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Introduction
Wintertime atmospheric circulation in the northern hemisphere is 

profoundly influenced by the Aleutian Low (AL) and Icelandic 

Low. These low-pressure cells are seasonally interdependent 

atmospheric processes, with an inter-annual oscillation pattern 

that is seesaw-like in nature (Honda et al., 2001; Overland et al., 

1999; Rodionov et al., 2007). Because of the influence of these 

semi-persistent low-pressure cells on stationary flow patterns and 

the position of migratory major storm tracks, they have a signifi-

cant impact on long-term climate patterns. The closely associated 

teleconnective climate indices of the Pacific-North America 

(PNA) pattern and the North Atlantic Oscillation (NAO) are 

linked to ecological phenology in modern lakes (Adrian et al., 

2006; Gerten and Adrian, 2001; Straile et al., 2003) and are often 

attributed to paleolimnological patterns sharing similar spectral 

frequencies (Ólafsdóttir et al., 2013; Stevens et al., 2006). How-

ever, the response among North American lakes is mixed, show-

ing limited regional coherence (Barron and Anderson, 2011; 

Jones et al., 2001; Katsuki et al., 2009; Nõges et al., 2010) 

although they are influenced by the same atmospheric processes.

The intensity and position of the Aleutian low-pressure center 

exerts a major influence on the climate of the North Pacific and 

western North America (Overland et al., 1999; Rodionov et al., 

2005). The AL is a seasonally persistent Northern Hemisphere 

atmospheric circulation pattern that forms over the North Pacific 

during the cool season (September–May). The unstable mean 

flow extending from the AL generates transient storm systems, 

which are carried across North America along the axis of the 

westerly jet core or the prevailing storm track (Rodionov et al., 

2007; Wise, 2012). On decadal and longer time scales, the inten-

sity and position of the AL shifts, which influences the routing of 

winter season storm tracks across western North America. This is 

reflected in the long-term variability of the North Pacific Index 

(NPI) and in the sign of the Pacific Decadal Oscillation (PDO) 

(Chhak et al., 2009; Schneider and Cornulle, 2005). When shifted 

eastward and intensified, the AL enhances meridional flow, which 

routes storms along the North American coast and northward, into 

the Gulf of Alaska (Figure 1). During weakened (westward) shifts 

in the AL, meridional flow is weakened, zonal flow intensifies, 

and storms are more commonly routed into the continental inte-

rior (Rodionov et al., 2005). Decadal variability in the AL has 

been linked to changes in sea surface temperatures and thermo-

cline variability in the North Pacific and, as such, has important 

implications for ocean ecosystems (Katsuki et al., 2009; Miller 

et al., 2004; Minobe, 1999), as well as patterns of drought, snow-

pack variability, and continental terrestrial and aquatic ecosys-

tems (Barron and Anderson, 2011; Cayan et al., 1998; Gan, 2000; 

Pederson et al., 2013).
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Large-scale atmospheric climate patterns have a demonstrated 

relationship with physical and biological processes in lakes 

(Blenckner, 2005; Blenckner et al., 2007; Straile and Adrian, 2000; 

Straile et al., 2003). Regionally coherent lake changes in response 

to atmospheric circulation patterns are evident in the records of sur-

face water temperature, lake-ice phenology, and lake level in long-

term lake monitoring studies (Magnuson et al., 1990, 2004, 2006). 

This is because physical processes in lakes often respond to solar 

irradiation, air temperature, relative humidity, and wind speed, 

which express a high level of spatial coherence due to large-scale 

atmospheric circulation patterns (Jones et al., 1997; Livingstone, 

2008; Magnuson et al., 1990). These observations have led to a 

shift in perspective, from lakes primarily acting as recorders of 

local climate to a new paradigm of lakes serving as archives of 

large-scale climate forcings modified to different extents by local 

climate and individual lake characteristics (Adrian et al., 2009; 

Blenckner, 2005; Livingstone, 2008; Williamson et al., 2009).

