known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River
Badlands. These sediments typically have loam and sandy-loam textures with dominantly very � ne sand,
0.5–1% organic carbon and 0.5–5% CaCO3. Some of these aeolian deposits are atypically coarse and contain
granules and � ne pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C
pro� les. Beneath these are buried soils with varying degrees of pedogenic development formed in � uvial,
aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from
several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is
cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically
7900 but as old as 10000 14C yrs BP) at higher elevation (|950 m) tables, and late-Holocene (2900 14C yrs
BP) at lower (|830 m) tables. These age estimates are based on total organic matter 14C ages from the top
5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing
14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits
on the Great Plains, and they are another source of palaeoenvironmental data.

Key words: Aeolian, buried soil, cliff-top deposits, South Dakota, badlands, mesa, Great Plains, Holocene.

Introduction

Late-Quaternary aeolian deposits cover much of the semi-arid
North American Great Plains (Thorp and Smith, 1952; Forman
et al., 2001; Muhs and Zárate, 2001). The processes responsible
for these terrestrial sediments are very sensitive to climate and
consequently provide information on Holocene and Pleistocene
palaeoenvironments (e.g., Ahlbrandt et al., 1983; Gaylord, 1990;
Muhs and Maat, 1993; Madole, 1994; 1995; Holliday, 1995; 1997;
2001; Loope et al., 1995; Muhs and Holliday, 1995; 2001; Muhs
et al., 1996; 1997a; 1997b; 1999a; 1999b; Mason et al., 1997;
Stokes and Swinehart, 1997; Wolfe, 1997; Swinehart, 1998;
Arbogast and Johnson, 1998; Woodhouse and Overpeck, 1998;
Wolfe and Lemming, 1999; Loope and Swinehart, 2000; Wolfe
et al., 2000; Forman et al., 2001; Muhs and Zárate, 2001). Based
on these studies, it is now believed that Holocene droughts were
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frequent on the Great Plains and the magnitude of these prehis-
toric droughts may have exceeded those historically documented
for the region. However, correlating periods of inferred aridity
between subregions (i.e., between individual dune� elds) remains
problematic (Muhs and Wolfe, 1999; Forman et al., 2001). The
apparent lack of regional synchrony has three potential
explanations that are not mutually exclusive: (1) real subregional
variability in climate; (2) non-climatic events re� ected in the aeol-
ian geomorphic record; or (3) poor resolution in numerical chron-
ology. This last explanation is due largely to a reliance on soil
organic matter derived radiocarbon ages with poor resolution and
large uncertainties.

We studied soil stratigraphy and developed a chronology from
seven sections in aeolian cliff-top (ACT) deposits in South Dak-
ota. These results are part of a larger project that includes study
of a variety of Quaternary aeolian deposits in the White River
Badlands. ACT deposits are narrow mantles of sediment that thin
rapidly away from escarpment crests (Sharp, 1949; Wilson, 1989;
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Pye and Tsoar, 1990; Hetu, 1992; Begin et al., 1995; David,
1995). Unvegetated escarpment faces typically serve as a local
sediment source for ACT deposits (Wilson, 1989; Hetu, 1992;
Begin et al., 1995; David, 1995), and processes contributing to
the formation of ACT deposits are well documented. According
to wind-tunnel investigations by Bowen and Lindsey (1977), as
air passes over an escarpment its velocity increases and may be
almost twice the original velocity at the crest. Flow separation
takes place immediately beyond the crest and any sediments
entrained during the acceleration are deposited. Based on research
in southwestern Saskatchewan, David (1995) suggested that ACT
sediment is derived from colluvium that forms on the slopes dur-
ing dry periods. Soils form in the ACT deposits during moister
periods when spring rains wash the source sediment completely
downslope. Hetu (1992) further suggested that these processes are
a signi� cant component of bluff erosion, that infrequent high-
magnitude storms may entrain 165 g material, and that the poor
sorting typical of ACT deposits results from variable wind-gust
speeds and the deposition of sediments on snow (nivation).

Previous studies have noted the presence of ACT deposits in
the White River Badlands of South Dakota (White, 1960;
Harksen, 1967; 1968; Harksen and Macdonald, 1969). Harksen
(1967) was among the � rst to conduct detailed studies of aeolian
deposits on upland surfaces in the badlands. Although his interest
was drawn primarily to older aeolian deposits, which he formally
named the Red Dog Loess (Harksen, 1968), he did document the
presence of younger aeolian deposits, including ACT deposits.
Harksen (1968) and Briggs (1974) suggested the soil at the base
of these deposits correlated with the Sangamon Geosol that is
widely preserved in the North American midcontinent.

