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Candida albicans is a dimorphic fungus that can interconvert between yeast and filamentous forms. Its ability
to regulate morphogenesis is strongly correlated with virulence. Tup1, a transcriptional repressor, and the
signaling molecule farnesol are both capable of negatively regulating the yeast to filamentous conversion.
Based on this overlap in function, we tested the hypothesis that the cellular response to farnesol involves, in
part, the activation of Tup1. Tup1 functions with the DNA binding proteins Nrg1 and Rfg1 as a transcription
regulator to repress the expression of hypha-specific genes. The tup1/tup1 and nrg1/nrg1 mutants, but not the
rfg1/rfg1 mutant, failed to respond to farnesol. Treatment of C. albicans cells with farnesol caused a small but
consistent increase in both TUP1 mRNA and protein levels. Importantly, this increase corresponds with the
commitment point, beyond which added farnesol no longer blocks germ tube formation, and it correlates with
a strong decrease in the expression of two Tup1-regulated hypha-specific genes, HWP1 and RBT1. Tup1
probably plays a direct role in the response to farnesol because farnesol suppresses the haploinsufficient
phenotype of a TUP1/tup1 heterozygote. Farnesol did not affect EFG1 (a transcription regulator of filament
development), NRG1, or RFG1 mRNA levels, demonstrating specific gene regulation in response to farnesol.
Furthermore, the tup1/tup1 and nrg1/nrg1 mutants produced 17- and 19-fold more farnesol, respectively, than
the parental strain. These levels of excess farnesol are sufficient to block filamentation in a wild-type strain.
Our data are consistent with the role of Tup1 as a crucial component of the response to farnesol in C. albicans.

Candida albicans is the opportunistic fungal pathogen most
commonly isolated in humans. C. albicans is part of the normal
flora, and it resides in the gastrointestinal and genitourinary
tracts, as well as on the skin. However, C. albicans is capable of
causing a wide range of diseases, from mild mucosal infections
to life-threatening systemic infections termed candidemia (19).
Vulnerable patients include those with AIDS and patients un-
dergoing chemotherapy and organ transplantation (19). The
annual cost of treating candidiasis in the United States was
estimated to be 1 billion dollars, and the mortality rates for
patients with candidiasis are 30 to 50%, even with antifungal
treatment (28), indicating a need for new antifungal drugs.

The ability of C. albicans to cause disease has been strongly
linked to its conversion between two distinct morphological
forms, yeast and filamentous. Recently, our research has fo-
cused on farnesol, the first quorum-sensing molecule discov-
ered in a eukaryote (17). Farnesol is a virulence factor (35)
that is excreted continuously by C. albicans (17), and when it
accumulates beyond a threshold level, it blocks the yeast to
filament conversion (17). Stationary-phase cultures of C. albi-
cans have accumulated 2 to 4 �M farnesol (17), and the 50%
inhibitory concentration value for blocking germ tube forma-

tion (GTF) in an N-acetylglucosamine-stimulated assay is ca. 1
to 2 �M (E,E-)farnesol (17, 31, 39), and consequently, these
farnesol production levels are physiologically relevant. Other
roles described for farnesol include biofilm inhibition (36),
protection from oxidative stress (46), and induction of apop-
tosis in another fungus, Aspergillus nidulans (38). While many
phenotypic effects produced by farnesol have been described,
little is understood about farnesol’s mode of action.

In addition to farnesol, C. albicans yeast and filamentous
growth are controlled by an assortment of signaling pathways
(4, 13). The yeast-to-filamentous form conversion is activated
by many pathways, including components of the CEK1 mito-
gen-activated protein (MAP) kinase pathway, the Ras/cyclic
AMP-dependent pathway, the calcium/calmodulin signaling
pathway, the Rim101-independent pathway, and the Chk1 two-
component signal transduction pathway. Although each path-
way has been implicated in filamentation (10, 26, 37), these
pathways show some degree of specialization in that they re-
spond to different environmental inducers. The activation and
inhibition of filament development are accomplished largely
through changes in gene expression mediated by transcription
activators and repressors. Efg1 is a major transcription regu-
lator of filamentous growth and is a central control point for
many signaling pathways involved in filamentation (14). Efg1
also regulates the expression of multiple genes, including those
involved in virulence (6, 29). Mechanisms have also been iden-
tified that block filament development, with Tup1 playing a key
role in transcriptional repression (5, 6).