Potential multi-decadal state changes in the AL have been 

identified from several paleoclimate records from the northwest-

ern Pacific region (Anderson et al., 2005; Barron and Anderson, 

2011; Chipman et al., 2012; Edwards et al., 2001; Fisher et al., 

2004, 2008; Latif and Barnett, 1994). However, despite the broad 

region where climate is influenced by the AL, few paleolimno-

logical records outside of the Pacific Rim display a synchronous 

or coherent late Holocene response. In North America, abrupt, 

high-magnitude climate events observed at low resolution in 

Holocene lake records may share broadly similar sequential pat-

terns, but upon closer inspection are time-transgressive in nature 

(Walker and Pellatt, 2008; Williams et al., 2010). Long-term, 

high-resolution paleolimnologic archives with a high degree of 

regional coherence are relatively uncommon (Fritz, 2008; Fritz 

et al., 2000; Laird et al., 2003, 2007). This has in part been attrib-

uted to the complex and commonly non-linear ecological response 

of the biological indicators that are used to reconstruct past condi-

tions (Fritz, 1996). But many other factors, such as differences in 

the physical, hydrological, chemical, or trophic setting of lakes; 

quality of age control; landscape position; and local climate influ-

ences can contribute to the difficulty of interpreting environmen-

tal history from multiple sites (Blenckner, 2005; Fritz, 2008; 

Webster et al., 2000; Williams et al., 2010). Interannually, cli-

matic changes related to the strength and position of the AL likely 

influence the thermal structure of lakes, primarily by changing the 

timing and nature of lake mixing and stratification patterns 

(Ragotzkie, 1978). For example, when the AL intensifies and 

shifts eastward (e.g. a +PDO), the Pacific Northwest and northern 

Rockies regions experience warmer winter temperatures (Wise, 

2012), which can result in fewer freezing days, more precipitation 

falling as rain instead of snow, decreased snow cover, and warmer 

spring air temperatures. Because the intensity and position of the 

AL also influences storm track position (Rodionov et al., 2007; 

Wise, 2012), increased wind frequency and intensity from storms 

may directly influence the convective mixing energy of the epi-

limnion affecting the depth of the thermocline and the timing of 

destratification (Ragotzkie, 1978).

The ecology of lake plankton is ‘tuned’ to these seasonal changes 

because altering the thermal structure of lakes affects nutrient 

cycling, physiological processes, light availability, and trophic inter-

actions (Blenckner et al., 2007; Dröscher et al., 2009; Gerten and 

Adrian, 2001; Straile and Adrian, 2000). As a result, over longer 

periods we expect changes in the thermal structure of a lake to have 

an observable influence on the structure and composition of lake 

plankton – as recorded in their sediment records as shifts in fossil 

assemblages. Diatoms are single-celled golden-brown algae, with a 

siliceous cell wall that commonly preserves in lake sediment, found 

in most aquatic systems. Diatoms are highly sensitive to environ-

mental variables and exhibit substantial capacity for exploiting eco-

logical niches in an exceptional range of aquatic habitats (Smol and 

Stoermer, 2010). In particular, in lakes with low phosphorus concen-

trations and elevated alkalinities (Saros and Anderson, 2015), small 

centric diatom species of the genus Lindavia (Cyclotella) (and 

closely related genera, such as Discostella) are inferred to have an 

ecological advantage over larger diameter congeners and dense 

colonial plankton with higher nutrient requirements, such as Aula-

coseira, when a lake is strongly stratified (Saros and Anderson, 

2015; Smol et al., 2005; Wang et al., 2008). In this paper, we use 

several common diatom species from lakes in the northern and cen-

tral US Rocky Mountain region to investigate changes in lake strati-

fication through the late Holocene. Using fossil diatom records from 

three lakes located in the US Rocky Mountains, we explore long-

term changes in the AL as a possible explanation for coherent 

regional responses observed in lake thermal structures and ecosys-

tems of these lakes over the last 4000 years.