In an earlier paper, White (1960) argued that the ACT deposits
and multiple buried soils observed in upland situations in the bad-
lands were Holocene, based on the presence of archaeologicalevi-
dence within the buried soils of the ACT deposits. White (1960)
also recognized the potential palaeoenvironmental signi� cance of
the ACT record and hypothesized that periods of buried soil
formation represented relatively mesic climatic conditions. In con-
trast, he thought that periods of more active aeolian accumulation
correlated with relatively xeric conditions. White (1960) further
suggested that a regional correlation of these postglacial aeolian
deposits might be possible. In this paper, we test the hypotheses
of previous workers who have studied ACT deposits in the White
River Badlands. Detailed stratigraphic, pedologic and geochronol-
ogic investigations allow us to infer the timing of aeolian activity
in this area and compare the chronology to others in the Great
Plains.

Study area

The study area is located in the White River Badlands of South
Dakota, USA, and includes Badlands National Park and Buffalo
Gap National Grassland (Figure 1). The White River Badlands
area is well known for Tertiary mammalian fauna and has been
investigated by geologists since the mid-nineteenth century (see
Macdonald, 1951, for a review of that literature). However, with
the exception of some modern erosion-rate studies (Schumm,
1956; Hadley and Schumm, 1961), little work exists on the Holo-
cene stratigraphy or geomorphology of the area. ACT deposits
occur at approximately two elevations: a parabolic dune-covered
surface at 830 m elevation, which is the inter� uve between
tributaries of the White River, and a surface at 950 m elevation
covered by � uvial deposits, parabolic dunes and loess. This latter
surface is the inter� uve between the White and Cheyenne Rivers
(Figure 1).

The study area lies within the heart of the semi-arid mixed-
grass ecosystem of the Great Plains. Average annual precipitation

is approximately 400 mm, over half of which falls during the
spring and early summer. Annual average temperature for the area
is 10.3°C, with an average growing-season temperature around
20°C (Owenby and Ezell, 1992). Climate, constrained by local
edaphic conditions, results in the mixed-grassland cover domi-
nated by western wheatgrass (Agropyron smithii), needle grasses
(Stipa spp.), grama grasses (Bouteloua spp.) and buffalo grass
(Buchloë dactyloides) (Küchler, 1964).

Methods

ACT deposits were studied at seven natural exposures along table
edges at Norbeck Pass (|850 m), Bouquet Table (|830 m), Cuny
Table (|950 m) and Sheep Mountain Table (|950 m). Soils and
sediments were described and sampled for characterization fol-
lowing methods outlined in Catt (1990) and Birkeland (1999).
Laboratory characterizationsinclude determination of particle-size
distribution by the hydrometer method and sieving of the sand
fraction (Gee and Bauder, 1986), organic carbon content by the
dichromate method (Allison, 1965; Janitsky, 1986), and total car-
bonate content with a Chittick apparatus (Machette, 1986).

This study relies on total soil organic carbon ages because mac-
rofossils are rarely preserved in Great Plains aeolian sediments.
Organic carbon is commonly dated from buried soils in Great
Plains aeolian deposits and typically yields results that are strati-
graphically consistent and in good agreement with ages from other
material (e.g. charcoal 14C ages or luminescence ages) (Haas
et al., 1986; Martin and Johnson, 1995; Holliday, 2001). These
soils tend to be slightly carcareous and are not as problematic as
ages from soils where podzolization is a dominant pedogenic
process (Matthews, 1980; Geyh and Roeschmann, 1983). How-
ever, different organic fractions from the same soil may yield ages
that vary by as much as 1000 years (Martin and Johnson, 1995)
and have a natural age/depth gradient as much as 700 years per
cm (Matthews, 1981). As Catt (1990) notes, soil 14C ages indicate
apparent mean residence times of the organic matter contained
within them, and, assuming no contamination, provide a
maximum age for overlying deposits and a minimum age for
underlying deposits.