Farnesol is able to block filamentous growth induced by
environmental signals for most, and possibly for all, of the
signaling pathways activating filament development. These sig-
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nals include 10% serum, 10 mM L-proline, 2.5 mM N-acetyl-
glucosamine, or the combination of N-acetylglucosamine and
L-proline, all at 37°C (17). Thus, farnesol may individually
block each of the morphogenic signaling pathways and/or act at
a common control point in morphogenesis. Tup1 repression of
filament-specific genes is an attractive candidate for a common
control point that may be regulated by farnesol (21).

The C. albicans Tup1 protein is a transcription regulator that
plays two key roles in the cell: (i) regulation of phase switching,
and (ii) inhibition of filamentous growth. Tup1 interacts with
the corepressor protein Ssn6 or Tcc1. These complexes func-
tion with DNA binding proteins to repress gene expression (23,
42). At least three DNA-binding proteins have been identified
that function with Tup1: Nrg1 (homologous to the Saccharo-
myces cerevisiae Nrg1p protein), Rfg1 (homologous to the S.
cerevisiae Rox1p protein), and Mig1 (homologous to the S.
cerevisiae Mig1p protein). Homozygous tup1 mutants are un-
able to grow as yeast and instead remain locked in the fila-
mentous form, in all media tested (5). Deletion of TUP1 results
in the up-regulation of approximately one-third of C. albicans
genes (32, 33), and these mutants are also avirulent in a murine
model of infection. The activation of Tup1 transcription re-
pressor complexes results in the repression of filament-specific
gene expression (5, 6, 32, 33).

Here, we tested the hypothesis that the C. albicans response
to farnesol involves Tup1. The morphological response to far-
nesol was tested with wild-type and tup1/tup1, tup1/TUP1, nrg1/
nrg1, and rfg1/rfg1 strains to assess the requirement for these
genes in the farnesol response. The morphological response
and gene expression pattern for MIG1 were not determined
because the Mig1 protein does not play a role in the filamen-
tous growth of C. albicans (32). The gene expression patterns
of TUP1, NRG1, RFG1, and EFG1, as well as genes under their
control, were examined in the presence or absence of farnesol
by quantitative Northern and Western analyses. Finally, we
compared farnesol production levels in tup1, nrg1, and rfg1
homozygous mutants relative to that in wild-type cells.

MATERIALS AND METHODS

Strains and media. Candida albicans SC5314 is an independent clinical isolate
and the reference strain for the Candida genome sequence (1). C. albicans strains
CAF-2 (ura3::imm434/URA3) and CAI-4 (ura3::imm434/ura3::imm434) are de-
rived from SC5314 by gene replacement (16). Strains BCa2-9 (tup1/tup1 in CAI-4
[5]), BCa2-10 (tup1/tup1, frameshift disruption fragment in CAI-4 [5]), DU152
(nrg1/nrg1 in CAI-4 [5]), DU129 (rfg1/rfg1 in CAI-4 [22]), BCa05, which expresses
TUP1 ectopically (tup1/tup1, MAL3::p455 in CAI-4 [3, 5]), and BCa2-3 (TUP1/
tup1 in CAI-4 [5]) were obtained from Alexander Johnson, University of Cali-
fornia, San Francisco, CA. Strain MEN was provided by Richard Cannon, Uni-
versity of Otago, Dunedin, New Zealand.

