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Abstract: Palaeoclimate records from late-Holocene sediments in Chesapeake Bay, the largest estuary in the
USA, provide evidence that both decadal to centennial climate variability and European colonization had severe
impacts on the watershed and estuary. Using pollen and dino� agellate cysts as proxies for mid-Atlantic regional
precipitation, estuarine salinity and dissolved oxygen (DO) during the last 2300 years, we identi� ed four dry
intervals, centred on ad 50 (P1/D1), ad 1000 (P2/D2), ad 1400 (P3) and ad 1600 (P4). Two centennial-scale
events, P1/D1 and P2/D2, altered forest composition and led to increased salinity and DO levels in the estuary.
Intervals P3 and P4 lasted several decades, leading to decreased production of pine pollen. Periods of dry mid-
Atlantic climate correspond to ’megadroughts’ identi� ed from tree-ring records in the southeastern and central
USA. The observed mid-Atlantic climate variability may be explained by changes in atmospheric circulation
resulting in longer-term, perhaps ampli� ed, intervals of meridional � ow. After European colonization in the
early seventeenth century, forest clearance for agriculture, timber and urbanization altered estuarine water
quality, with dino� agellate assemblages indicating reduced DO and increased turbidity.

Key words: Palaeoclimate, climatic change, estuarine sediments, drought, pollen, dino� agellate cysts, anthro-
pogenic impacts, Chesapeake Bay, late Holocene.

Introduction

The combined in� uence of natural climatic variability and human-
induced ecosystem degradation introduces complexities for man-
agement and restoration of coastal ecosystems of the world.
Whereas many studies of coastal ecosystems have focused on
impacts of cultural eutrophication (Jorgensen and Richardson,
1996), land-use changes and sediment in� ux (Howarth et al.,
1991) and hydrological changes (Swart et al., 1996a; 1996b),
growing evidence suggests that estuarine ecosystems are also
in� uenced by climatic variability (i.e., Peterson et al., 1995;
Cronin et al., 2000). With few exceptions, separating anthropog-
enic effects from those due to climatic causes has remained prob-
lematic due in part to the limited historical record available for
most ecosystems (e.g., Johannessenand Dahl, 1996a; 1996b; Gray
and Abdullah, 1996; Swart et al., 1996a; 1996b; Halley and Roul-
ier, 1999).

Sedimentary records are useful to separate human impacts on
ecosystems from those due to climatic variability and other ‘natu-
ral’ factors. For example, Nagy and Alve (1987) and Alve (1991)
were able to distinguish the impact of both climate and pollution
in Oslo and Drammens Fjords in Norway on the basis of foramini-

*Author for correspondence (e-mail: dwillard@usgs.gov)

Ó Arnold 2003 10.1191/0959683603hl607rp

fera from sediment cores. In the current paper, we examine the
late Holocene (2300 yr BP to present) record of Chesapeake Bay
and the adjacent terrestrial ecosystem in its watershed through
the study of fossil dino� agellate cysts (henceforth referred to as
dinocysts) and pollen from sediment cores. These cores preserve
high-resolution records of both late-Holocene palaeoclimate and
ecosystem changes since European colonization (henceforth
referred to as colonization) beginning in the seventeenth century.
A number of changes in the bay and its watershed have been
attributed to large-scale eighteenth- and nineteenth-century land
clearance (Brush, 1984; DeFries, 1986) and twentieth-century
nutrient in� ux (Cooper and Brush, 1991; Karlsen et al., 2000;
Zimmerman and Canuel, 2000). However, prior studies of Chesa-
peake Bay have limited data for the period pre-dating colonization
and low temporal resolution since colonization. A thick (10 m
to >20 m) Holocene sequence of sediments dated by radioisotopes
(Cronin et al., 1999; Colman et al., 2002) provides an excellent
record of climatic variability over decadal (Cronin et al., 2000) to
millennial (Willard and Korejwo, 2000) timescales.

Our two primary goals in this study are to use terrestrial
(pollen) and estuarine (dinocyst) indicators to determine the
regional palaeoclimate history of the mid-Atlantic region over the
past 2300 years and to test the hypothesis that anthropogenic
factors in the Chesapeake watershed have had a predominant
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in� uence on the functioning of the bay’s ecosystem since the sev-
enteenth century. To our knowledge, this is the � rst high-resol-
ution palaeoenvironmental study from estuarine sediments inte-
grating data from both terrestrial and estuarine indicators to
separate anthropogenic impacts from those caused by long-term
natural climatic processes. The resulting details on ecosystem
response to natural climatic variability provide a context for
development of restoration targets for this greatly altered ecosys-
tem.