The upper 5 cm of buried A-horizons were collected for radio-
carbon dating from natural exposures that were cleaned at least
0.5 m into the exposed face, and were then pretreated following
Johnson and Valastro (1994) to minimize contamination. Pretreat-
ment included removal of any modern rootlets with a 53 mm
sieve, removal of the sand fraction to concentrate organic matter
and removal of CaCO3 with 2 N HCl. Radiocarbon ages were
determined at the Illinois State Geological Survey (ISGS) by the
liquid scintillation counting method, the INSTAAR AMS Radi-
ocarbon Preparation and Research Laboratory (NSRL) and the
NSF Arizona AMS Laboratory (AA). Radiocarbon ages are cor-
rected for d13C fractionation and are reported in 14C yr BP. Cali-
brated ages are presented in Table 1 and, because soils form over
a period of time and do not yield a discrete age but rather an
integration of all the organic matter that has accumulated and been
mixed by various pedoturbations,calendar age ranges are reported
at two standard deviations. Calibrated ages were determined using
the CALIB 4.3 program (Stuiver and Reimer, 1993).

Luminescence analysis was performed at the US Geological
Survey Luminescence Laboratory in Denver, Colorado, with Day-
break Thermoluminescence (TL) systems using Schott BG-39 and
Kopp 7–59 as well as a Pyrex window for � lters under the photo-
multiplier tube for infrared stimulated (IRSL) analysis. IRSL and
TL techniques were applied to the same aliquots. IRSL is meas-
ured on multiple aliquots using natural sunlight in Denver Color-
ado as a bleach.

The dose delivered to the samples comes from 40K, mainly
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Figure 1 Locations of the study area within South Dakota (inset) and the sampled ACT deposit sections: (1) Norbeck Pass; (2) Bouquet Table; (3) Sheep
Mountain Table; (4) Cuny Table Nellie sections; (5) Cuny Table Frieda section.

from alpha, beta and gamma radiation emitted by 238U/234U and
232Th and their daughter products in the sediment matrix. Cosmic-
ray contributions accounted for 2.5–3.25% of the dose for the
sample. These contributions were obtained via calculation of
present depth, elevation and latitude of the sample using tables
from Prescott and Stephan (1982). Concentrations of K, U and
Th were determined by instrumental neutron activation analyses
(INAA). Gamma-ray spectrometry also allows the calculation of
U and Th concentrations by measurement of activities of late
daughters in the chain. Gamma-ray spectrometry is then used to
obtain limits or measures of the possible extent of any radioactive
disequilibrium in the U and Th decay chains when compared
against the INAA analyses, and to allow for heterogeneity in the
sediment matrix. These analyses are used for quality control only,
and the dose rate was calculated from the INAA values. The water
contents used for the dose-rate calculations were the � eld values,
with an uncertainty that should encompass the extremes at 6 2s.

Stratigraphy

All sections examined contain buried soils formed in � uvial, aeol-
ian or colluvial sediments that are overlain by ACT deposits.
These lowest-buried soils are typically |7900 14C yrs BP at
higher-elevation tables, and |2900 14C yrs BP at lower tables
(Figure 2). ACT sediments typically have loam and sandy-loam
textures with dominantly very � ne sand, 0.5–1% organic carbon
and 0.5–5% CaCO3. Sand ranges from 32 to 85%, and occasional
(,1%) pebbles occur where coarse grains are located downslope
and are hence available for transport by wind gusts. However,
some ACT deposits on Cuny Table contain over 50% pebbles
above the shallowest, probably late-Holocene, buried soil. Hetu
(1992) also documents ACT deposits that are coarser than typical
aeolian deposits. The ACT deposits are thought to be aeolian
because they are located at cliff edges at the highest point in the
landscape, are restricted to within 10–15 m of cliff edges, and
only contain pebble-size grains where they are exposed lower in
the cliff face (Figure 3). Thickness of the ACT deposits and num-
ber of buried A-C and A-AC-C soils within them vary, although
late-Holocene soils from several localities have average ages of
|1300, |2500 and |3700 14C yrs BP (Figure 2). The 1300 14C
yr BP soil is cumulic, with a thicker and lighter A horizon. Above
the uppermost-buried soils are about 1 m of crudely laminated
ACT deposits. The modern surface is vegetated but there is no A
horizon developed in it.

