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An optical trap for relativistic plasma a…

Ping Zhang,b) Ned Saleh, Shouyuan Chen, Zhengming Sheng,c) and Donald Umstadter
FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109-2099

~Received 13 November 2002; accepted 14 February 2003!

The first optical trap capable of confining relativistic electrons, with kinetic energy<350 keV was
created by the interference of spatially and temporally overlapping terawatt power, 400 fs duration
laser pulses (<2.431018 W/cm2) in plasma. Analysis and computer simulation predicted that the
plasma density was greatly modulated, reaching a peak density up to 10 times the background
density (ne /n0;10) at the interference minima. Associated with this charge displacement, a
direct-current electrostatic field of strength of;231011 eV/m was excited. These predictions were
confirmed experimentally by Thomson and Raman scattering diagnostics. Also confirmed were
predictions that the electron density grating acted as a multi-layer mirror to transfer energy between
the crossed laser beams, resulting in the power of the weaker laser beam being nearly 50%
increased. Furthermore, it was predicted that the optical trap acted to heat electrons, increasing their
temperature by two orders of magnitude. The experimental results showed that the number of high
energy electrons accelerated along the direction of one of the laser beams was enhanced by a factor
of 3 and electron temperature was increased;100 keV as compared with single-beam illumination.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1566033#

I. INTRODUCTION

Trapping has often been used with great success to con-
fine ultracold matter, leading to many important applications,
such as Bose–Einstein condensation and matter-wave lasers.
Traps capable of confining ultrahot matter, or plasma, have
also been built for applications in the basic plasma research
and thermonuclear fusion. For instance, low-density,ne

;107 cm23, non-neutral plasmas with temperatureTe

<1 keV have been confined with static magnetic fields in
Malmberg–Penning traps.1 Low-density, ne;1014 cm23,
Te;10– 100 keV plasmas are confined in magnetic mirrors
and tokamaks. Since the discovery of the ponderomotive
force over 40 years ago, it has been well known that charged
particles interacting with an oscillating electromagnetic field
will seek regions of the minimum light intensity~dark-
seeking behavior!.2 The idea of trapping charged particles by
the ponderomotive force with the appropriate electromag-
netic field distribution was then proposed.3 Two-dimensional
electron confinement with a specially shaped laser beam has
been discussed.4–6 By modulating laser pulse intensities via
wave-plates, a strong three-dimensional optical trap capable
of confining electrons of kinetic energies up to 10 keV was
built.7,8

In this paper, we discuss an optical trap capable of con-
fining extremely high density~close to critical density!and
hot ~relativistic!plasmas, of kinetic energy up to 350 keV, by
means of the interference of two terawatt-class~TW! femto-
second laser pulses. In the intersection region of laser beams,
the modulated total laser intensity formed ponderomotive po-

tential troughs of subwavelength width~0.7 mm!, and very
high ponderomotive potential gradients, up to 1012 eV/m.
The Thomson scattering, stimulated Raman scattering, analy-
sis, and computer simulation all indicate that the electrons
were bunched by the strong ponderomotive force into sheets
of thickness two orders of magnitude less than the laser
wavelength, and an electron density up to 10 times higher
than that of the backgroundn0 . Correspondingly, the stimu-
lated Raman side scattering indicates strong electron density
deletion~0.4% of n0) between the density-bunched regions.
An electrostatic field of 1011 eV/m was produced by the
bunched electrons. Unlike the electric field of an electron
plasma wave,9–12 the electrostatic field in this optical trap
was a localized direct-current field, with zero phase velocity
and a fixed field direction during the laser beam interference.

