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Abstract

Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-

growth still occurs in drinking water distribution systems. The molecular mechanisms that starved 

bacteria use to survive low-level chlorine-based disinfectants are not well understood. The 

objective of this study is to investigate these molecular mechanisms at the protein level that 

prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants 

chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal 

and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. 

Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than 

normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic 

analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based 

disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress 

regulation and stress responses were among the ones up-regulated under both starvation and 

chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, 

it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the 

expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein 

co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were 

up-regulated under starvation are also involved in disinfection tolerance. Finally, the production 

and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell 

defense mechanisms.
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1. INTRODUCTION

Microbial re-growth in drinking water distribution systems (DWDSs) poses a threat to 

drinking water safety (Falkinham et al. 2001, LeChevallier et al. 1996). Although primary 

disinfection is carried out at the end of the drinking water treatment train and secondary 

disinfection is accomplished by adding low levels of disinfectants into DWDSs, microbial 

re-growth is frequently detected in biofilms and bulk water of DWDSs (Berry et al. 2006). 

Assimilable organic carbon, the portion of total organic carbon that can be readily utilized 

by microbes for growth, ideally should not exceed 50 µg/L in DWDSs to avoid microbial 

growth (Lechevallier et al. 1991). Given the low disinfectant and low nutrient levels in 

DWDSs, understanding how bacteria metabolize under mild disinfection and starvation 

stresses is important to develop methods to control microbial re-growth in DWDSs.

Free chlorine and monochloramine are commonly used secondary disinfectants in the US. 

Although their disinfection effectiveness has been recognized, their mechanisms of 

inactivating bacteria need further investigation (Hwang et al. 2012, Wang et al. 2014). Free 

chlorine is often considered a nonselective oxidant to react with cellular components and 

affect metabolic processes (Albrich and Hurst 1982). For example, it causes irreversible 

aggregation of thermolabile proteins (Winter et al. 2008), damage DNA (Dukan and Touati 

1996a) and disrupts DNA synthesis (Mckenna and Davies 1988), and interrupts the electron 

transport chain (Hurst et al. 1991). Monochloramine is being increasingly used as a 

secondary disinfectant due to its lower potency to form disinfection byproducts than free 

chlorine, however, little is known about its mode of action. Some studies report that 

monochloramine can oxidize sulfhydryl groups in amino acids (Jacangelo et al. 1987), and 

the oxidation is sometimes reversible (Watters et al. 1989).

Efforts have been made to elucidate the mechanisms bacteria use to survive disinfection. 

Earlier studies focused on individual mechanisms in disinfection tolerance, such as synthesis 

of glutathione as an oxidant scavenger and activator of cell defense systems (Saby et al. 

1999), and rpoS- and oxyR-governed adaptive responses (Dukan and Touati 1996a). Some 

recent studies used microarray to investigate the comprehensive cellular responses to 

chlorine-based disinfection. One study shows that upon exposure to 390 mg/L free chlorine, 

several classes of genes in E. coli were significantly up-regulated, such as genes responsive 

to oxidative stresses, genes encoding putative oxidoreductases, and genes related to cysteine 

biosynthesis and ironsulfur cluster systems (Wang et al. 2009). Similarly, upon exposure to 

1 mg/L monochloramine, E. coli up-regulated genes related to redox responses, 

oxidoreductase synthesis, and cell envelope integrity response (Berry et al. 2010), and the 

cellular responses were complex and dynamic (Holder et al. 2013). Given that mRNA 

transcripts do not always directly correlate with the expression levels of the encoded 

proteins due to posttranslational modification (Cox and Mann 2011), there is a need to 

investigate the cellular response to disinfection at the protein level.