Regional setting, the Chesapeake Bay
watershed and estuary

Chesapeake Bay is 320 km long, covers an area of 6500 km2, and
drains a watershed of 166000 km2 (Figure 1). The modern bay
formed between 9 ka and 7 ka when postglacial sea-level rise
� ooded a dendritic river system of the palaeo-SusquehannaRiver
(Colman and Mixon, 1988; Willard et al., 2000). The Chesapeake
Bay watershed mainly occupies parts of Maryland, Virginia, the
District of Columbia, Pennsylvania and New York. Forest compo-
sition and distribution in the watershed is controlled by climatic,
geomorphic and physical factors, such as moisture availability,
soil type and elevation. The bay itself lies within the Atlantic
Coastal Plain, a region characterizedby unconsolidatedsediments,
little topographic relief and dominance of oak-pine forests in the
south and oak-chestnut and tulip poplar forests in the north
(Braun, 1950; Brush et al., 1980). The Piedmont Province,
extending from the Fall Line in the east to the Catoctin Mountains
in the west, has greater topographic relief and is underlain by
igneous and metamorphic rocks. Vegetation in the relatively
mesic eastern part of the province consists primarily of oak-
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Figure 1 Inset map of Chesapeake Bay watershed boundaries and forest
regions (after Braun, 1950); larger map shows coring sites in Chesapeake
Bay and distribution of generalized forest types in Maryland (after Braun,
1950; Brush et al., 1980).

hickory forests, grading toward oak-dominated forests in the drier
west (Braun, 1950; Brush et al., 1980). The Valley and Ridge
Province, to the west, is underlain by different lithologies with
varying hydrologic characteristics.Generally, oak-chestnut forests
dominate the dry ridges, and sugar-maple and basswood assem-
blages dominate the wetter sites in the valleys and in the northern
part of the watershed (Brush et al., 1980; Hack and Goodlett,
1960).

Chesapeake Bay is a partially mixed estuary with a strong
north–south salinity gradient and a seasonal pycnocline formed
by in� owing dense saline water from the Atlantic Ocean overlain
by less saline water in� uenced by fresh water � owing into the
bay from its tributaries. The major tributaries feeding the bay are
the Susquehanna (48% of total in� ow), Potomac (33%), James
(13%), Rappahannock (3%) and Patuxent (1%) Rivers along the
western shore and the Choptank (1%) and Nanticoke (1%) Rivers
along the eastern shore (Schubel and Pritchard, 1986). Large sea-
sonal and interannual variability in bay salinity, temperature and
dissolved oxygen are caused by regional precipitation and river
discharge from the watershed (Malone, 1991; Cronin et al., 1999),
nutrient dynamics (Boynton and Kemp, 1985), physical processes
in the estuary (Boicourt, 1992) and other ecological processes
(Smith et al., 1992).

The Chesapeake Bay region lies in a jet stream transition zone
(Figure 2), and shifts in the con� guration of the jet strongly in� u-
ence storm frequency and intensity, precipitation and temperature
in the region (Vega et al., 1998; 1999). In northern parts of the
bay and watershed, precipitation is controlled primarily by atmos-
pheric circulation patterns over the North Atlantic, with meridi-
onal � ow patterns over the ocean resulting in decreased storm
frequency over the eastern USA, decreased precipitation and
increased bay salinity (Henderson-Sellers and Robinson, 1986).
To a lesser extent, precipitation in the region is also in� uenced
by events in the tropical Paci� c Ocean, with meridional � ow
across the USA correlated slightly with decreases in precipitation
(Vega et al., 1999). The transitional position of the bay relative
to the jet stream and the combined in� uence of North Atlantic
and tropical Paci� c Ocean events on the regional climate makes
the Chesapeake Bay watershed a particularly sensitive area to
small changes in atmospheric circulation patterns resulting from
climatic variability.

Materials and methods

Core sites were chosen from mesohaline regions of the bay, which
are sensitive to long-term changes in salinity (Cronin et al., 2000)
and dissolved oxygen (Cooper and Brush, 1991; Karlsen et al.,
2000; Zimmerman and Canuel, 2000). Three cores were taken
during 1996 by the R/V Discovery (sites PTMC-3, PRCK-1,
PTXT-2; Kerhin et al., 1998; Cronin et al., 1999), and a fourth
core was taken on the IMAGES V cruise of the Marion-Dufresne

Meridional 

MeanZonal 

Chesapeake
Bay

Figure 2 Simpli� ed path of mean position of polar jet stream showing
deviations toward meridional and zonal � ow.
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in 1999 (core MD99-2209;Chesapeake Shipboard Scienti� c Staff,
2000) (Figure 1; Table 1). The Discovery cores were taken with
a 3-inch piston corer; the Marion-Dufresne core was taken with
a modi� ed Calypso piston corer.