Resting cells were obtained by growing cells in modified glucose salts biotin
media (mGSB) overnight, washing them three times with 50 mM phosphate (pH
6.5), resuspending them in 10 ml of 50 mM phosphate, and storing them at 4°C,
to be used within a month.

The defined glucose-salts medium GPP (pH 4.8) contained (per liter of dis-
tilled water) glucose, 20 g; L-proline, 1.15 g; NaH2PO4, 3.2 g; KH2PO4, 4 g;
MgSO4 � 7H2O, 0.5g; CuSO4 � 5H2O, 1 mg; ZnSO4 � 7H2O, 1 mg; MnCl2, 1 mg;
FeSO4, 1 mg; biotin, 20 �g; pyridoxine � HCl, 200 �g; thiamine � HCl, 200 �g.
The glucose (20% [wt/vol]) and L-proline (100 mM) were autoclaved separately
and added aseptically, as were the filter-sterilized vitamins (27). Modified GPP
(mGPP) also contained 2.5 mM N-acetylglucosamine (17). GPP (pH 6.8) con-
tained 3.2 g/liter Na2HPO4 instead of NaH2PO4. For maltose phosphate proline
(MPP) medium, filter-sterilized maltose replaced the glucose. Cornmeal agar
(Difco, Detroit, MI) was also used. Solid medium included 2% (wt/vol) agar. All
media for CAI-4 included uridine at 40 �g/ml.

Microscopy. Differential interference contrast images were produced with an
Olympus BX51 microscope, and colony morphology photographs were made
with an Olympus SZX12 microscope.

Quantitative Northern blotting analysis. To measure mRNA accumulation,
SC5314 resting cells were inoculated in mGPP to an optical density at 600 nm of
0.5 to 0.6 and allowed to equilibrate at 37°C for 5 min, whereupon 20 �M
farnesol was added to half of the flasks. Cells were grown at 37°C for 0, 20, 40,
60, and 80 min, until the cells were harvested, and total RNA was extracted by
the hot phenol method (24). Equal amounts of RNA (15 �g) were resolved on
1.0% agarose-formaldehyde gels, and the RNA was transferred to GeneScreen
Plus (NEN Life Science Products, Inc., Boston, MA), using the capillary blot
transfer protocol recommended by the manufacturer. The Northern blots were
probed with radiolabeled DNA probes. The probe DNA used for synthesis was
prepared by PCR using MEN genomic DNA. The probes were labeled with
[32P]dCTP (GE Health Sciences, Piscataway, NJ), using an oligo labeling kit,
RadPrime DNA labeling system, following the protocol recommended by the
manufacturer (Invitrogen, Carlsbad, CA). Northern blots were phosphorimaged
using a Storm phosphorimager (Amersham Pharmacia Biotech Inc., Piscataway,
NJ) and quantified using ImageQuant software (version 5.0; Molecular Dynam-
ics, Sunnyvale, CA). mRNA abundance measurements were done using a min-
imum of three independent Northern blots.

Western blotting analysis. Western blots were prepared as previously de-
scribed (2), and Tup1 and Act1 proteins were detected with a Supersignal West
Pico chemiluminescent substrate, using the manufacturer’s protocol (Pierce,
Rockford, IL), except that blocking was done with 5% nonfat dried milk. Rabbit
polyclonal antibodies against Tup1 were previously described (18). Mouse mono-
clonal anti-Act1 antibodies and horseradish peroxidase-labeled ant-rabbit immu-
noglobulin G antibodies were from Amersham Pharmacia Biotech, Inc. (Pisca-
taway, NJ). Horseradish peroxidase-labeled anti-mouse antibody was from
Perkin-Elmer (Boston, MA).

Analysis of farnesol levels. Extracellular farnesol was extracted from cell-free
supernatants of cultures grown in mGPP at 30oC and analyzed by gas chroma-
tography-mass spectrometry as described previously (17).