Regional setting
The lakes for this study were selected based on the abundance of 

cyclotelloid diatom species in the plankton (and fossil records), 

which were the focus of the neoecological experiments discussed 

in Saros et al. (2012). They can be grossly characterized as deep 

(>30 m) subalpine to alpine lakes with low nutrient concentrations 

and low sediment turbidity (lacking substantial glacial inputs). 

When possible, the sites were selected to optimize the influence 

Figure 1. Influence of the position and intensity of the Aleutian 
Low (AL) on the routing of winter storms (after Rodionov  
et al., 2005). Upper figure shows the eastern/strong AL, with typical 
storms routing mostly north into Alaska. Lower figure shows 
western/weak AL with storms routing into mostly west into the 
southern Canada and northwestern United States.
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of wind intensities (large surface areas, long axes along major 

wind directions, few wind shelters). All three lakes have low sedi-

mentation rates, averaging ~0.015 cm/yr.

Beauty Lake (44°58′12.12″N, 109°34′21.08″W, 2877 m a.s.l.) 

and Emerald Lake (44°59′49.31″N, 109°31′33.81″W, 2975 m 

a.s.l.) are deep (>30 m) alpine lakes with relatively small surface 

areas. Both lakes are located within the Beartooth Mountain 

Range, just south of the Wyoming–Montana border (Figure 2). 

The lake catchments are characterized by sparse vegetation, shal-

low soils, and large expanses of exposed Precambrian granitic 

bedrock. Because of slow weathering rates, lakes in this region 

are typically dilute with low silicon (Si) and phosphorus (P) con-

centrations. These lakes are usually ice-free from early July 

through October (Saros et al., 2003), similar to most of the lakes 

in this region. Upper Kintla Lake (48°57′14.25″N, 114°19′9.50″W, 

1219 m a.s.l.) is located in the northern-most part of Glacier 

National Park, very near the US–Canada border (Figure 2). Upper 

Kintla Lake sits at a lower elevation and has a greater surface 

area, with a long, linear basin characteristic of a drowned river 

valley. Upper Kintla Lake has nutrient and water chemistry char-

acteristics that are typical of many lower elevation lakes in the 

northern part of Glacier National Park (see supplemental informa-

tion, available online; Saros et al., 2010).

Methods
Age model
Sediment cores from Upper Kintla, Beauty, and Emerald Lakes 

were collected from ~30 m below the lake surface with a simple 

piston (Griffith) corer during the summer of 2007. Because 

Upper Kintla Lake is approximately 56 m at the deepest point, 

sediment cores were collected from a region nearer to the margin 

of the lake, whereas the other sediment cores were collected 

nearer to the center. Each core captures a continuous sequence of 

sediment ranging from 0.75 to 1.35 m in length (Table 1). Cores 

were sub-sampled in the field in contiguous 0.5-cm increments 

from the sediment–water interface to the bottom of the core. Age 

models (Figure 3) for each core were constructed using 210Pb-

dating (Appleby and Oldfield, 1978) of sediment (except Upper 

Kintla), and 14C-dating of wood fragments and pine needles was 

recovered from the cores (Table 1) using the program BACON 

(2.2) (Blaauw and Christen, 2011). All radiocarbon dates were 

calibrated to calendar years using CALIB 6.0 (Stuiver and 

Reimer, 1993). All ages reported herein as ‘ka’ are calibrated 

ages in thousands of years before 1950.

Fossil diatom analysis
Sub-samples were treated with 10% HCl and 35% H2O2 at room 

temperature to digest carbonate and organic material. Known 

Figure 2. Map showing the location of the study lakes: Emerald 
(EL), Beauty (BL), and Upper Kintla (KL). Additional lake sites 
marked on the map and inset are discussed in the text: Foy (FL), 
Jones (JL), and Jellybean (JBL).