Site selection was based on several criteria. First, geophysical
data (CHIRP, side-scan sonar) indicate a thick Holocene sequence
in these regions (Colman and Halka, 1989; Hagen and Vogt, 1999;
Halka et al., 2000; Vogt et al., 2000). Second, these sites cover
an area of strong depth- and latitude-controlled gradients in sal-
inity and dissolved oxygen (DO). Two sites (MD99-2209 and
PTMC-3) represent deep-channel (25 m water depth) locations,
in� uenced by seasonal hypoxia. Cores from sites PRCK-1 and
PTXT-2 were collected in shallower water (|11 m water depth)
on the � anks of the main channel, near the seasonal pycnocline
above the oxicline layers in most years. Third, these cores have
excellent stratigraphic, sedimentological (Kerhin et al., 1998;
Baucom et al., 2000) and chronological data (Cronin et al., 1999;
2000; Colman et al., 2002; Table 1), and pollen signatures from
all cores provide a robust signal of regional vegetational
variability.

Pollen and dino� agellate cysts were isolated from sediments
using standard palynological preparation techniques (Traverse,
1988; Willard and Korejwo, 2000). Pollen and dinocysts were iso-
lated from 2 cm intervals in the core. Initial sample intervals were
selected at 10 cm spacing, with samples added subsequently to
improve temporal resolution. For each sample, one tablet of
Lycopodium spores was added to 5–7 grams of dried sediment for
calculation of pollen concentration (pollen/gram dry sediment).
Samples were processed with HCl and HF to remove carbonates
and silicates, acetolyzed (1 part sulphuric acid: 9 parts acetic
anhydride) in a boiling water bath for 10 minutes, neutralized,
and treated with 10% KOH for 10 minutes in a water bath at
70°C. After neutralization, residues were sieved with 149 mm and
10 mm nylon mesh to remove the coarse and clay fractions,
respectively. When necessary, samples were swirled in a watch
glass to remove mineral matter. After staining with Bismarck
Brown, palynomorph residues were mounted on microscope slides
in glycerin jelly. At least 300 pollen grains and 300 dinocysts
were counted from each sample to determine percent abundance
and concentration of palynomorphs. Con� dence limits for Pinus
and Quercus percentages were calculated using binomial standard
errors as outlined in Buzas (1990). Mann-Whitney tests were used
to determine whether abundance of indicator taxa varied signi� -
cantly both within and among cores. Pollen data from surface
samples and sediment cores are available from the North
American Pollen Database (NAPD) at the World Data Center for
Paleoclimatology in Boulder, CO (http://www.ngdc. noaa.gov/
paleo/pollen.html), and both pollen and dino� agellate cyst data
are available at the USGS Chesapeake Bay website
(http://geology.er.usgs.gov/eespteam/ches/).

Dinocyst assemblages were quanti� ed from MD99-2209 and
PTMC-3-2 to estimate changes in Chesapeake Bay environmental
parameters from ecological data on modern dinocyst species and
the modern analogue technique (MAT) (Overpeck et al., 1985).
Our modern dinocyst data set consists of percentage data for 16
species common to fossil and modern samples from 107 coretop
sites along the eastern US coast. To identify common groupings
of modern dinocyst assemblages, we performed a Q-mode cluster
analysis with UPGMA and the Pearson correlation coef� cient. We
compared fossil and modern assemblages using the squared chord
distance dissimilarity index (SCD). The 10 coretop samples with
the lowest SCD values (i.e., with the greatest similarity between
modern and fossil assemblages) were used to calculate palaeo-DO
values for each fossil sample. Calculations using the top 5 and
the top 15 modern analogue samples generally yielded similar
results to those based on 10 samples. SCD values typically were

<0.10, indicating that they are close analogues (Overpeck et al.,
1985).

Stratigraphy and age

Holocene sediments in Chesapeake Bay comprise the Cape
Charles channel � ll, which unconformably overlies � uvial sands
and gravels deposited during low sea level of the last glacial per-
iod (Colman and Mixon, 1988). The early-Holocene in� lling of
the bay during the � nal stages of deglaciation (10–7 ka) has been
documented in analyses of the Marion-Dufresne cores collected
on the IMAGES V cruise (Vogt et al., 2000). The current study
focuses on the past 2300 years. Postcolonial sediments were dated
using chronologies based on 210Pb (lead-210), 137Cs (cesium-137)
and total lead, as well as pollen biostratigraphy. Precolonial sedi-
ments were dated using accelerator mass spectrometry (AMS)
radiocarbon dates from shells (Table 1); recent work indicates that
total organic carbon (TOC) dates are consistently 1500–2000
years too old, so they were not included in calculation of age
models (Cronin et al., 2000; Colman et al., 2002). Uncorrected
radiocarbon ages from molluscs and foraminifers were calibrated
using the CALIB 3.0 program of Stuiver and Reimer (1993), and
all radiocarbon ages discussed herein are calibrated.