Sheep Mountain Table (|950 m elevation)
The lowest stratigraphic unit at Sheep Mountain Table (Figure 1)
is 3–4 m of interbedded very � ne sand/coarse silt and silty gravel.
This is overlain by 22 cm of well-sorted � ne loamy sand, then
18 cm of gravelly sandy loam, and then a buried soil with an
ABb4-BCb4 pro� le. The ABb4 horizon has the colour of an A
horizon, but also has a strong subangular blocky structure more
typical of a B horizon, and is developed in clay loam. Several
splits of a sample from this horizon were radiocarbon dated at
different laboratories (Table 1) and range in age from 5850 to
6910 14C yr BP. The bottom of the ABb4 has an age of 7790 6
170 14C yr BP (NSRL-10914). Above this soil is 215 cm of ACT
deposits that have loam textures, 0.4 to 0.8% organic carbon, 0.9
to 5.4% CaCO3, and contain three buried soils with A-C pro� les
(Figure 4; and Table 2). The lowest soil in the ACT deposits has
an age of 3800 6 70 14C yr BP (ISGS-4200), the middle soil has
an age of 2390 6 70 14C yr BP (ISGS-4197), and the uppermost
soil has an age 1310 6 70 14C yr BP (ISGS-4195) from the top
5 cm and 2070 6 70 14C yr BP (ISGS-4196) from the bottom 5
cm. In addition to the soil ages, charcoal was collected at 90 cm
below the surface and has an age of 405 6 150 14C yr BP (NSRL-
10632). Luminescence ages (Table 3) agree well with the soil
radiocarbon ages and are 2680 6 150 (IRSL), 3380 6 210 (TL
total bleach method), and 3130 6 1190 years ago (TL partial
bleach method). These are splits from a sample collected between
the Ab2 (2390 14C yr BP) and Ab3 (3800 14C yr BP) soils.

Cuny Table (|950 m elevation)
Four sections were studied on Cuny Table, here informally
referred to as the Nellie, Nellie West, Nellie East and Frieda sec-
tions. These sections are located on the northeast side of Cuny
Table along its north-facing bluff (Figure 1). The three Nellie sec-
tions are all within 500 m of each other. The lowest-buried soil
at the Nellie section has an Ab4-A/Cb4-Cb4 pro� le, is developed
in aeolian sand and yielded an age of 7910 6 160 14C yr BP
(NSRL-10917). Above this soil is 220 cm of ACT deposits with
sandy loam to clay loam textures, 0.4 to 0.8% organic carbon, 0.9
to 5.4% CaCO3 and three buried soils with Ab-Cb pro� les. The
middle of these has an Ab2-A/Cb2 pro� le and an age of 2540 6

39 14C yr BP (AA-39204). The uppermost-buried soil has a
cumulic A horizon 42 cm thick that is darkest between 20 and 28
cm (10 YR 3/1 versus 10 YR 3/2). The top of cumulic Ab1 has
an age of 1287 6 41 14C yr BP (AA-39205) and the middle darker
zone has an age of 1418 6 38 14C yr BP (AA-39203).

At the Nellie West section the lowest-buried soil is formed in
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Figure 2 Schematic of aeolian cliff-top deposits, buried soils and other Quaternary deposits. Question marks and dashed lines represent inferred relation-
ships. The relationships shown here are based on auger samples at the Nellie section at Cuny Table. Scales are approximate and vary. The arrow in the
inset photograph points to the lowest buried soil at Sheep Mountain Table, above which there are 2 m of ACT deposits.
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Table 2 Luminescence ages of splits from a sample collected at Sheep Mountain Table. The Ab2 (162–167cm) soil above this sample has an age of 2390
6 70 14C yrs BP (ISGS 4197) and the Ab3 (190–195cm) soil below has an age of 3800 6 70 14C yrs BP (ISGS –4200)

Ages K (%) U (ppm) Th (ppm) Elevation (m) Depth (cm) H2O (%) Dose rate

2680 6 150 (IRSL) 2.05 3.04 11.20 945 180 18 4.74
3380 6 210 (TL Total Bleach) 2.05 3.04 11.20 945 180 18 4.74
3130 6 1190 (TL Partial Bleach) 2.05 3.04 11.20 945 180 18 4.74

Table 3 Sediment characteristics of the Sheep Mountain Table section

Sample % % % % % % % % % % % USDA texture
ID Organic C CaCO3 Clay Silt Sand VC C M F VF .2 mm class

0–50 cm C1 0.8 5.4 15 31 54 1 4 14 44 37 0 Sandy loam
50–100 C2 0.6 3.6 15 33 51 0 4 14 49 32 0 Loam