Table 1. Chronology data and materials used to create the 
BACON age models. 210Pb ages and error presented in calendar 
years (before 1950); 14C ages and error presented in uncalibrated 
radiocarbon years.

Sample Age Error Depth (cm) Method Material

KNT-Surf −57.50 1.00 0  
KNT-018 265.00 25.00 8.75 14-C Plant/Wood
KNT-048 610.00 45.00 23.75 14-C Plant/Wood
KNT-066 1660.00 30.00 32.75 14-C Plant/Wood
KNT-118 3210.00 30.00 58.75 14-C Plant/Wood
KNT-121 3300.00 45.00 60.25 14-C Plant/Wood
EM-Surf −57.50 1.00 0  
EM-001 −40.00 1.00 0.25 210-Pb Sediment
EM-002 −24.36 1.55 0.75 210-Pb Sediment
EM-003 −8.73 1.55 1.25 210-Pb Sediment
EM-004 6.91 1.55 1.75 210-Pb Sediment
EM-005 22.55 16.30 2.25 210-Pb Sediment
EM-006 38.18 16.30 2.75 210-Pb Sediment
EM-007 53.82 16.30 3.25 210-Pb Sediment
EM-008 69.45 16.30 3.75 210-Pb Sediment
EM-009 85.09 30.00 4.25 210-Pb Sediment
EM-010 100.73 30.00 4.75 210-Pb Sediment
EM-011 116.36 40.00 5.25 210-Pb Sediment
EM-012 130.00 40.00 5.75 210-Pb Sediment
EM-030 1180.00 30.00 14.75 14-C Plant/Wood
EM-061 1790.00 30.00 30.25 14-C Plant/Wood
EM-076 2360.00 45.00 37.75 14-C Plant/Wood
EM-085 2780.00 35.00 42.25 14-C Plant/Wood
EM-110 3710.00 35.00 54.75 14-C Plant/Wood
BTY-Surf −57.50 1.00 0  
BTY-001 −51.60 4.16 0.25 210-Pb Sediment
BTY-002 −49.91 4.12 0.75 210-Pb Sediment
BTY-003 −45.17 3.90 1.25 210-Pb Sediment
BTY-004 −41.09 2.85 1.75 210-Pb Sediment
BTY-005 −36.38 2.84 2.25 210-Pb Sediment
BTY-006 −31.31 3.65 2.75 210-Pb Sediment
BTY-007 −25.63 4.46 3.25 210-Pb Sediment
BTY-008 −19.29 4.72 3.75 210-Pb Sediment
BTY-009 −11.52 4.99 4.25 210-Pb Sediment
BTY-010 −3.09 5.44 4.75 210-Pb Sediment
BTY-011 5.78 5.89 5.25 210-Pb Sediment
BTY-012 14.14 6.74 5.75 210-Pb Sediment
BTY-013 23.88 7.59 6.25 210-Pb Sediment
BTY-014 32.32 8.44 6.75 210-Pb Sediment
BTY-015 40.12 9.29 7.25 210-Pb Sediment
BTY-016 50.15 14.03 7.75 210-Pb Sediment
BTY-017 60.70 18.77 8.25 210-Pb Sediment
BTY-018 69.01 22.11 8.75 210-Pb Sediment
BTY-019 79.71 25.46 9.25 210-Pb Sediment
BTY-020 93.26 42.02 9.75 210-Pb Sediment
BTY-021 106.66 58.59 10.25 210-Pb Sediment
BTY-050 1005.00 30.00 24.75 14-C Plant/Wood
BTY-157 6730.00 40.00 78.25 14-C Plant/Wood
BTY-189 8720.00 50.00 94.25 14-C Plant/Wood
BTY-220 9920.00 55.00 109.75 14-C Plant/Wood
BTY-240 11,600.00 50.00 119.75 14-C Plant/Wood
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quantities of polystyrene microspheres were added to estimate 