The most important pollen type used to date postcolonial events
in Chesapeake sediments is Ambrosia (ragweed), an early suc-
cessional plant that rapidly (# 1 yr) occupies cleared sites
(Bazzaz, 1974; Keever, 1983). As summarized in Brush (1984)
and illustrated in Figure 3, Ambrosia pollen abundance increased
greatly after early colonial land clearance began in the seventeenth
century. In these cores, we used 137Cs, 210Pb and, in MD99-2209,
initial increases in total lead above background levels to develop
age models for sediments deposited in the last |120 years and to
calibrate the three peaks consistently present in the Ambrosia
curve (A1, A2, A3: Figure 4). In core PTMC-3, 210Pb dating
places the maximum Ambrosia abundance (peak 1) before ad1900
(610 yrs) (Figure 5a), and analyses of 210Pb and total lead in a
replicate core for MD99-2209 (core RD 98; Zimmerman, 2000;
Zimmerman and Canuel, 2003) date the upper limit of peak 1 at
ad 1910 (6 10 yrs) (Figure 5b). Based on these dates and the
great increase in acreage cleared for lumber production beginning
around 1880 (Figure 4), we estimate an age range of ad 1880–
1910 (6 10 yrs) for Ambrosia peak 1. The magnitude of Ambrosia
peak 2 is unclear from these samples, but it is dated at ad 1940–
50 (Figure 4), based on age models constructed from 210Pb and
137Cs. Ambrosia peak 3 was dated at 1963–75 (65 yrs); the peak
is preceded by the 137Cs peak (ad 1963–64), and the total lead
peak (ad 1975) corresponds to the Ambrosia maximum. During
this interval, urban acreage expanded (Figure 4), and agricultural
practices and land use were changed.

Dating the initial increase in Ambrosia to >2% is problematic
because the time of most rapidly changing land-use practices
(eighteenth century) is at the lower and upper limits of con� dent
210Pb and radiocarbon dating, respectively.Therefore, dating must
rely on a combination of historical accounts of land clearance
and radiometric dates. Radiocarbon dates near the initial Ambrosia
increase in these cores provide an estimate of ad 1700 as the
earliest date for the rise (Figures 3, 8 and 9). Based on these
data and the occurrence of eighteenth-century land-use changes
summarized below, we estimate that the initial rise in Ambrosia
to >2% occurred between ad 1700 and 1750. Land-use changes
in the early to mid-eighteenth century include: settlement and
development of new towns (Gottschalk, 1945); a shift from
tobacco to grain production in the coastal region; and improve-
ments in farm machinery and increases in tilling depths (see sum-
mary in Brush and Hillgartner, 2000).
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Results

Calibration of palaeoecological proxies – pollen
Pollen preserved in sediments provides a distinctive signature of
the source vegetation, and temporal changes in pollen abundance

have traditionally been interpreted as signifying changes in
vegetational composition on centennial to millennial timescales.
However, pollen production also in� uences pollen abundanceover
annual to decadal periods. We assessed both the ability of pollen
assemblages to re� ect forest composition using surface samples
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and the interannual variability of pollen production in the region
using the dominant taxa in the watershed, Quercus (oak) and
Pinus (pine).

Forest composition in the bay area re� ects a hydrologic gradi-
ent from oak-chestnut forests on well-drained soils in the north
to oak-pine-hickory forests on more poorly drained soils in the
south (Brush et al., 1980). Oak-chestnut forests (Braun, 1950;
Greller, 1988), also described as a tulip poplar association by
Brush et al. (1980), dominate the northern coastal plain (Figure
1). These are primarily mixed deciduous forests, with common
Quercus alba (white oak), Carya (hickory/pecan), Liriodendron
(tulip poplar), Acer (maple) and Nyssa (gum). Prior to its demise
from chestnut blight in the early twentieth century, Castanea
(chestnut) was dominant or codominant with oaks in these forests
(Greller, 1988). Oak/pine/hickory forests in the south are domi-
nated by Pinus taeda and P. echinata (loblolly and short-leaf
pines, respectively) and Quercus virginiana (live oak), grading
southward into loblolly pine forests (Braun, 1950). The boundary
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Figure 6 (a) Concentration of tree and Pinus pollen (grains l23), measured
by a volumetric pollen sampler, Walter Reed Army Medical Center, Wash-
ington, DC, between 1989 and 1999 (data provided by S. Kosisky).
Although Pinus pollen is a small proportion of total tree pollen counted
during the year, it and total tree pollen � uctuated by a factor of two to
four during the period of record. (b) Pinus pollen concentration (grains
l23) from 1989 to 1999 (solid line) and June–December precipitation (cm)
the previous year (1988–1998) (dashed line). Precipitation data obtained
from: http://www.erh.noaa.gov/er/lwx/climate/dca/dcaprecip.txt.

between the two forest types corresponds generally to the north-
ernmost natural occurrences of southern pines at about 38°N
latitude. (Bartlein et al., 1986; Hocker, 1956).