RESULTS

The tup1/tup1 and nrg1/nrg1 mutants lack a morphological
response to farnesol, while the rfg1/rfg1 mutant responds to
farnesol. The juxtaposition of farnesol’s ability to inhibit dif-
ferentiation and the role of Tup1 as a transcription repressor
for filamentation genes suggest that farnesol could function by
activating Tup1 and/or one of its coregulators, Nrg1 or Rfg1.
Consequently, we examined the effect of farnesol on the mor-
phology of null mutants lacking TUP1, NRG1, and RFG1. As a
control, the wild-type C. albicans SC5314 in filament-inducing
media grew as yeast in the presence of 20 �M farnesol and as
filaments in media lacking farnesol, demonstrating a positive
response to farnesol (Fig. 1). The rfg1/rfg1 mutant responded
to 20 �M farnesol in a manner similar to that of SC5314 (Fig.
1). Unlike SC5314 and rfg1/rfg1, the tup1/tup1 and nrg1/nrg1
mutants lacked a detectable response to farnesol and remained
filamentous in the presence of 20 �M farnesol (Fig. 1). The
filamentous-only cell morphology is the phenotype expected
for these known mutants (5, 7, 25, 32, 33). However, in this
regard, the tup1/tup1 and nrg1/nrg1 mutants differ from the
great majority of filamentous-only mutants recovered from a
previous study, 96% of which reverted to a smooth (yeast)
colony morphology on yeast malt (YM) agar plates with 50 �M
farnesol (20). For the tup1/tup1 mutant, the lack of response to
farnesol was specific for the loss of Tup1 because we found that
ectopic expression of TUP1 (5) restores the strain’s ability to
respond to farnesol (data not shown).

TUP1 mRNA levels increase in the presence of farnesol,
while RFG1 and NRG1 mRNA levels were not affected by
farnesol. We analyzed the effect of farnesol on TUP1 mRNA
levels over time in C. albicans SC5314 cells that had been
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induced to commence germ tube formation (GTF) by growth
at 37°C in mGPP. We previously showed (31) that under these
conditions, the first germ tubes appeared at 30 min and the
process was complete by 110 min. Furthermore, farnesol no
longer blocked GTF when it was added at 60 to 90 min after
inoculation (27). Here, our analysis was designed to evaluate
changes in TUP1 mRNA just before GTF, when the cells were
still responsive to farnesol. Filamentation was induced by
transferring resting cells into mGPP (pH 4.8) at 37°C in the
presence and absence of 20 �M farnesol, and mRNA levels
were determined at 0, 20, 40, 60, and 80 min following induc-
tion. In all experiments, the TUP1 mRNA levels decreased
over the first 20 min and then increased (Fig. 2A). This pattern
is consistent with the single-time-point result of Toyoda et al.
(45), who showed that TUP1 mRNA levels increased slightly at
180 min after induction of filamentation. In the presence of
farnesol, we found that TUP1 mRNA consistently increased
2.5-fold � 0.6-fold (n � 4) from 20 to 60 min. Importantly, this
is the time period just prior to that at which the cells become
committed and are no longer responsive to farnesol (31). In
contrast, in the absence of farnesol, there was very little in-
crease (1.4 � 0.3; n � 4) in TUP1 mRNA levels from 20 to 60
min (Fig. 2A). Thus, farnesol (20 �M) causes a consistent
increase in TUP1 mRNA levels during the precise time period
when it blocks GTF. This increase of 2.5-fold in TUP1 mRNA
corresponded to an increase in SC5314 Tup1 protein levels at
60 min following induction (Fig. 3). Tup1 protein in SC5324
was increased in all three replicate experiments by an average
of 2.5-fold.