Several studies report that starved cells exhibited higher disinfection tolerance than normal 

cells (Cherchi and Gu 2011, Stewart and Olson 1992). However, the molecular mechanism 

under the phenomenon has never been elucidated. Bacteria undergo metabolic changes 

under starvation. For example, proteins related to general stress responses, such as the sigma 
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factor (RpoS)(Martínez-Gómez et al. 2012), and oxidative stress responses are up-regulated, 

a phenomenon called multiresistance response or cross-protection (Rangel 2011). The cross-

protection phenomenon has also been observed in starved E. coli cells that up-regulated 

proteins responsive to stress conditions such as heat (Jenkins et al. 1988), oxidative stress 

(Jenkins et al. 1988), and osmotic stress (Jenkins et al. 1990). There is a knowledge gap in 

understanding the molecular response governing the cross-protection between starvation and 

chlorine-based disinfection.

The objective of this study is to investigate the molecular mechanisms at the protein level 

that prepares starved cells for elevated disinfection tolerance. E. coli was used as model 

bacterial species in this study, and both chlorine and monochloramine were included. A 

shotgun quantitative proteomic approach was employed for proteomic analyses. It is 

expected that the outcome from this study can facilitate the development of approaches to 

limit and control microbial re-growth in DWDSs.

2. MATERIALS AND METHODS

2.1 Bacterial Strain and Growth Conditions

Escherichia coli K12 AT980 cultures were grown in Luria-Bertani (LB) medium at 250 rpm 

at 37°C. One set of cultures were harvested at the late exponential phase and were defined as 

normal cultures in this work. Another set of cultures were collected at the same time and 

then centrifuged and re-suspended in phosphate buffered saline (PBS, pH=8.0). These 

cultures were then starved for 24 hours at 20°C before harvesting (Saby et al. 1999, Tong et 

al. 2011) and were defined as starved cultures in this work. The 24-hr starvation period 

didn’t cause significant changes in viable cell numbers (p=0.40).

2.2 Disinfection Experiments

The disinfection experiments were conducted at three different times. In each of the 

triplicate disinfection experiments, four 250-mL Erlenmeyer flasks covered by aluminum 

foil were used as batch reactors, two for chlorine and two for monochloramine. For each 

disinfectant, one flask received normal cells, while the other one received starved cells. 

Before disinfectants were added to the flasks, cells were washed with PBS (pH=8.0) twice 

and re-suspended in 100 mL PBS with a final cell density of ~108 CFU/mL. The chlorine 

stock solution was prepared by adding 10 µL 11~15% sodium hypochlorite solution (Sigma-

Aldrich, St. Louis, MO) into 100 mL Nanopure water. The monochloramine stock solution 

was prepared by adding 10 µL 11~15% sodium hypochlorite solution and 2 g ammonium 

chloride into 100 mL Nanopure water (Larson and Marinas 2003). Both disinfectants were 

prepared immediately before inactivation experiments and their concentrations were 

determined using the DPD titrimetric method (Eaton et al. 2005). Chlorine or 

monochloramine was added to the batch reactors with a final concentration of 1 mg/L as 

Cl2. The inactivation reaction was conducted in a 20°C water bath. At 0, 2, 5, 10, 20, 30, 40 

and 60 min, 1 mL of the reaction solution was transferred to a 9-mL solution made with 5 

mL of 0.01M PBS (pH=7.2) and 4 mL of 0.12% sodium thiosulfate pentahydrate to stop the 

inactivation reaction, and the remaining viable cells were enumerated LB agar plates. 
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Additionally, liquid samples were collected at 1, 10 and 60 min after the start of disinfection 

experiments to monitor disinfectant concentrations.

2.3 Inactivation Model and Statistical Analysis

The Chick-Watson inactivation model was used to simulate the inactivation profile of 

monochloramine (Berry et al. 2008)

N and N0 are cell counts at time t and time zero, k is the inactivation rate constant, 

tSHOULDER is the shoulder phase, n is an empirical parameter that describes the relative 

importance of the concentration of disinfectant which was set as 1 in this study, C is the 

disinfectant concentration, and t is inactivation time. T-test was used to determine if the k 

values between normal and starved cells was significantly different (p<0.05) in the 

monochloramine experiments. The inactivation profile of E. coli with chlorine was not 

simulated, due to the lack of proper models that can fit the experimental data (Virto et al. 

