University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

UCARE Research Products

UCARE: Undergraduate Creative Activities & **Research Experiences**

4-2016

Molecular Mechanisms of Goss's Wilt

Samuel Eastman University of Nebraska-Lincoln, eastman_samuel@yahoo.com

Guangyong Li University of Nebraska-Lincoln, gli3@unl.edu

Fan Yang University of Nebraska-Lincoln, fyang@huskers.unl.edu

Josh Herr University of Nebraska-Lincoln, jherr@unl.edu

James R. Alfano University of Nebraska-Lincoln, jalfano2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch Part of the <u>Plant Pathology Commons</u>

Eastman, Samuel; Li, Guangyong; Yang, Fan; Herr, Josh; and Alfano, James R., "Molecular Mechanisms of Goss's Wilt" (2016). UCARE Research Products. 30.

http://digitalcommons.unl.edu/ucareresearch/30

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Molecular Mechanisms of Goss's Wilt

Samuel Eastman¹, Guangyong Li^{2,3}, Fan Yang^{2,3}, Josh Herr^{2,3} and James R. Alfano^{1,2,3} ¹UNL Undergraduate Microbiology, ²Center for Plant Science Innovation and ³Department of Plant Pathology, University of Nebraska-Lincoln

Abstract

Clavibacter michiganensis subsp. *Nebraskensis (Cmn)* is a pathogen responsible for Goss's Wilt in maize in the high plains. Strains of *Clavibacter michiganensis* subsp. *Nebraskensis* that are virulent and non-virulent in maize have been isolated, but the mechanism of this differentiation is not understood. Investigation of the genetic differences between virulent and non-virulent strains is providing an explanation as to how *Cmn* causes disease. *Cmn* mutants with reduced or removed virulence have been created using Tn5 transposon transformation to randomly knockout virulence factors. Potential effectors have also been identified in a genomic "virulence island" region by using bioinformatics.

Strain	Virulence	Date Inoculated	Mutant Type	Method of Inoculation	Type of Corn	Location
519	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
562	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
573	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
575	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
576	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
586	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
623	-	2/19/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
628	-	2/19/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
658	-	2/19/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
681	-	2/19/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
720	-	2/26/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
721	-	2/26/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC

Avirulent Mutants

Out of almost 1200 Tn5 mutants, 12 showed no virulences on maize

Inoculated corn symptom comparison

The severity of Goss's Wilt symptoms was recorded in all inoculated plants. Transformed strains that caused significantly reduced or absent symptoms were flagged for analysis and further testing.

Tn5 Transposome Random Mutagenesis

By transforming *Cmn* with a transposon carrying a selectable antibiotic-resistance gene, over a thousand random mutants of *Cmn* were

Pro. ID	Gene Name	Character	Size(bp)	GC%	GC Diff.(-73%)
	hypothetical protein	unknown	93	73 1	0.1%
PROKKA 00133	hypothetical protein		210	79	6.0%
		Phage integrase	1116	62.0	0.1%
			1110	05.9	-9.1%
РКОККА_00434	hypothetical protein	unknown	372	65.05	-8.0%
PROKKA_00435	hypothetical protein	unknown	243	59.25	-13.8%
PROKKA_00441	hypothetical protein	unknown	408	65.2	-7.8%
PROKKA_00442	hypothetical protein	unknown	420	65.48	-7.5%
PROKKA_01195	hypothetical protein	unknown	138	73.2	0.2%
PROKKA_01305	hypothetical protein	unknown	990	51	-22.0%
PROKKA_01416	BsuMI modification methylase subunit YdiO	putative BsuMI modification methylase subunit YdiO	1140	57.63	-15.4%
PROKKA_01495	hypothetical protein	unknown	120	79.2	6.2%
PROKKA_01504	hypothetical protein	unknown	183	75.41	2.4%
PROKKA_01554	hypothetical protein	unknown	156	78.2	5.2%
PROKKA_02089	hypothetical protein	unknown	246	73.2	0.2%
PROKKA_02139	hypothetical protein	unknown	117	75.21	2.2%
PROKKA_02246	hypothetical protein	unknown	312	81.93	8.9%
PROKKA_02310	hypothetical protein	unknown	135	77.8	4.8%
PROKKA_02646	hypothetical protein	unknown	294	65	-8.0%
PROKKA_02648	hypothetical protein	unknown	174	67.8	-5.2%
PROKKA_02652	hypothetical protein	unknown	246	65.9	-7.1%
PROKKA 02653	hypothetical protein	unknown	402	68.7	-4.3%
 PROKKA 02654	hypothetical protein	unknown	513	67.3	-5.7%
PROKKA 02655	hypothetical protein	unknown	180	65	-8.0%
	hypothetical protein	unknown	99	57.6	-15 4%

Reverse Genetics Approach

Goss' Wilt Symptoms

Goss's Wilt is a vascular pathogen that causes tissue necrosis parallel to leaf veins, with characteristic spots of bacterial exudate. Yield loss due to Goss's Wilt can reach 50% in severely infected fields. Goss's Wilt is historically a Nebraska pathogen but the range of disease increases during hot, dry years.

created. The Tn5 transposon inserts randomly into the genome, breaking any gene in which it lands.

Strain	Virulence	Date Inoculated	Mutant Type	Method of Inoculation	Type of Corn	Location
511	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
512	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
513	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
514	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
515	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
516	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
517	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
518	+	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC
519	-	2/12/16	EzTn5 Mutant (2)	Nick-Dab	Heirloom GB	GC

Clavibacter Virulence Data

Virulence readings on over 1000 randomly generated mutants were taken and recorded. Potentially avirulent strains are shown in green to show reduced or absent virulence in the plant. By comparing the sequence of the virulent strain of *Cmn* to other, avirulent strains, candidate genes for potential effectors were identified. The genes in green are located clustered together with a gene for a Phage integrase protein, suggesting a region of virulence genes (a "virulence island"), responsible for the acquisition of pathogenicity and Goss's Wilt symptoms.

Gene Knockout using Homologous Recombination Using Homologous Recombination the virulence region described above and all the genes contained within will be knocked out all at once. A specially-prepared version of DNA with identical sequences

Laboratory Setup

Plants were inoculated by dabbing bacterial solution on a leaf cut. They were then kept for 1 week in a growth chamber at 24 degrees C.

Ctrl 451 519 566 573 575 576

Strain-Specific Colony PCR

By including strain-specific primers in the PCR reaction, potentially avirulent strains were either identified as arising from the original transformed strain, or identified as a contaminant.

from up- and down-stream of the virulence region will bind to the genomic DNA and replace the region with a selectable antibiotic marker

Acknowledgements

We appreciate the help of Dr. Bob Harveson and Kathy Nielson for providing heirloom Golden Bantam maize seeds and *Cmn* strains from their collection, of Dr. Tamra Jackson for providing many base strains of *Cmn* from her collection, and of Dr. Riekhof for assistance with molecular techniques.

This research was supported by a UCARE grant from the University of Nebraska-Lincoln.