II. ANALYSIS AND COMPUTER SIMULATION

The physical picture of this optical trap is simple. A
ponderomotive forceFW p}“I , whereI is the intensity of la-
ser, is produced when light intensity has a spatial gradient.
Two intense laser beams of the intensitiesI 1 and I 2 , with
same frequency and parallel polarization, perpendicularly
crossing each other, interfere, causing spatial modulation of
the light intensity given byI 5I 11I 212AI 1I 2 cosd, whered
is the phase difference of these two laser pulses. In the ex-
periment described in the following,I 150.25I2 and the peak
interference intensity is nine times higher than that of the
valley, and the distance of the intensity peak-to-valley is
0.35lL , wherelL is the wavelength of the laser. These in-
tensity peaks and valleys lie alongx, which is the spatial
dimension perpendicular to the bisector of the two laser
propagation directions. By means of the interference of two
high-power laser pulses, a very high intensity gradient cre-

a!Paper GI2 2, Bull. Am. Phys. Soc.47, 137 ~2002!.
b!Invited speaker.
c!Also at Laboratory of Optical Physics, Chinese Academy of Sciences,
Beijing 100080, People’s Republic of China.
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ated. If free electrons are present, they will oscillate in the
high frequency laser field and Thomson-scatter light. On a
time scale of several laser cycles, they experience a pondero-
motive force that pushes them to the intensity valleys. The
ponderomotive force is

FW p52mec
2

]g

]x
, ~1!

where g5A11a2/2 is the relativistic factor anda58.5
310210lL (mm)AI (W/cm2) is the normalized vector poten-
tial of the laser field,lL is the laser wavelength,I is the total
intensity, andmec

2 is the rest-energy the electron. The inter-
ference laser intensity expressed by the normalized vector
potential isa258a1

2 sin2(px/D), whereD is the distance be-
tween the two laser intensity peaks anduxu<D/2. The pon-
deromotive force can be calculated using Eq.~1!, which
gives

FW p52
2pmec

2a1
2

gD
sinS 2px

D D xW

x
. ~2!

Using the laser parameters in the experiment described in the
following, in the interference region, the peak laser intensity
is 431018 W/cm2. The corresponding ponderomotive force
is up to 1012 eV/m, and the ponderomotive potentialfp ,
defined byFW p52“fp is about 300 keV~Fig. 1!.

Initially, because the plasma is uniform, the electrons
experience only the ponderomotive force, which pushes
them toward the interference troughs, where they are trapped
and bunched. Because the much heavier ions do not have
time to move significantly during the interference of subpi-
cosecond duration pulses, but electrons do, a large direct-
current electrostatic fieldEW es is created, which exerts an elec-
trostatic force on the electrons in the direction opposite to the
ponderomotive force.

The value of electrostatic forceeEW es increases with
bunching, based on Gauss’ law

E
S
EW es•dSW 5

e

«0
E

V
~ne2n0!dV,

whereS andV are the boundary surface and volume of the

bunched electrons, respectively, andne and n0 are the
bunched and background electron~or positive charge!densi-
ties, respectively. This charge distribution is localized in the
optical trap, but all these charged particles~inside the Gauss-
ian pillbox! will contribute to the field no matter if these
charges are in motion or not. When the bunched electron
densityne is higher thann0 in the pillbox during the laser
beam interference, the direction of the electrostatic field is
fixed and thus the field is a direct-current one. Assuming that
the bunching process is in one dimension, the electrostatic
force created by the electron bunch is given by

EW 5
n0ueu

«0
S ne

n0
21DXW , ~3!

whereX is 1/2 the thickness of the bunched electron sheet.
The maximum intensity of the electrostatic field is reached at
the boundaries of the pillbox. Using Eq.~3!, the dependence
of electrostatic field on the electron density ratione /n0 is
shown in Fig. 2. In the experiment described in the follow-
ing, the background electron densityn0 is 431025 m23.
With ne /n052, the field strength jumps toEes51.28
31011 eV/m, and when ne /n056, Ees reaches 2.1
31011 eV/m, and then it increases gradually withne /n0 to
the saturation value of;2.531011 eV/m.

A similar grating-like electron distribution at the surface
of a plasma was previously predicted and observed by means
of a one-dimensional particle-in-cell code,23 but this model
neglected the influence of electron thermal pressure.