2005, Zhang et al. 2007).

2.4 Protein Extraction

A fourth disinfection experiment was conducted to collect biomass samples for proteomic 

analyses. A total of 16 flasks were included in the fourth disinfection experiment to cover 

the following experimental conditions: 2 disinfectant types (chlorine and monochloramine), 

2 cell types (normal and starved cells), 2 time points (i.e., 0 and 10 min), and 2 replicates for 

each treatment combination. At each time point, 10 mL 0.12% sodium thiosulfate 

pentahydrate was added into each 90 mL reaction solution to terminate the inactivation 

reaction. The cells were harvested from 100ml of bacteria solution and then proteins were 

extracted from the cell pellet.

Proteins were extracted from the harvested cells as detailed in our previous work 

(Nandakumar et al. 2011). Specifically, after two washes using PBS (pH=8.0) cells were re-

suspended in 1 mL of solution containing 50 mM ammonium bicarbonate, 8 M urea, and 1.5 

mM phenylmethysulfonyl fluoride (PMSF), and cells were lysed using bead-beating for 2.5 

min. For every 0.5 min bead beating, the cells were moved on ice to chill for 5 min. Cell 

debris and glass beads were removed by centrifugation at 13,000×g for 10 min at 4°C. The 

proteins in supernatant were precipitated using acetone at −20°C overnight and were re-

suspended in a solution containing 100 mM ammonium bicarbonate and 6 M urea. All 16 

proteins samples were sent to the UNL Proteomics and Metabolomics Core Facility, where 

proteins were quantified using the BCA protein assay kit (Thermo Scientific, Waltham, 

MA). For each sample, 400 µg of proteins were reduced by 10 mM dithiothreitol, alkylated 

with 40mM iodoacetamide, and digested with sequencing-grade trypsin (Roche, 

Indianapolis, IN) at 1:50 trypsin to protein ratio at 37°C overnight. Tryptic peptides were 

desalted and concentrated using solid phase extraction (PepClean C-19 spin column, 
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Thermo Scientific, Rockford, IL), vacuum-dried, and stored at −80°C before 2D-LC MS/MS 

analyses.

2.5 Proteomic Analyses using 2D LC-MS/MS

Quantitative proteomics was performed on an Ultimate 3000 Dionex MDLC system (Dionex 

Corporation, CA) integrated with a nanospray source and LCQ Fleet Ion Trap mass 

spectrometer (Thermo Scientific, CA). The first dimensional separation was performed on a 

SCX column (Polysulfoethyl, 1mm I.D × 15 cm, 5 µm, 300A, Dionex). 20 µL of samples 

were loaded onto first dimension SCX column and eluted using a salt gradient (0–600 mM). 

Selected fractions based on the UV absorbance of the eluted peptides were subjected to 

second dimension analysis. The second dimension separation incorporated an on-line sample 

pre-concentration and desalting using a monolithic C18 trap column (Pep Map, 300 µm I.D 

× 5 mm, 100Å, 5 µm, Dionex). The sample was loaded on to the monolithic trap column at a 

flow rate of 40 µL/min. The desalted peptides were then eluted and separated on a C18 Pep 

Map column (75 µm I.D. × 15 cm, 3 µm, 100Å, New Objective, USA) by applying an 

acetonitrile (ACN) gradient (ACN plus 0.1% formic acid, 90 minute gradient at a flow rate 

of 250 nL/min) and were introduced into the mass spectrometer using the nano spray source. 

The LCQ Fleet mass spectrometer was operated with the following parameters: nano spray 

voltage, 2.0 kV; heated capillary temperature, 200°C; full scan m/z range, 400–2,000. Data 

acquisition was done in data dependent mode with 4 MS/MS spectra for every full scan, 5 

microscans averaged for full scans and MS/MS scans, a 3 m/z isolation width for MS/MS 

isolations, and 35% collision energy for collision-induced dissociation.