100–147 Cumulic Ab1 0.7 2.6 17 31 51 0 2 10 42 45 0 Loam
that includes 147–152
147–152 Ab1 (darker) 0.8 0.9 19 39 42 0 2 7 42 49 0 Loam
152–162 Cb1 0.7 1.3 19 37 43 0 1 6 33 49 0 Loam
162–180 Ab2 0.7 1.9 20 40 41 0 1 5 41 53 0 Loam
180–190 Cb2 0.5 1.6 21 40 38 0 1 6 36 57 0 Loam
190–205 Ab3 0.6 0.8 22 44 34 0 2 6 37 55 0 Loam
205–215 Cb3 0.5 0.6 23 43 34 1 6 12 34 47 1 Loam
215–220 ABb4 (darker) 0.5 1.3 26 41 33 1 8 14 39 38 1 Loam
215–270 ABb4 0.4 1.8 32 39 30 1 7 17 37 36 3 Clay loam
270–280 BCb4 0.3 6.0 23 32 44 3 12 19 39 27 0 Loam
280–298 Gravel 0.2 5.0 13 15 72 5 14 25 38 19 23 Gravelly sandy

loam
298–320 Sand 0.1 2.3 7 10 83 2 12 21 46 19 5 Loamy sand
320+ Laminated silt/VF 0.1 4.7 11 72 16 0 1 2 10 87 0 Silt loam
Sand (Red Dog Loess?)

VC = 2–1 mm; C = 1–0.5 mm; M = 0.5–0.25 mm; F = 0.25–0.125 mm; VF = 0.125–0.053 mm.

aeolian sand and dates to 7859 6 52 14C yr BP (AA-39202).
Above this are 265 cm of ACT deposits that have sandy loam to
clay loam textures, 0.3 to 0.9% organic carbon and no CaCO3.
There are three buried soils in the ACT deposits. The lowest has
an ABb3 pro� le similar to the ABb4 horizon at Sheep Mountain
Table, and an age of 2547 6 40 14C yr BP (AA-39201). The
middle has a cumulic Ab2 pro� le 33 cm thick, and an age of 1390
6 170 14C yr BP (NSRL-11255). The uppermost-buried soil has
a 50 cm thick cumulic Ab1 pro� le that is weaker and lighter (i.e.,
Ab4 and Ab3 = 2.5 YR 3/1, Ab2 = 2.5 YR 2/1 and Ab1 = 2.5.YR
3/2) than the underlying soils. This section differs from the Nellie
section in that the zone above the uppermost-buried soil is thicker
and more clearly bedded.

At the Nellie East section there is a channel-shaped disconti-
nuity at least 100 m wide and 20 m thick that is � lled with
interbedded sand and gravel. Above this is aeolian sand with a
buried soil that has an Ab-Bwb-Cb pro� le, and an age of 10400
6 70 14C yr BP (NSRL-10918). This provides a maximum age
for the 340 cm of overlying ACT deposits, which contain at least
� ve buried soils that were not analysed because they could not
be safely sampled.

The Frieda section is located on the eastern end of Cuny Table
(Figure 1). Here the lowest-buried soil has an Ab3-Cb3 pro� le
and is formed in well-sorted, aeolian, sand, and has an age of
7990 6 155 14C yr BP (NSRL-11258). Above this there are 320
cm of ACT deposits that are set against a vegetated dune form.
ACT deposits have loamy sand to loam textures, 0.2 to 0.5%

organic carbon, and 0.0–1.7% CaCO3. There are two buried soils
in the ACT deposits. The lowest is an 80 cm thick cumulic Ab2
horizon with an age of 3640 6 155 14C yr BP (NSRL-11257),
and the uppermost has an Ab1-Cb1 soil that has an age of 2790
6 165 14C yr BP (NSRL-11256).

Bouquet Table (|825 m elevation)
The section described and sampled on Bouquet Table is located
in Buffalo Gap National Grassland (Figure 1). The lowest-buried
soil here has an Ab-2A/Bb-2BCb-2Cb pro� le and is developed in
both ACT deposits and colluvium derived from Tertiary cal-
careous sediments. Above this is 100 cm of ACT deposits that
contain three buried soils with A-C pro� les, the middle of which
(Ab2) has a cumulic A horizon. ACT deposit have sandy loam
textures, 0.3 to 0.6% organic carbon and 0.4 to 0.9% CaCO3.
Total organic matter from the top of the cumulic Ab2 has an age
of 1280 6 130 14C yr BP (NSRL-11259) and the lowest Ab4 has
an age of 2950 6 145 14C yr BP (NSRL-11260).