diatom concentrations (Battarbee, 2003); diatom extractions were 

dried onto coverslips and mounted in Zrax, a permanent high-

refractive-index medium. Diatom frustules were identified to the 

most specific taxonomic level possible with 1000× magnification 

light microscopy using a Zeiss Axioskop 2 with Differential Inter-

ference Contrast optical illumination. When possible, at least 300 

diatom valves were identified from each sample interval. The 

sediment core from Upper Kintla Lake was collected nearer to the 

shoreline, so planktic diatoms were typically a smaller compo-

nent of the fossil assemblage. To adjust for this, a stratified 

counting technique was employed, where after 300 diatoms were 

identified, enumeration continued, ignoring benthic diatom forms 

until at least 100 planktic diatom valves were identified. All rela-

tive abundance data present herein from Upper Kintla Lake are 

reported as percentage of plankton. Data from Emerald and 

Beauty Lakes are presented as percentage of the total diatom 

assemblage. However, converting the datasets for these two lakes 

to percentage of plankton produced no significant changes in the 

diatom stratigraphy.

Diatom-inferred stratification index
Most Aulacoseira employ meroplanktic life strategies; they form 

long, heavy threadlike colonies that sink rapidly and encyst dur-

ing stratified lake conditions (Jewson, 1992; Kilham, 1990). 

Aulacoseira lirata and Aulacoseira alpigena are a common com-

ponent of deeper alpine and subalpine lakes with limited phos-

phorus concentrations and relatively high dissolved silica 

concentrations. As a result, these species typically are more suc-

cessful in very well-mixed lake settings, where convective mixing 

in stratified lakes enhances the advection of nutrients from the 

hypolimnion and helps them to maintain their position in the pho-

tic zone (Carrick et al., 1993; Lund, 1954; Rühland et al., 2003).

Emerald and Beauty Lakes had fossil plankton diatom assem-

blages comprising the cyclotelloid species (Lindavia bodanica, 

Lindavia comensis, Discostella stelligera) that were the subject of 

experiments in Saros et al. (2012) and abundant populations of 

Aulacoseira species (A. lirata, Aulacoseira italica, A. alpigena). 

The only large-diameter cyclotelloid found in the fossil assem-

blages was L. bodanica; we inferred a relatively deep thermocline 

(~14 m) from the presence of this species (Noble et al., 2013; 

Saros and Anderson, 2015; Saros et al., 2012). Small-diameter 

cyclotelloids, including the species D. stelligera, Lindavia ocel-

lata, and L. comensis were present in the fossil diatom assem-

blages of these three lakes (Figure 4). Evidence suggests that in 

temperate regions these small-sized cyclotelloid species often 

out-compete other plankton when lakes are strongly stratified 

(Rühland et al., 2008; Saros and Anderson, 2015; Saros et al., 

2012; Smol et al., 2005; Winder et al., 2009), and thus, we infer 

shallowest mixing depths when these species are abundant in fos-

sil diatom assemblages.

Using this information together with the spectrum of optimal 

mixing depths (depth to the thermocline) resulting from ecologi-

cal assay experiments for lakes that fit the appropriate nutrient 

criteria (Saros and Anderson, 2015; Saros et al., 2012), we created 

a Diatom-Inferred Stratification Index (DI-SI) that ranges from 

well mixed to strongly stratified for each of our three lakes. The 

DI-SI is based upon the concept that Aulacoseira species indicate 

a deeper state of mixing and a clearly higher trophic state than 

Lindavia (Cyclotella) in the instances where they occur in these 

lakes and that abundant L. bodanica indicates a deeper mixing 

state than when smaller cyclotelloid species such as L. comensis 

or L. ocellata are abundant. In the sediment record, the remains of 

these organisms occur together as assemblages, but taken as a 

whole they indicate the average stratification status of the lake 

through time.