2.6 Protein Identification and Quantitation

The MS/MS spectra were compared against the E. coli K12 proteome database using 

MASCOT (Version 2.2 Matrix Science, London, UK) with the following settings: enzyme-

trypsin; missed cleavages-2; mass-monoisotropic; fixed modification-carbamidomethyl (C); 

peptide tolerance-1.5 Da; and MS/MS fragment ion tolerance-1 Da. Probability assessment 

of peptide assignments and protein identifications were performed using Scaffold 3.0 

Proteome Software Inc., Portland, OR). The criteria for protein identification included the 

detection of at least two unique peptides per protein and a protein probability score of ≥90%. 

Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. Relative quantitation of 

proteins was developed using a label-free method of spectral counting with normalized 

spectral counts (Liu et al. 2004). Proteins expressing ≥ 2-fold change in abundance with p 

≤0.05 (Fisher’s exact test on results from the duplicate protein extracts for each treatment 

combination) were considered as differentially expressed (Berry et al. 2010).

2.7 Protein Annotation and Interaction Analysis

Identified proteins were further analyzed using Blast2GO v2.6.5 for Gene Ontology (GO) 

annotation analysis. Proteins were also mapped into metabolic pathways using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Moriya et al. 2007). The STRING database 

was used to predict the protein-protein interactions between co-expressed proteins 

(Szklarczyk et al. 2011).
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3. RESULTS AND DISCUSSION

3.1 Inactivation of E. coli with Different Disinfectants

The inactivation kinetics of E. coli with different disinfectants (chlorine vs. 

monochloramine) and cell physiological conditions (normal vs. starved cells) are described 

using the inactivation curves in Figure 1, where CT is the product of disinfectant 

concentration (C) and disinfection time (T). The inactivation curves describe bacterial 

survival as a function of CT. With 1 mg/L chlorine, the shape of the inactivation profiles for 

normal and starved cells was similar. During the first 2 min, normal and starved E. coli cells 

decreased by about 1.3 and 1.1 orders of magnitude, respectively. After that, the inactivation 

rate decreased substantially and the cell number remained largely unchanged for normal and 

starved cells (Figure 1). Over the course of 60 minutes, there was a total of 1.5 log 

reductions in normal cells and a total of 1.3 log reductions in starved cells. Based on 

triplicate inactivation experiments, starved cells exhibited significantly higher survival ratio 

than normal cells at all time points tested (Figure 1, p<0.05), suggesting starved cells had 

higher disinfection tolerance than normal cells.

For the disinfection experiments with 1 mg/L monochloramine, a 5-min shoulder phase 

occurred in normal cells and a 10-min shoulder phase occurred in the starved cells (Figure 

1). Past the shoulder phase, the inactivation CT curve appeared to be linear for both cell 

types. The average inactivation rate constant k based on triplicate experiments was 0.24 and 

0.14 (mg·min/L)−1 for normal and starved cells, respectively, and the difference was 

statistically significant (p<0.05), suggesting starved cells were more resistant to 

monochloramine than normal cells.

The short half-life of chlorine may be responsible for the shapes of the inactivation CT 

curves for chlorine disinfection. Chlorine concentration dropped to close to 0 mg/L 10 min 

after the start of the disinfection experiment, while the monochloramine concentration was 

still at 0.9 mg/L after 60 min (Table S1). Our findings are consistent with the literature 

(Zhang et al. 2007). Studies show that while 1 mg/L chlorine could quickly inactivate 

bacterial cells by oxidizing cell membrane components (Cho et al. 2010), most of the 

chlorine would be consumed in the first 5 min (Zhang et al. 2007), resulting in smaller 

overall inactivation efficiencies than monochloramine. Monochloramine is less oxidative 

than chlorine, so it was consumed less and lasted longer than chlorine.