We compared pollen distribution in surface sediments (0–2 cm)
from the mainstem of Chesapeake Bay with forest composition
of the surrounding watershed. Pinus pollen abundance is corre-
lated well with latitude (r2 5 0.595, at 0.05 signi� cance level),
and decreases to the north. Quercus pollen abundance increased
northward, but the correlation is poorer (r2 5 0.398, at 0.05 sig-
ni� cance level), due to its common presence in both forest types.
Isopolls from limited terrestrial sites in North Carolina, Maryland
and New Jersey show a similar latitudinal pattern in Pinus-
Quercus abundance (Bernabo and Webb, 1977; Davis and Webb,
1975; Delcourt and Delcourt, 1984; Delcourt et al., 1984), as do
surface sediments from the Potomac River (Brush and DeFries,
1981; DeFries, 1986). These comparisons indicate that changes
of about 10% in Pinus abundance represent differences in its
abundance in forests. Subdominant wind-pollinated species, such
as Carya and Liquidambar, vary little in abundance throughout
bay sediments, and several common taxa (i.e., Liriodendron, Acer,
Nyssa and Ilex (holly)) are poorly represented, either because they
are insect-pollinated or produce small quantities of pollen (Brush
and DeFries, 1981; Traverse, 1988).

We evaluated short-term variability in pollen production
through analysis of atmospheric pollen count data generated by
allergists at Walter Reed Army Medical Center in Washington,
DC. Concentration of tree and herb pollen (grains m2 3) were
obtained three days a week from 1989 through 1999 from an volu-
metric rotating-arm impaction sampler placed at an elevation of
37.5 m on an unobstructed roof (Kosisky and Carpenter, 1997; S.
Kosisky, personal communication). Because the sampler is situ-
ated above tree canopies, it captures the regional pollen rain, anal-
ogous to pollen rain deposited in the estuary. Indeed, highest pol-
len concentrations are recorded in the spring (Kosisky and
Carpenter, 1997), corresponding to the time of maximum pollen
concentration in the water (Brush and Brush, 1994). Interannual
variation in total atmospheric pollen concentration varied two- to
fourfold during the 11 years of record, with particular variability
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Figure 7 Dendrogram from Q-mode cluster analysis (using UPGMA and Pearson correlation coef� cient) of dino� agellate cyst data from surface samples
in Chesapeake Bay, Florida Bay and Mississippi Sound. Dinocyst data and environmental parameters for each site are available from the USGS Chesapeake
Bay website (http://geology.er.usgs.gov/eespteam/ches/bayhome.html). Salinity data for the Florida Bay samples were obtained from the USGS website
on Florida Bay (www.� aecohist.usgs.gov); mean and minimum dissolved oxygen for these sites were measured in 7/98, 2/99 and 7/99 (Jeffery Stone,
personal communication). Data on salinity and D/O for Chesapeake Bay were obtained through the Chesapeake Information Management System (CIMS)
(www.chesapeakebay.net/cimsindex.htm). The maximum and minimum D/O, S and T values for surface and bottom water were calculated by taking the
mean maximum and minimum values for a � ve-year period between 1 January 1990 and 31 December 1995. Environmental data for the Mississippi
Sound coretop samples were obtained from the hydrologic and climatic atlas compiled by Eleuterius and Beaugez (1979). Seasonal D/O (summer mean
and summer minimum), salinity (fall and spring means) and temperature (summer and winter bottom means) data for each dino� agellate coretop site were
taken from isopleths in the Eleuterius and Beaugez atlas.

in Pinus pollen concentration (Figure 6a). When translated to rela-
tive (percent) abundance, the interannual variability of Pinus pol-
len production is between 2% and 11%, similar to subdecadal- to
decadal-scale variability.

We compared concentrations of Pinus and Quercus with
temperature and precipitation records for the previous June through
December. We selected this time interval because production of cat-
kins (pollen cones) requires adequate soil moisture from the time of
catkin initiation (|June) until pollen ripening (|December) the pre-
vious year (Boyer, 1981). Although no correlation existed between
Quercus abundance and precipitation (r2 5 0.01, at a 0.05 signi� -
cance level), Pinus pollen production was positively correlated with
June–December precipitation (r2 5 0.411, at a 0.05 signi� cance
level) (Figure 6b). This indicates that variation in precipitationduring
the last half of the previous year explains more than one-third of
Pinus pollen production in the Washington,DC, area; maximum pro-
duction occurs after relatively wet summers and falls, as was sug-
gested by Boyer (1981). Therefore, on short (subdecadal to decadal)
timescales, variation in Pinus pollen abundance of the order of 10%

or more in Chesapeake Bay sediment cores likely re� ects differential
pollen production tied to variation in regional precipitation;on longer
time scales (multidecadal to centennial), it represents changes in for-
est composition re� ecting long-term changes in precipitation and,
possibly temperature.