The DI-SI we applied was a simple ratio expressed by the 

equation:

DI - SI = 
+1

+ 1

k

j

M

M

( )
( )

where Mk is the sum of the relative abundances of diatom species 

in the assemblage with the deepest inferred mixing depths and Mj 

is the sum of the species with the shallowest inferred mixing 

depths. The indices from all three records were standardized to 

average values over the record presented (Figure 5). A similar 

Figure 3. BACON age–depth models for Beauty, Emerald, and 
Upper Kintla Lakes. Gray envelope indicates 95% confidence.
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rationale and index (Smol et al., 2005; Wang et al., 2008, 2012) 

has been used previously to infer changes in the thermal structure 

of lakes. Non-parametric correlations between lakes were ana-

lyzed on resampled stratification index data using Spearman’s 

rank correlation coefficient.

Results
The long-term patterns of the DI-SI are coherent between the 

lakes (Figure 5). Prior to 3.2 ka, the DI-SI was consistently less 

than 1 for all three lakes, indicating that species that fare better 

under stronger stratification dominated the plankton assemblages 

of each lake. In Emerald and Beauty Lakes, this is represented by 

the dominance of D. stelligera and in Upper Kintla Lake by ele-

vated percentages of L. ocellata. Lower abundances of species 

preferring deeper mixing (Aulacoseira spp. and L. bodanica) are 

present throughout the records of all three lakes (Figure 4). Pair-

wise non-parametric correlations between each of the DI-SI 

records are statistically significant (Upper Kintla/Beauty: ρ = 0.31, 

p = 0.0013; Upper Kintla/Emerald: ρ = 0.78, p < 0.0001; Beauty/

Emerald: ρ = 0.44, p < 0.0001).

Between 3.2 and ~2.3 ka, the records from all three lakes indi-

cate periods of increasingly deeper lake mixing (Figure 5). Some 

minor discrepancies exist between the timing and degree of per-

sistence in mixing depth state, which may be related to age model 

calculations, but the overall trend of increasing mixing depths 

(with respect to the previous period) exists for the records of all 

three lakes throughout this period (Figure 5). In the records from 

Emerald and Beauty Lakes, this change is represented by an 

increase in Aulacoseira species, replacing D. stelligera, whereas 

in the record from Upper Kintla Lake, L. ocellata is replaced by 

L. bodanica (Figure 4). From 2.3 to 1.4 ka, this trend gradually 

reverses for the records from all three lakes, when the relative 

abundances of the major planktic diatoms in the fossil assem-

blages show unilateral changes that are opposite to the prior 

transition.

After 1.4 ka all lake records show a return to enhanced strati-

fication. With the exception of a few brief intervals, the DI-SI 

values return to values similar to the period prior to 3.2 ka (Figure 

5). For each record, modern DI-SI values match or exceed the 

lowest values from any time in the entire 4.5 ka record. Overall, 

the DI-SI between the three lakes for the period after 1.4 ka can be 

characterized as shallower mixing depths with slightly more vari-

ability. In all our lake records, the transitions observed in the 

DI-SI represent a shift in the dominance of the few species we 

selected, but it is worth noting that particularly after 1.4 ka, the 

records from Upper Kintla and Beauty Lakes also include the 

introduction of high relative abundances (up to ~40%) of some 

intermediate-sized Lindavia (Cyclotella) species (L. comensis and 

Lindavia rossii/tripartita), neither of which are a major constitu-

ent of the fossil diatom assemblages spanning back to 4.5 ka (Fig-

ure 4). At Emerald Lake, there is a subtle, but important change as 

D. stelligera increases while Aulacoseira spp. decline, similar to 

the period prior to 3000 BP, but without A. italica.