3.2 Proteomic Response to Starvation

The proteomes of E. coli cells under each experimental condition were compared according 

to the scheme in Figure 2. Within each comparison, the fraction of the protein up-regulated 

accounted for less than 25% of the total proteins detected (Table S2). Comparison 1 

identified a total of 48 proteins that were up-regulated in response to starvation. Five of 

them belonged to major metabolic pathways: malate synthase A (aceB, 2.1 fold) in the 

glyoxylate bypass, galactokinase (galK, 5.0 fold) in galactose metabolism, 2,3-

bisphosphoglyceratedependent phosphoglycerate mutase (gpmA, 2.4 fold) in glycolysis, 

transketolase 2 (tktB, 3.5 fold) in pentose phosphate pathway, and thioredoxin/glutathione 

peroxidase (btuE, 2.8 fold) in glutathione metabolism (Figure 3).
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Our results show that under starvation E. coli increased the synthesis of proteins that 

allowed the cells to utilize alternative substrates and respond to stresses. Malate synthase A 

(aceB) can be induced during cell growth on acetate, while galactokinase (galK) catalyzes 

the first step in the Leloir pathway of galactose metabolism. The up-regulation of these two 

proteins suggests that acetate and galactose, intermediate metabolites of several central 

metabolisms, may be used as alternative energy source by E. coli under starvation. 

Phosphoglycerate mutase (gpmA) can convert 2-phosphoglycerate to 3-physphoglycerate in 

glycolysis. This enzyme was up-regulated in Bacillus anthracis that was exposed to 

hydrogen peroxide (Pohl et al. 2011), and appears to involve in the proteomic response of E. 

coli to chlorine-based disinfection (see below). Transketolase 2 (tktB) expression is often 

increased in stationary phase and positively regulated by the alternative sigma factor RpoS 

(Jung et al. 2005), which responds to different environmental stresses in a consistent way 

(Dong et al. 2011).

Another noticeable change was the up-regulation of the thioredoxin/glutathione peroxidase 

(btuE) in the glutathione metabolism. BtuE can be induced by oxidative stress and during 

stationary phase (Arenas et al. 2010), and can catalyze reactions in which antioxidants are 

converted to their oxidized forms in the presence of oxidants, for example, reduced 

glutathione (GSH) to glutathione disulfide (GSSG). One previous study reported that GSH 

played an important role in chlorine resistance (Saby et al. 1999). Together with the increase 

in GSH during starvation (Fahey et al. 1978), the increase in btuE expression reported in this 

study suggests that starvation may prepare cells for the oxidative stress that chlorine-based 

disinfection will cause by affecting glutathione metabolism.

3.3 Chlorine Disinfection on Normal and Starved Cells

Comparisons 2 and 3 in Figure 2 share the same reference proteome as Comparison 1, and 

reveal the proteomic response of normal and starved E. coli cells to chlorine disinfection, 

respectively. Proteins that were up-regulated in all three comparisons are listed in Table 1. 

The fold changes of these up-regulated proteins follow the general trend: disinfection of 

normal cells (Comparison 2) < starvation (Comparison 1) < disinfection of starved cells 

(Comparison 3). The trend shows that among the up-regulated proteins that responded to 

both starvation and chlorination, the fold change was higher in starved cells than in 

disinfected normal cells. Most importantly, further increase of expression in disinfected 

starved cells suggests that starvation may have prepared E. coli for disinfection tolerance by 

increasing the expression of enzymes that can help cells survive chlorine disinfection.

Stress regulators—Stress regulator hupB is the beta subunit of HU protein, which is an 

accessory factor stabilizing nucleoprotein complexes, and therefore, plays an important role 

in nucleotide organization (Ali Azam et al. 1999), regulation (Kar et al. 2005) and 

replication. HU protein is required for the expression of many genes in response to 

environmental changes and in adaptation to stress, including changes in osmolarity, acid 

stress, SOS induction, and anaerobiosis (Oberto et al. 2009).