Calibration of palaeoecological proxies –
dino� agellate cysts
Phytoplankton taxa occupy a critical position in the Chesapeake
Bay ecosystem because of their role as primary producers for

higher trophic levels and in oxygen dynamics of the bay. Along
with diatoms, many photosynthetic (autotrophic) dino� agellates
(organic-walled, unicellular protists) are primary algal producers
in Chesapeake Bay (Marshall and Alden, 1988), and dino� agellate
species that produce cysts often are fossilized in Chesapeake Bay
sediments. Because of their sensitivity to water quality (turbidity,
dissolved oxygen), salinity and temperature (Wall et al., 1977;
Turon, 1984; Edwards and Anderle, 1992), dino� agellate species
are increasingly used in palaeoceanography(Harland, 1983), and
palaeoecological studies of ocean margin ecosystems (de Vernal
et al., 1989; Ellegaard, 2000).

We compiled ecological preferences of estuarine dinocysts
from three estuarine regions in the eastern USA, Chesapeake Bay,
Florida Bay (Brewster-Wingard et al., 1996) and Mississippi
Sound (Edwards and Willard, 2001). Strati� cation of the deep
channel of Chesapeake Bay results in seasonal oxygen depletion
(minimum DO from 0 to 1.75 ml l2 1) that may last through the
summer months depending on climatically driven � uctuations in
freshwater in� ow and wind-driven mixing (Seliger and Boggs,
1988; Malone, 1991; Cronin et al., 1999). Annual temperature
range in this temperate estuary is large, ranging from 1–2°C
(winter) to 29–30°C (summer), as is salinity range (3–24 ppt).
Florida Bay is a well-oxygenated, shallow-water, subtropical bay
with DO levels from 3 to 7 ml l2 1, an annual temperature range
of 10–12°C (winter) to 32–33°C (summer) and salinity range of
10–41 ppt. Mississippi Sound varies between a partially and well-
mixed estuary and occasionally becomes highly strati� ed. In gen-
eral, the waters are well oxygenated (minimum DO 2.5 to 5 ml
l2 1) with a relatively small salinity range (5–15 ppt) and annual
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Figure 8 Percent abundance of pollen of major plant groups, Chesapeake Bay. Dashed line indicates average precolonial abundance. (a) Core MD99-
2209, near mouth of Rhode River. (b) Core PRCK-1, near mouth of Parker Creek.

temperature ranging from 10–12°C (winter) to 27–28°C
(summer).

Using Q-mode cluster analysis (with UPGMA and Pearson cor-
relation coef� cient) we identi� ed groupings of modern samples
from the three regions based on dinocyst census data. We also
estimated environmental preferences of dinocyst species from
conditions at 107 surface sample sites covering a range of salinity
and dissolved oxygen regimes: maximum and minimum salinity
(S) range from 15 to 40 ppt and 3 to 30 ppt, respectively, and
median and minimum dissolved oxygen (DO) from 3.5 to 7.5 and
0 to 5.5 ml l2 1, respectively. The modern samples separated into
three clear groupings, generally corresponding to the three estu-
aries (Figure 7).

The two primary factors affecting assemblages appear to be
annual salinity range and annual minimum DO. The � rst-order
separation of Chesapeake Bay and Florida Bay samples from Mis-
sissippi Sound re� ects the dominance of Spiniferites spp., which
here includes primarily S. bulloideus and S. ramosus (but excludes
S. mirabilis); Operculodinium centrocarpum is common (up to
40%) in bay assemblages. The abundance of these taxa re� ects
the broad salinity tolerance characteristic of such cosmopolitan
species (Wall et al., 1977). Chesapeake Bay and Florida Bay
assemblages are separated primarily on the basis of the strong
dominance of Spiniferites spp. and S. mirabilis in Chesapeake Bay
compared to abundance of species more typical of neritic to
oceanic waters (Nematosphaeropsis, Lingulodinium machaero-
phorum (Wall et al., 1977)) in Florida Bay. Spiniferites mirabilis,
a species tolerant of reduced levels of DO (Harland, 1983; Turon
and Londeix, 1988) is most abundant (up to 15%) in Chesapeake
Bay sediments in areas that undergo a wide annual range of DO
and salinity. Mississippi Sound assemblages are dominated

strongly by Polysphaeridium zoharyi, a species restricted to
tropical/subtropical estuaries that tolerates only small salinity
� uctuations (Wall et al., 1977). In summary, S. mirabilis is a good
indicator of seasonal hypoxia and broad salinity � uctuations,
whereas Operculodinium centrocarpum, Nematosphaeropsis and
Lingulodinium are characteristic of higher salinities and DO
levels.