Norbeck Pass (|850 m elevation)
The section described at Norbeck Pass is the northernmost
sampled section (Figure 1). The site is different in that it is located
on a |100 m wide ridge, rather than a several kilometre wide
table, and there is no soil developed in the sediments underlying
the ACT deposits. The stratigraphy includes an approximately 20
cm thick pebbly clay loam with 0.3% organic carbon and 8.4%

CaCO3. Overlying this is 190 cm of ACT deposits with loam and
clay loam textures, 0.5 to 1.6% organic carbon and no CaCO3.
There are two buried soils with A-C pro� les in the ACT deposits.
The lowest has an age of 3654 6 42 14C yr BP (AA-39200) and
the uppermost has an age of 1333 6 38 14C yr BP (AA-39199).

Discussion

Although both the thickness of the ACT deposits and the number
of soils buried in them vary among sections, a clear chronological
pattern of landscape stability is apparent between soil develop-
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ment and contrasting aeolian accumulation. On the bases of the
|10000 14C yr BP age at the Nellie East section, ACT sediments
probably accumulated throughout the Holocene and during the
late Pleistocene. However, these early Holocene ACT sediments
and buried soils are preserved only on the higher (950 m) tables
(Figure 3). At the sections studied at this elevation, the oldest
soils are developed in deposits other than ACT sediments. On
Cuny Table, ACT deposits overlie well-sorted dune sands above
� uvial gravels, but on Sheep Mountain Table ACT deposits are
above interbedded gravel and very � ne sand/coarse silt. On Cuny
Table, the lowest-buried soil has an age of |7900 14C yrs BP at
three sections, which is close in age to the cold event between
7650 and 7200 14C yrs BP (the so-called ‘8200 yr event’) recorded
in Greenland ice cores (Alley et al., 1997). This is also a time
when closed-basin lakes to the east switch from fresh to saline
(Fritz et al., 2000). It is tempting to correlate these events, but the
lowest-buried soil at Sheep Mountain Table has an age some-
where between 5800 and 6900 14C yrs BP, which is much later
then the aforementioned events. Probably, the early-Holocene
ACT record is incomplete because of high badland erosion rates
(Hadley and Schumm, 1961), and requires more work before such
correlations can be tested.

The late-Holocene record, however, is more complete, probably
because there has been less time to erode it. In the late Holocene,
ACT sedimentation occurred in periods after |3700, |2500 and
|1300 14C yr BP (Figure 5). Based on ages from the bottom of
the 1300 14C yr BP soil at Sheep Mountain and Cuny Table, the
latest aeolian episode occurred after several centuries of cumulic
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Figure 5 Late-Holocene periods of aeolian sedimentation (AS) and
pedogenesis. Only age estimates from the top 5 cm of buried soils are
included here because they represent a maximum age of burial by aeolian
sedimentation. Radiocarbon ages are plotted against section location; SMT
= Sheep Mountain Table; NP = Norbeck Pass; BT = Bouquet Table; F =
Frieda; N = Nellie; NW = Nellie West.

soil formation. The luminescence ages agree well with the radi-
ocarbon chronology at Sheep Mountain Table (Figure 3; Table 2)
and could be used to resolve the chronology of aeolian sedimen-
tation further. However, it is likely that these deposits accumulate
continuously, albeit slowly, because there are no soil horizons
developed in these sediments at the modern surface and there is
typically a metre of aeolian sediment burying the uppermost-
buried soil. The late-Holocene record presented here compares
well with those mentioned in the introduction in that there is evi-
dence for episodic Holocene aeolian activity. The periods of soil
formation seem to correlate quite well with nearby localities that
have well-constrained age control, especially Wolfe et al. (2000)
and Goble et al. (2001). These periods are also similar to millen-
nial-scale climate cycles in the North Atlantic (Bond et al.,
1997; 2001).

Conclusion

Just as with other studies of Holocene aeolian deposits from the
Great Plains, the White River Badlands ACT deposits provide
evidence of episodic aeolian sedimentation. It appears that these
deposits formed over most of the Holocene, including the lowest
soil previously thought to correlate to the Sangamon Geosol
(Harksen, 1968; Briggs, 1974). Our data support White’s (1960)
hypothesis that the age of the buried soils in the ACT deposits
are consistent throughout this subregion of the North American
Great Plains, probably as a result of climatic in� uence. These
ACT deposits are a valuable source of palaeoenvironmental
proxy, as others most likely are in similar settings.
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