Discussion
In all three lakes, the DI-SI at 4.5 ka is fairly similar to the 20th-

century index within the same lake. Thus, with respect to the 

average depth of the upper mixed layer, the thermal structure of 

the lakes at 4.5 ka was fairly similar to today. Between approxi-

mately 3.2 and 1.4 ka, an excursion toward significantly deeper 

mixing occurs in all three records (Figure 5). We interpret the 

regional coherence, in both timing and direction from these three 

lakes to indicate a shift in large-scale atmospheric circulation, 

specifically changes in the AL, as the driving force behind these 

changes. The elevation, basin morphometry, vegetation and soil 

development, aspect, and surface area between these three lakes 

differ substantially, but the lakes show remarkably similar pat-

terns of inferred lake mixing over the late Holocene, suggesting a 

large-scale forcing mechanism.

Since few studies have explicitly explored changes in lake 

thermal structure over the Holocene, it is unclear exactly how 

these changes compare against other records in western North 

America. However, the general patterns of inferred changes in 

thermal structure of Upper Kintla, Beauty, and Emerald Lakes 

closely follow the pattern of the oxygen isotopic record of Jelly-

bean Lake in western Canada (Anderson et al., 2005), which is 

inferred to track changes in moisture source associated with 

changes in the position and intensity of the AL through the Holo-

cene (Figure 5). Pair-wise non-parametric correlations between 

the Rocky Mountain lake records and the record from Jellybean 

Lake indicate coherence in all cases (ρ = 0.47–0.57 for pairwise 

comparisons between Jellybean Lake and each lake in this study, 

p < 0.0001 in all cases). Anderson et al. (2005) suggested the 

period 4.5–3 ka represented a persistent intense state of the AL, 

similar to that experienced today, and that the period ~3–1.2 ka 

represented a weaker (or more westward position) AL. After ~1.2 

ka, the AL returned to a more eastward/intense state, but exhibited 

greater overall variability than previous periods. Our lake records 

show a change in thermal structure that may be driven by these 

same changes in the intensity and position of the AL through the 

Holocene, and they demonstrate that the influence of the AL may 

be responsible for broadly coherent Holocene patterns in lake 

records across parts of western North America.

Based on modern atmospheric circulation patterns, a persis-

tently weakened AL would enhance upper atmosphere westerly 

flow into the Rocky Mountain region throughout winter and 

spring, which would result in increased cool season precipitation 

(Overland et al., 1999; Rodionov et al., 2005). We expect this 

would have two compound and synergistic effects on the thermal 

structure of lakes in this region. First, enhanced storm activity 

through the winter months would increase the total snowfall. A 

thicker snow bed over lake ice results in a higher albedo for the 

lake surface and typically acts to extend the ice cover duration 

(Ragotzkie, 1978). Over long periods this would result in a net 

loss of heat storage in the lake and act to weaken the average 

stratification strength by decreasing the total seasonal irradiance 

to which epilimnetic waters are exposed. For phytoplankton, 

whose seasonal succession patterns are substantially influenced 

by stratification and its influence on the nutrient cycle in lakes, 

this probably means a truncation of the stratification cycle, with 

fewer days of highly stratified epilimnetic water in the late sum-

mer. Second, increased storm activity through the spring would 

increase average near-surface wind intensity. Since stratification 

depth is primarily controlled by a combination of irradiance, light 

penetration, and wind intensity (Blenckner et al., 2007; Kirillin, 

2003; Kirillin et al., 2012; Tanentzap et al., 2008), these changes 

should result in a change in how deeply the lakes mix. More 

intense wind in the spring would delay onset of lake stratification, 

creating a prolonged spring-like condition for the lake. Aulaco-

seira have a demonstrated relationship between wind speed and 

total production (Carrick et al., 1993), and enhanced near-surface 

wind speeds would also likely result in greater total productivity 

for deeper mixing species.

In clear lakes, with a small surface area (<500 ha), locally 

driven changes in transparency resulting from variability in dis-

solved organic matter can have a large influence on thermal struc-

ture (Fee et al., 1996; Houser, 2006; Snucins and Gunn, 2000). 