Late-Holocene pollen and dinocyst
assemblages

Late-Holocene pollen and dinocyst spectra are divided clearly into
pre- and postcolonial units by increases in abundance of Ambrosia
and Spiniferites mirabilis (Figures 8–10). Postcolonial pollen
assemblages are distinguished by increased abundances of
Ambrosia, Poaceae and Pinus pollen, consistent presence of Plan-
tago, and decreased abundance of Quercus and Carya pollen
(Figures 8 and 9). Non-dominant trees, such as Liquidambar,
Ulmus and Nyssa, each doubled their pollen abundance during the
transition from pre- to postcolonial time. Postcolonial dinocyst
assemblages are characterized by a higher abundances of
Spiniferites mirabilis and Spiniferites spp. (primarily S. bulloideus
and S. ramosus). Although present, typical marine species, includ-
ing P. zoharyi, L. macherophorum, (<5%), and N. labyrintha were
less abundant than in precolonial sediments (Figure 10).

Precolonial pollen assemblages reveal both spatial and temporal
patterns in forest distribution. Pinus pollen was signi� cantly
(p<0.0005) more abundant (averaging 40–47%) in southern sites
(PTMC-3, PTXT-2, PRCK-1) than at MD99-2209 in the north,
where it averaged 35%. The existence of a long-term (>2000 year)
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transition zone between oak-chestnutand oak-pine-hickoryforests
indicates the inherent control of geomorphic, climatic and edaphic
factors on their distribution. Throughout the late Holocene, pollen
assemblages were dominated by Pinus and Quercus, with consist-
ent, but relatively invariant, occurrence of Carya, Liquidambar
and other non-dominant trees. Four sustained intervals of
decreased Pinus abundance (P1–P4) are documented in these
cores. In these intervals, Pinus abundance was 5–15% below the
precolonial average and 20–30% less than adjacent peak abun-
dances (Figures 8 and 9). Con� dence limits calculated for Pinus
were 4–5% (at a 0.05 signi� cance level), so changes of 20–30%

are signi� cant. Interval P1, preserved in cores MD99-2209 and
PTMC-3-2, lasted approximately 500 years (2100 to 1600 yr BP).
Interval P2, preserved in MD99-2209, PRCK-1 and PTMC-3,
appears to have lasted about 400 years (1150 to 750 yr BP). Inter-
vals P3 and P4 each lasted less than one century, from 490 to
570 yr BP and 320 to 365 yr BP, respectively.

Precolonial dinocyst assemblages in both MD99-2209 and
PTMC-3 were dominated (58% and 44%, respectively) by
Spiniferites spp., primarily including S. bulloideus and S. ramosus.
Operculodinium centrocarpum was subdominant, and Polys-
phaeridium zoharyi, Lingulodinium machaerophorum, Nematos-
pheropsis spp. and Tuberculodinium spp. were common compo-
nents. Spiniferites mirabilis was present consistently, with two
intervals of sustained lower-than-average abundance (Figure 10).
The � rst (D1) lasted about 350 years (2100 to 1750 yr BP), and
the second (D2) lasted about 450 years (1200 to 750 yr BP).

Discussion and conclusions

Our results have implications for understanding patterns and
causes of late-Holocene climatic variability in eastern North
America. Several dry periods ranging from decades to centuries
in duration are evident in Chesapeake Bay records. Multidecadal
events include intervals P4 and P3 (Figure 11), which are pre-
served in all four sediment cores. Interval P4 (| ad 1525–1650)
consists of several decadal-scaledry intervals (Figure 12), includ-
ing the most severe mid-Atlantic droughts of the last 800 years,
which affected the Roanoke Island (1587–89) and Jamestown
(1606–12) colonies of Virginia (Stahle et al., 1998). Interval P3
(| ad 1320–1400) corresponds to fourteenth-century dry con-
ditions in North Carolina (Stahle and Cleaveland, 1992). The
diminished percentages of Pinus in these sedimentary records
offer strong evidence that multiyear droughts had great effects on
pollen production in sensitive tree taxa.

Periods of lower-than-average precipitation spanning several
centuries (intervals P2/D2 and P1/D1) apparently altered forest
composition in the Chesapeake Bay region. Interval P2/D2
(| ad 800–1200) corresponds to the ‘Mediaeval Warm Period’,
which has been documented as drier than average by tree-ring
(Stahle and Cleaveland, 1994) and pollen (Willard et al., 2001)
records from the southeastern USA. Interval P1/D1 (|200 bc–ad
300) represents the � rst documentation of mid-Atlantic or south-
eastern USA dry conditions; however, based on reconstructions
of past airmass regimes, Bryson and Wendland (1967) suggested
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that drought conditions probably occurred in the mid-Atlantic
region during this time.