In the bunch process, the force of electron thermal pres-
sureFW T prevents the electron accumulation. Assuming that
the bunch process is adiabatic,FW T and the electron thermal
pressurePe are given by

FW T5
“Pe

ne
,

Pe5n0Te0~eV!S ne

n0
D 3

, ~4!

ne~x!5an0 expF S x

XD 2G ,

FIG. 1. Ponderomotive force and potential distribution. The potential valley
forms the optical trap. FIG. 2. Electrostatic field vs electron density ratione /n0 .
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where Te(eV)5100 eV is the initial electron temperature
anda is a parameter determined by the restriction of electron
number conservation

a

D E
2D/2

D/2

expF2S x

XD 2Gdx51. ~5!

Then the force of thermal pressure on the boundary of the
bunched electron sheet is

FW T56a2Te0~eV!
XW

X2 . ~6!

Assuming the bunched electron sheet boundary locates
at the force balance points where

FW P~X!1FW es~X!1FW T~X!50, ~7!

the thickness (2X) of the electron sheets and the correspond-
ing electron densities at different interference intensities can
be calculated. Figure 3 shows the dependence of the combi-
nation of the three forces on the thickness of the bunched-
electron sheets at peak laser intensity of 431018 W/cm2.
The total force looks like van der Walls force, where at
points beyond the balance point closer to the interference
fringe, the force is a bunching force, while points closer to
the bunched electron distribution, the force is thermal-
pressure dominated, resist the further accumulation. The
electron density ratione /n0;D/2X59.2 is then calculated.
At peak laser intensity of 4.831018 W/cm2, the highest in-
tensity observed in the experiment, the width of each
bunched density region was then reduced to 0.68mm or
about D/10.2, which implies ne /n0510.2 and Ees;2.3
31011 eV/m.

The bunched electron in the laser beam intersection has
the structure of a density grating or multi-layer mirror. It will
diffract or reflect incident laser light resulting in laser energy
transfer between the two crossed laser beams. Based on the
density-grating model, the density grating satisfies

D~sinum2sinu t!5ml,

m50,61,62,..., ~8!

whereu i is the incident angle andum is the diffraction angle
of m order. In our experiment, the weaker laser beamI 1 was
named pump and the stronger oneI 2 was injection. If the
injection beam is the incident laser, the only possible diffrac-
tion direction is in the pump direction with (m521), and
vice versa. The weaker pump beam will get more energy
from injection during the dual beam interference. By using
the multi-layer mirror mode, the same results of energy
transfer are obtained.

The above-given calculation is consistent with a two-
dimensional particle-in-cell code computer simulation,
which solves Maxwell’s equations and the equation of mo-
tion for the particles in plasma. In this simulation, a rectan-
gular simulation box of 100l360l is used, which is split
into 10003600 cells for the integration of the Maxwell’s
equations. A homogeneous plasma volume with an initial
density of 0.04nc occupies part of the simulation box. The
pump laser of the normalized vector potentiala150.5, and it
is along thex direction. The injection pulse ofa251.0,
which is four-times stronger in intensity than pump, is along
the y direction. Nine particles per cell are used for electrons
and ions. Absorption boundaries for the fields and reflection
boundaries for particles are used in both thex and y direc-
tions. The simulation results are depicted in Fig. 4, where the
bunched charge regions exhibit a peak density ratio of
ne /n0;10 and width;1/10 of the distance between inter-
ference peaks, at the time of maximum overlap. The simula-
tion also predicts that the bunched electrons Thomson scatter
the laser so that there is significant energy transfer from in-
jection to pump, making the pump laser increase about 50%
~Fig. 5!. This energy transfer was also predicted by previous
theory.13

FIG. 3. Combination of the ponderomotive force, electrostatic force, and
force of thermal pressure.

FIG. 4. Simulation shows that, with the interference of twos-polarized laser
pulses, there is an electron-density bunching and grating structure at the
laser intersection~upper picture!, while, with two p-polarized laser pulses,
no such density bunching~lower picture!.