Oxidative stress response proteins—Abundant in stationary phase E. coli, Dps can 

bind tightly to DNA in a non-sequence-specific manner and form a DNA-protein crystal to 
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protect DNA from damage. Dps is required to respond to starvation (Almirón et al. 1992) 

and is involved in protecting cells from stresses such as oxidative stress caused by treatment 

with free chlorine (Dukan and Touati 1996b) and hydrogen peroxide (Dukan and Touati 

1996b, Martinez and Kolter 1997). katE is a monofunctional catalase HPII, which can 

decompose hydrogen peroxide into water and oxygen. Although no literature reports 

hydrogen peroxide formation during chlorine disinfection, other studies also reported up-

regulation of katE and katG upon exposure to chlorine (Dukan and Touati 1996b, Wang et 

al. 2009).

Heat shock proteins—htpG is the E. coli homolog of the ubiquitous HSP90 protein 

family, and can bind to the heat shock alternative sigma factor 632 and participate in folding 

of newly synthesized proteins under heat shock conditions (Thomas and Baneyx 2000). grpE 

belongs to a chaperone system that can convert misfolded proteins to their nascent forms 

(Sharma et al. 2010). Heat shock proteins were up-regulated during chlorine disinfection, 

probably because many chlorine reactions are exothermic and produce heat (Panasenko et al. 

2013). Alternatively, there could be overlap in metabolic adaptations in response to insults 

like heat, detergent, and disinfectant, if they all respond to a signal of abnormal or unfolded 

proteins (Rajagopal et al. 2002).

Effects of chlorine on the various protein functional categories in normal and starved cells 

were analyzed using GO annotation (Figure 4 A). The bars above zero represent the 

percentage of proteins that were up-regulated within each protein functional group, while the 

bars below zero represent the percentage of proteins that were down-regulated within each 

functional group. In the GO annotation comparison between normal and starved cells during 

chlorine disinfection, starved cells had higher percentage of up-regulated proteins in the 

“response to stimulus” category than normal cells (Figure 4 A). Most of the proteins in this 

category are related to various types of stress response.

3.4 Monochloramine Disinfection on Normal and Starved cells

Similar to chlorine disinfection, starvation also promoted the expression of some proteins 

belonging to stress regulator (hupB) and heat shock proteins (grpE, Table 2). The trend seen 

in chlorine disinfection (Table 1) was also seen in monochloramine disinfection (Table 2), 

suggesting that starvation also prepared E. coli cells to monochloramine disinfection. 

Noticeably, thioredoxin/glutathione peroxidase (btuE) was up-regulated 8.5 fold in starved 

cells during monochloramine disinfection, suggesting involvement of reduced glutathione 

(GSH) in resistance to monochloramine. In the GO annotation comparison on 

monochloramine disinfection, starved cells exhibited higher percentage of up-regulated 

proteins in the “response to stimulus” category than normal cells (Figure 4 B), a trend that 

was also seen in chlorine disinfection (Figure 4 A).

3.5 Chlorine and Monochloramine Disinfection on Normal Cells

The genes that were up-regulated under both chlorine and monochloramine disinfection are 

believed to facilitate disinfection tolerance (Table 3). These up-regulated proteins were 

mainly in the protein functional groups of stress regulator, oxidative stress response protein, 

and osmotic stress protein. GO annotation shows that more proteins of “cellular component 
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organization or biogenesis” were up-regulated in normal cells during chlorine disinfection 

than during monochloramine disinfection (Figure 4 C). Most of the up-regulated proteins in 

this category were related to cell wall synthesis, suggesting chlorine might cause more cell 

wall damage than monochloramine due to its higher oxidative capacity. This may partially 

explain why there was no shoulder phase in chlorine disinfection (Figure 1).