Mid-Atlantic dry periods generally correspond to central and
southwestern USA ‘megadroughts’, described by Woodhouse and
Overpeck (1998) as major droughts of decadal or more duration
that probably exceeded twentieth-century droughts in severity.
Droughts in the late sixteenth century that lasted several decades,
and those in the ‘Mediaeval Warm Period’ and between |ad 50
and ad 350 spanning a century or more have been indicated by
Great Plains tree-ring (Stahle et al., 1985; Stahle and Cleaveland,
1994), lacustrine diatom and ostracode (Fritz et al., 2000; Laird
et al., 1996a; 1996b) and detrital clastic records (Dean, 1997).

Modern atmospheric conditions during which meridional � ow
dominates the mid-Atlantic climate are conceptually similar to the
dry intervals documented during the last 2300 years of Chesa-
peake Bay record. During such times, weakening of the polar jet
across the North Atlantic allows greater input of dry polar air to
the mid-Atlantic region and blocks in� ux of warm tropical air
northward along the coast; enhancement of the ridge and trough
system across the continent draws Arctic air to the mid-Atlantic
(Yarnal and Leathers, 1988). Great Plains climate patterns are also
in� uenced by the position of the North American jet stream (Mo
et al., 1997; Castro et al., 2001). When a strong ridge is positioned
over the Rocky Mountains (as occurs during times of enhanced
meridional � ow), Great Plains sites on the subsiding branch of
the ridge will have dry climates. The wavelength and amplitude
of the ridge and trough system determines whether precipitation

is also reduced in the Chesapeake Bay region, because the exact
position of the jet stream determines precipitation totals (Yarnal
and Leathers, 1988). The apparently coeval dry periods in the
central and eastern USA documented here may have resulted from
the coincidence of enhanced meridional � ow both over North
America and the western Atlantic Ocean. In modern records, such
changes in upper-level atmospheric � ow patterns have been attri-
buted to changes in the position of the intertropical convergence
zone (Castro et al., 2001; Harman, 1991; Mo et al., 1997), sea-
level pressure anomalies over the Atlantic and Paci� c Oceans
(Leathers et al., 1991; Wallace and Gutzler, 1981) or tropical sea-
surface temperature anomalies (Montroy, 1997); the longer-term
changes documented here may represent ampli� cations of these
phenomena.

Chesapeake Bay sediments provide an exceptionally detailed
record of postcolonial forest cover and bay ecosystem. Pollen evi-
dence indicates that the naturally occurring north–south gradient
from oak-chestnut to oak-pine-hickory forests was eliminated by
colonial land clearance. About a decade after the � rst Ambrosia
maximum (|ad 1890), Pinus, which typically is the � rst tree
established in cleared � elds in the region, became more abundant
(Figure 13). This pattern is consistent with evidence for earliest
seeding of southern pines at 10–20 years of age (Iverson et al.,
1999). Non-dominant trees, such as Liquidambar, Ulmus and
Juglans, became more abundant in the 1940s. These taxa typically
colonize under pines and other early successional trees before
being outcompeted by other hardwoods (Iverson et al., 1999).
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Greater abundance of weedy species since 1960 corresponds to
modern agricultural practices and urbanization, as has been docu-
mented at different times in Europe (Iversen, 1941; Odgaard and
Rasmussen, 1998).

Two phases of anthropogenic in� uence on phytoplankton are
evident, one beginning in the late nineteenth century and another
after 1950. Following peak lumber harvesting between 1880 and

1910, sedimentation rates increased two- to fourfold (Brush, 1984;
Colman et al., 2002; Cronin et al., 1999); several dinocyst taxa
nearly disappeared(Lingulodinium, Nematophaeropsislabyrintha,
Tuberculodinium and Achomosphaera), and Spiniferites became
dominant. Although climate-driven declines in both salinity and
dissolved oxygen levels affected phytoplankton as early as the
sixteenth to seventeenthcenturies, long before peak land clearance
(Figure 10), late-nineteenth-century land clearance exacerbated
the decline. After 1950, dinocyst assemblage diversity decreased,
re� ecting water-quality changes associated with increased urban-
ization, greater hypoxia (Karlsen et al., 2000) and increased
agricultural nutrient input (Jaworski et al., 1997). When viewed
in the context of natural, late-Holocene terrestrial and estuarine
ecosystem variability, it is clear that land-use changes of the last
centuries had unprecedented impacts on regional forests and the
bay. It remains unclear to what degree restoration efforts will
return forests and water quality to their precolonial conditions.
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