2095Phys. Plasmas, Vol. 10, No. 5, May 2003 An optical trap for relativistic plasma



III. EXPERIMENTAL RESULTS

In a proof-of-principle experiment, two 1.053mm wave-
length laser pulses, each ultra-short in duration~400 fs!and
high peak power~1.5 and 6.0 TW!, were focused perpen-
dicularly to each other, withf /3 parabolic~vacuum spot-size
of 12 mm full width at half maximum!, reaching peak inten-
sities of 631017 and 2.431018 W/cm2, respectively. The
beams were predominantly upward polarized, but had a
small component of horizontal polarization due to the tight
focusing geometry. Using a delay line, the pulses were over-
lapped temporally to within 30 fs inside a supersonic helium
gas jet~at 5.53106 Pa).

Plasma with densityn05431025 m23 was created by
photoionization of the gas. Light propagation through the
plasma was observed from top-view Thomson scattering pic-
tures. The bright spot in Fig. 6 showed that the Thomson
scattered light was significantly enhanced along the bisector
of the laser beam intersection region. A line out of the bright
spot indicated that the spatially averaged Thomson scattered
power ^Ps& from the region of the beam’s intersection was
more than ten timeŝP0&. The latter was from the back-
ground electrons outside the intersection region with density
in the channel created by the more powerful of the two laser
beams. This enhancement,^Ps /P0&510, implied that the
scattering was coherent, i.e., the Bragg scattering formula,14

Ps /P0}(ne /n0)2 applied, and indicated thatne /n0.10,
which was 100 times higher than the largest reported ampli-
tude for a plasma wave, which—unlike a trap modulation—
was limited in amplitude by wave-breaking.15,16

The top-view spectra of the scattering lights are shown
in Fig. 7. With only the pump laser, the signals of spectrum
were in the level of background. When the two laser pulses
were crossed, the spectrum clearly shows peaks of the stimu-
lated Raman scattering~SRS! of the frequency shiftDv
;vp51.931013 arc/sec corresponding to plasma density
ne;431023 n0 determined usingvp5Ae2ne /g«0me,
where g was the relativistic factor and«058.85
310212 F/m was the permittivity of free space. The result

indicates relatively large density accumulation, about ten
times of the background. Plasma cavities were dug to nearly
99.6% electron density depletion. Figure 7 also showed that
the unshifted light, originating from Thomson scattering, was
about five times stronger with crossed laser pulses than from
only injection pulse. When the effects of spatial integration
were accounted for, the ratio^Ps /P0&;10 is again obtained.

With crossed laser pulses, two strong satellite lines were
observed in the spectrum in Fig. 7, with the wavelength
shifts ;63.8 nm away from the fundamental light. These
two satellite lines may have originated from stimulated Bril-
louin scattering~SBS!. The associated ion acoustic wave was
excited by the beating or optical mixing of the crossed laser
pulses, which had the frequency bandwidths that exceeded
the ion acoustic frequency shift. The ion acoustic wave and
SBS signals will be discussed in detail in a forthcoming pub-
lication.

The spectra of light scattered in the direction of pump
beam were also measured~Fig. 8!, and the results indicate

FIG. 5. Energy transfer from stronger injection laser to the weaker pump
laser shown by simulation.

FIG. 6. ~a! Image of the Thomson scattered light viewed from top down-
ward to the throat of the nozzle. The weaker pump beam propagated from
right to left while the stronger injection beam from top to bottom.~b! In-
tensity distribution of Thomson scattering light along the injection plasma
channel showed the light enhancement at the beam intersection. From this
result, an accumulated plasma density with amplitudene;10n0 was in-
ferred.