Disinfection caused increased expression of glyoxalase 3 (hchA), 6 fold during chlorine 

disinfection and 10 fold during monochloramine disinfection (Table S2). One major 

function of glyoxalase 3 is to detoxify methylglyoxal (MG) by converting it into D-lactate in 

bacteria and fungi (Hasim et al. 2014, Misra et al. 1995). MG is an electrophile and can 

cause cell death by interacting with the nucleophilic centers of macromolecules such as 

DNA. MG only accumulates inside cells when the production outstrips the detoxification 

capacities (Ferguson et al. 1998). In E. coli, MG may be synthesized when the inhibition of 

glyceraldehyde-3-P dehydrogenase (gapA) cause accumulation of dihydroxyacetone 

phosphate (Ferguson et al. 1998). In this study, gapA was down-regulated during 

chlorination and monochloramination on normal cells (Table S2), potentially predisposing 

cells for MG production. Given the down-regulation of gapA and the up-regulation of hchA, 

we speculate that the balance between the production and detoxification of MG in cells may 

determine disinfection resistance of E. coli cells. No literature specifically studied whether 

chlorination or monochloramination of bacterial cells would yield MG, but it is known that 

MG can be excreted out of cells and that MG was detected in water during disinfection 

using ozone and chlorine, and is expected to be found during disinfection by other oxidants 

(Amy et al. 2000).

Protein-protein interactions among the shared, differentially expressed proteins were studied 

(Figure 5). The network nodes are proteins and the black lines indicate the presence of co-

expression evidence. Co-expression of proteins suggests their involvement in the same 

metabolic pathway or share of synergistic functions (van Noort et al. 2003). For chorine 

disinfection, oxidative stress response protein katE (up-regulated 2.3 and 4.0 fold in normal 

and starved cells) and heat shock protein htpG (up-regulated 2.6 and 7.5 fold in normal and 

starved cells) co-expressed, respectively, with proteins in pentose phosphate pathway 

(transketolase 2, tktB, up-regulated 5.7 and 5.7 fold in normal and starved cells) and in 

glycolysis (2,3-bisphosphoglycerate-dependent phosphoglycerate mutase, gpmA, up-

regulated 2.3 and 5.6 fold in normal and starved cells, Figure 5A), which were both up-

regulated under starvation (Figure 3). Like in chlorine disinfection, gpmA (up-regulated 2.9 

and 5.89 fold in normal and starved cells) was among the co-expressed proteins with htpG 

(up-regulated 2.4 and 5.8 fold in normal and starved cells) during monochloramine 

disinfection (Figure 5B).

Results from this proteomic study are in general agreement with those from previous 

transcriptomics studies. Heat shock proteins (htpG) and oxidative stress response proteins 

(katG and wrbA) were detected to be up-regulated in chlorine and monochloramine 

disinfection using microarray (Berry et al. 2010, Wang et al. 2009). However, several up-

regulated genes that were detected using transcriptomics were not detected in this study, for 

example genes related to ironsulfur cluster assembly, cysteine biosynthesis and antibiotic 

resistance (Berry et al. 2010, Wang et al. 2009). This is likely due to the fundamental 

Du et al. Page 9

Water Res. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences between the transcriptomic and proteomic approaches. mRNA transcripts do not 

always directly correlate with the expression levels of the encoded proteins. During protein 

synthesis, the polypeptide chains translated from mRNA at the ribosome may undergo 

posttranslational modifications, such as folding and cutting (Cox and Mann 2011). 

Compared to transcriptomics, proteomics can detect protein abundances, stabilities, turnover 

rates, posttranslational modification, and protein-protein interactions describing molecular 

responses at the protein level. Because of these differences, proteomics and transcriptomics 

may lead to different results for the same samples (Drexler et al. 2012, Durban et al. 2013, 

Nikinmaa et al. 2013).

4. CONCLUSIONS

Proteomic analyses show that proteomic responses to starvation caused the up-regulation of 

proteins related to stress regulator, oxidative stress and osmotic stress, and prepared E. coli 

cells to survive disinfection by chlorine and monochloramine. This study further reveals that 

glutathione and methylglyoxal metabolisms may be important for bacterial defense to 

chlorine-based disinfection. These results improve our understanding of how starvation may 

prepare bacterial cells to survive low level chlorine or monochloramine in DWDSs. More 

studies on the function of the up-regulated proteins detected in this study can further 

elucidate the mechanisms of bacterial survival and re-growth in DWDSs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Starved cells exhibited higher tolerance than normal cells during disinfection.