Since temperature and precipitation can impact the influx of dis-

solved organic matter, this may explain some of the minor differ-

ences between the timing of transitions between lakes. However, 

Upper Kintla Lake is considerably larger, deeper, and at a sub-

stantially lower elevation than Beauty and Emerald Lakes, yet 
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shows the same general pattern over the last 4.5 ka. There appears 

to be a stronger correlation between Emerald and Upper Kintla 

Lakes than between Emerald and Beauty Lakes (Figure 5.), which 

are much closer to each other. We believe this is explained by the 

differences in wind exposure between the three sites; Upper 

Kintla is located in a long narrow valley where wind intensity can 

be quite high along the long axis of the lake, and Emerald Lake is 

located high in the Beartooth Mountains with few trees to limit 

exposure to wind. In contrast, Beauty Lake is located in a more 

protected valley site.

Over the last century, the multi-decadal frequency of the AL, 

as expressed by the NPI, is nearly identical to frequency of the 

PDO (Miller et al., 2004; Minobe, 1999), which has been cited as 

a major influence on effective moisture in the region. Evidence of 

greatly increased effective moisture matching the timing of the 

inferred weakening of the AL (~3 ka) from the Jellybean Lake 

record exists in the lake records from Foy and Jones Lakes (Fig-

ure 2), located near our study sites (Shapley et al., 2009; Shuman 

et al., 2009). These studies infer major changes in water chemistry 

and rising lake levels after 3 ka, with conditions close to those of 

the modern climate after 1.4 ka. Throughout the Pacific North-

west, widespread glacial advances in alpine settings begin around 

3 ka (Osborn and Luckman, 1988; Walker and Pellatt, 2008). 

Enhanced winter and spring precipitation in the Rocky Mountain 

region, as might be expected from a weakened AL, would create 

ideal conditions for glacial advances.

Conclusion
Our findings demonstrate the utility and strength of pairing dia-

tom neoecological experiments with paleoecological studies 

within the same lake to improve our ability to interpret paleolim-

nological records. Despite significant differences in basin 

Figure 4. Stratigraphic profiles of the fossil diatom plankton 
of Emerald, Beauty, and Upper Kintla Lakes, plotted as relative 
abundances, for the past 4.5 ka. Stratigraphic columns are shaded 
from dark to light based on the relative inferred mixing depth of the 
diatom species. Note that Upper Kintla Lake values are based on 
stratified counts of planktic diatoms.

Figure 5. Diatom-Inferred Stratification Index (DI-SI) for Emerald, Beauty, and Upper Kintla Lakes plotted as standardized values (0 = average 
mixing depth for each lake) compared with the �18O anomaly for Jellybean Lake (Anderson et al. 2005). The dotted lines mark major transitions 
in the inferred relative depth of mixing and corresponding changes in the position of the Aleutian Low as inferred from changes in the �18O 
from the Jellybean Lake record. There appears to be a strong relationship between the weakened (westward positioned) Aleutian Low and deep 
mixing of the lakes between 3.2 and 1.4 ka.
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morphology and elevation, we have used these techniques to 

extract a simple, yet robust index from a complex diatom paleo-

ecological dataset, which has allowed us to identify three distinct, 

regionally coherent periods in the late Holocene thermal struc-

ture. These periods broadly correspond to reconstructed patterns 

of the AL from independent records and suggest a widespread 

influence of the AL over winter wind intensity and precipitation 

patterns in the late Holocene throughout the Rocky Mountain 

region. This technique likely holds great promise for using phyto-

plankton from lake records to reconstruct past changes in lake 

thermal structure and potentially other major modes of atmo-

spheric circulation. Through careful site selection, this approach 

has the potential to reconstruct long-term changes in wind inten-

sity, air temperature, and lake-ice phenology.
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