2096 Phys. Plasmas, Vol. 10, No. 5, May 2003 Zhang et al.



that the pump laser beam was enhanced by energy transfer.
This result confirmed the prediction of the analysis, simula-
tion, and theory. The bunched electrons not only reflected the
fundamental laser but also all the scattering light signals
from injection to pump or vice versa. The reflection of for-
ward stimulated Raman scattering light from injection to
pump may especially bring about optical mixing between the
fundamental light and the reflected scattering, resulting in the
pump plasma wave being resonantly driven. It was observed
in some spectra that with dual pulse illumination, the scat-
tered lights in the pump direction were obviously enhanced
while the fundamental laser signal was barely increased. A
possible reason is that resonant excitation of the plasma
waves effectively absorbed the driving laser energy.

In order to test the calculation model prediction for the
dependence of thene /n0 on the laser interference intensities,
the values of̂ Ps /P0& were measured at peak laser intensi-
ties ranging from 831017 to 4.831018 W/cm2. Discounting

the background and the contribution of SBS, the result was
shown in Fig. 9, and the inferred values ofne /n0 coincided
relatively well with the theoretical prediction.

IV. ELECTRON HEATING AND INJECTION

We have previously discussed that the optical trap can
bunch the electrons and produce high electron densities, up
to 10n0 , resulting in the excitation of a strong electrostatic
field, on the order of 1011 eV/m. The resistance of the elec-
trostatic force against the bunching ponderomotive force in-
creases the electric potential energy of the bunched electrons.
P-V work will increase the electron temperature. Assuming
that the bunching process is adiabatic, the temperature of the
bunched electrons is

Te~eV!5S ne

n0
D G21

Te0~eV!. ~9!

If the process is in one dimension,G53, with a ten-time
electron density increase, the corresponding electron tem-
peratureTe(eV) will be increased by two orders.

It has to be pointed out that the above-mentioned adia-
batic model works well in a quasi-static process in which
Maxwell distribution applies. Actually in the short time pe-
riod of the interference of 400 fs, the bunched electron sys-
tem approaches, but never reaches, such an equilibrium state.
The boundary of the accumulated electron bulk vibrates
around the force balance points. If the vibration is assumed
harmonic, the frequency of the vibration can be simply esti-
mated from Fig. 3. Near the force balance point, the slope
DF/DX is about 22.7 N/m, and thus a frequency 1.6
31015 s215 can be calculated. The resistance of the electron
thermal pressure against the bunching increases the electron
kinetic energies of random motion, which is related to the
electron temperature, and the work of electrostatic force in-
creases the electron potential energies. With increases of the
electron temperature and potential energy, the laser energy

FIG. 7. Top view spectra of the scattered light, with/without the pump
beam.

FIG. 8. Spectra of the laser and scattered light in the pump beam direction,
with/without injection beam.

FIG. 9. Comparison of the analytical and experimental results of the in-
ferred electron-density-ratio vs laser intensities.
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is gradually absorbed by the bunched electrons and the vi-
bration amplitude gradually decreases until the end of the
laser pulse interference.

Computer simulation shows that the electrons are heated
in the beam intersection and then these preheated electrons
are injected into the enhanced pump plasma wave. Accelera-
tion by the resulting plasma wave produces a beam of high
energy electrons in the direction of pump~Fig. 10!. The mea-
surement of the electron spectra and beam profiles in pump
direction with/without injection shows that with crossed laser
pulses, the number of high energy electrons is increased
three times and the corresponding temperature increase is
more than 100 keV~Fig. 11!. Possible mechanisms for the
stronger electron beam are the enhancement of pump plasma
wave by the laser energy transfer, the beating of the reflected
forward SRS light from injection with the pump laser light,
and the injection of the preheated electrons into pump
plasma wave, which made more electrons phase-matched
with the wave. Simulations also indicated that by using this
technique with shorter pulse lasers, the energy spread of
these accelerators might be significantly reduced.17 Details of
the effects of the two crossed laser pulses on electron accel-
eration in the laser driven plasma wave will be discussed in a
separate publication.