• Proteins up-regulated under starvation were further up-regulated in disinfection.

• Proteins involved in stress regulation and responses are key to cross-protection.

• Glutathione and methylglyoxal metabolisms are potentially important.
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Figure 1. 
The inactivation curves of normal and starved E. coli cells with chlorine and 

monochloramine. N and N0 are the cell count at time t and time zero, respectively. The error 

bars represent the standard error from triplicate inactivation experiments.
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Figure 2. 
Comparison scheme used in proteomic analyses. Arrows originate from reference proteomes 

and point to treatment proteomes. Comparison 1 is for starvation, while Comparisons 2 and 

3 are for chlorine disinfection (chlorination) and Comparisons 2’ and 3’ for monochloramine 

disinfection (chloramination).
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Figure 3. 
Metabolic reactions that were catalyzed by enzymes up-regulated (bold arrow), enzymes 

down-regulated (outlined arrow), enzymes not differentially expressed (thin arrow), and by 

enzymes undetected (dotted arrow) upon starvation.
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Figure 4. 
GO annotation comparison of differentially expressed proteins (A) during chlorine 

disinfection on normal and starved cells; (B) during monochloramine disinfection on normal 

and starved cells; and (C) during chlorine and monochloramine disinfection of normal cells.
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Figure 5. 
Proteins (network nodes) that were co-expressed (indicated by black lines) in normal and 

starved cells during chlorine (A) and monochloramine (B) disinfection. Proteins circled 

were also up-regulated under starvation.
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Table 1

Differentially expressed proteins in normal and starved E. coli cells during chlorine disinfection.

Gene Fold change

Normal
10 min

(Comparison 2)

Starved
0 min

(Comparison 1)

Starved
10 min

(Comparison 3)

Stress regulator

hupB HU, DNA-binding transcriptional regulator, beta subunit 3.9 6.0 6.9

Oxidative stress response protein

dps Fe-binding and storage protein 1.5 2.0 6.1

katE Hydroperoxidase HPII (III) (catalase) 2.3 3.2 4.0

Heat shock protein

htpG molecular chaperone HSP90 family 2.6 3.7 7.5

grpE heat shock protein 2.3 2.1 13.0
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Table 2

Differentially expressed proteins in normal and starved E. coli cells during monochloramine disinfection.

Gene Fold change

Normal
10 min

(Comparison ’)

Starved
0 min

(Comparison 1)

Starved
10 min

(Comparison 3’)

Stress regulator

hupB HU, DNA-binding transcriptional regulator, beta subunit 0.9 6.0 14.3

Oxidative stress response protein

btuE Thioredoxin/glutathione peroxidase 0.3 2.8 8.5

Heat shock protein

grpE Heat shock protein 0.6 2.1 6.3

htpG molecular chaperone HSP90 family 2.4 3.7 5.8
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Table 3

Differentially expressed proteins in normal E. coli cells under chlorine and monochloramine disinfection.

Gene Fold change

Normal
10 min

Chlorine

Normal
10 min

Monochloramine

Stress regulator

cspC stress protein, member of the CspA-family 4.7 2.1

yajQ Phi6 host factor; binds ATP and GTP 6.0 16.3

Oxidative stress response protein

wrbA NAD(P)H:quinone oxidoreductase 2.1 2.2

ahpF alkyl hydroperoxide reductase, F52a subunit, FAD/NAD(P)-binding 10.5 4.6

uspF stress-induced protein, ATP-binding protein 4.1 2.1

katG catalase-peroxidase HPI, heme b-containing 4.5 2.6

Osmotic stress protein

yciF predicted rubrerythrin/ferritin-like metal-binding protein 5.5 10

Enzymes related to the production and detoxification of MG

hchA glyoxalase 3 6.0 10.0

gapA glyceraldehyde-3-P dehydrogenase A 0.6* 0.2

*
gapA was down-regulated – albeit marginally significant – under this condition.
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