V. DIFFERENCES BETWEEN THE OPTICAL TRAP
AND PLASMA WAVES

The electrostatic field of our optical trap is different from
that in a plasma wave~the field strength of a plasma wave
can be on the order of 1011 eV/m). First, the optical trap and
the electrostatic field of the optical trap are localized and
have zero phase velocity. A plasma wave, on the other hand,
moves with velocity ofvp;cA12vp

2/v2. Second, the dis-
tance~wavelength!between the two bunched electron den-
sity peaks is only 0.7lL , while in the plasma wave, the
wavelength, based on the parameters of laser and back-

ground plasma in our experiment, is much longer~by greater
than ten times!than the laser wavelength. Third, the bunched
electrons have density modulationdne/ne5(ne2n0)/n0 up
to 10, while in a plasma wave the corresponding density
modulation is less than 1. Fourth, the function of the optical
trap is to hold electrons and increase their electrostatic po-
tentials and the kinetic energies of random motion. A plasma
wave, on the other hand, acts to increase the electron kinetic
energies of directional motion along the propagation direc-
tion. These differences make this optical trap unique in laser
plasma physics.

There are several important applications of the optical
trap besides electron acceleration. For instance, it might be
used as a test bed for the study of relativistic nonlinear
Thomson scattering.8 The ponderomotive force can be ex-
pressed in another form

FW p52“~T1m0c2!52“Fm0c2S 11
I 18lL

2

1.37D 1/2G , ~10!

whereT is the kinetic energy of the electrons andI 18 is the
interference laser intensity in units of 1018 W/cm2. If the

FIG. 10. Snapshot of simulation taken at 80 laser cycles shows that with
dual laser illumination, the electric field in pump laser directionx was ob-
viously enhanced and electrons were heated and accelerated primarily in the
pump-laser direction. The results were consistent with the electrons being
heated during the period of beam overlap and then injected into the accel-
eration phase of the enhanced plasma waves in the pump direction.

FIG. 11. ~a! Enhancement of electron number with injection on upper left
picture: the electron beam profile without injection. Upper right picture: the
profile with injection. ~b! Increase in electron temperature in pump beam
direction with injection on.
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interference intensity isI 18;10, thenTmax51 MeV, or about
2mec

2. When the electrons oscillating with this energy col-
lide with the stationary nuclei of plasma ions, they will pro-
duce positrons,18 which can either be accelerated in laser
driven wakefield or allowed to annihilate with the electrons
to generate bright gamma ray bursts with 511 keV energy.
This research is also relevant to fast ignition fusion19 or ion
acceleration experiments,20 in which a laser pulse may po-
tentially beat with a reflected weaker pulse, with intensities
comparable to those used in our experiment. Last, an elec-
tron beam that enters the trap with kinetic energy exceeding
the trapping threshold will be ‘‘wiggled’’ by the periodically
spaced electrostatic field, causing emission of coherent short-
wavelength radiation, as discussed previously in the context
of plasma-wave wigglers.21 Remarkably, the strength of the
optical-trap field is almost one million times higher, and the
wavelength is almost a million times shorter, than a conven-
tional magnetic wiggler. Calculations indicate that 100-times
shorter wavelength light can be generated in the former case,
with electrons of the same given energy.

VI. CONCLUSIONS

By interfering two TW femtosecond laser pulses in
plasma, an optical trap of potential depth;350 keV was
experimentally created. An unprecedented electron bunching
of ne /n0;10 was inferred from scattering diagnostics. A lo-
calized electrostatic field of strength;231011 eV/m was
excited by the electron accumulation inside the optical trap.
Transfer of light energy from one beam to another was also
observed. Optical mixing by two crossed laser pulses reso-
nantly excited electron plasma waves and ion acoustic
waves. As predicted by analysis and simulation, electrons
were heated in the optical trap and these preheated electrons
were then injected into the enhanced pump plasma wave,
resulting in enhancements of the electron beam both in in-

tensity and temperature. The latter is the first step toward the
experimental realization of the laser injected laser accelera-
tion concept~LILAC!. 22
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