Since Tup1 functions with DNA binding proteins such as
Rfg1 and Nrg1, and in C. albicans strain JCM9061 the NRG1

mRNA levels decreased during filamentation (45), we tested
the effect of farnesol on the RFG1 and NRG1 mRNA levels
during differentiation from yeast to filamentous form. Like
TUP1 mRNA, the RFG1 mRNA levels initially decreased and
then increased (data not shown). However, unlike TUP1
mRNA, the timing and magnitude of the RFG1 mRNA level
changes were similar in the presence and the absence of far-
nesol (Fig. 4, data not shown). Under the same conditions, the
NRG1 mRNA levels did not change during development, and
they too were the same in the presence and absence of farnesol
(Fig. 4). Thus, we conclude that farnesol does not affect the
RFG1 or NRG1 mRNA levels.

Expression of the Tup1-regulated filamentation genes
HWP1 and RBT1 is inhibited by farnesol. To determine
whether the increased TUP1 expression in the presence of
farnesol was biologically significant, we examined the expres-
sion of two Tup1-regulated genes, HWP1 and RBT1 (Fig. 2B
and C [12]). In the absence of farnesol, the HWP1 and RBT1
transcripts were undetectable at time zero, but they were
strongly expressed from 40 to 80 min (Fig. 2B and C). Farnesol
delays and dramatically reduces the magnitude of HWP1 and
RBT1 mRNA expression (Fig. 2B and C). At 80 min, HWP1
and RBT1 levels were 30- and 7.6-fold lower, respectively, in
farnesol-treated cells than in untreated cells. Similar results
were observed by Davis-Hanna et al. (11) for HWP1 mRNA at
2 h after treatment with 75 �M farnesol. Thus, there is a strong
correlation between elevated TUP1 expression in response to
farnesol and the expression of Tup1-regulated genes.

EFG1 mRNA levels remain unaffected by farnesol. Efg1 is a
transcription regulator for genes required for filamentation.
EFG1 mRNA levels are downregulated at the initiation of

FIG. 1. Response to farnesol by C. albicans under conditions that promote GTF and hyphal growth. SC5314, CAI4, CAF2, rfg1/rfg (DU129),
nrg1/nrg1 (DU152), tup1/tup1(BCa2-9), tup1/tup1 (BCa2-10), and TUP1/tup1 (BCa2-3) resting cells were inoculated into mGPP (pH 4.8) medium
at 37°C in the presence or absence of 20 �M farnesol, and their cell morphologies were examined at 4 h. Scale bar � 10 �m.
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filament development and then increase as filament formation
progresses (44). HWP1 and RBT1 are activated by Efg1 during
filamentation (6). Therefore, we determined whether farnesol
also affected EFG1 mRNA levels (Fig. 4). The EFG1 mRNA
levels were high at time zero, decreased to a minimum at 20
min, and then increased steadily throughout the remaining
time (data not shown). However, farnesol had no influence on
EFG1 mRNA levels, since the timing and magnitude of the
changes were similar in the presence and the absence of far-
nesol (Fig. 4 and data not shown).

Farnesol suppresses the haploinsufficient phenotype of a
TUP1/tup1 heterozygote. Braun and Johnson (5) showed that
BCa2-3, a TUP1/tup1 heterozygote, is haploinsufficient in that
these cells develop a higher proportion of filaments than the

FIG. 2. TUP1 mRNA levels increased, while two Tup1-regulated genes, HWP1 and RBT1, were downregulated in the presence of farnesol (FOH).
C. albicans SC5314 resting cells were inoculated into mGPP (pH 4.8) medium in the presence or absence of 20 �M farnesol and incubated at 37°C. Cells
were then harvested at 0, 20, 40, 60, and 80 min postinoculation. Northern blots were prepared with total RNA from cells incubated in the presence or
absence of farnesol. Shown is a phosphorimage of a representative Northern blot probed with radiolabeled TUP1 DNA (A), HWP1 DNA (B), and RBT1
DNA (C) and a plot of average mRNA levels from a minimum of three independent experiments. ACT1 mRNA levels were used as a loading control.

FIG. 3. Tup1 protein levels are higher in the presence of farnesol.
Total protein extracts were prepared from SC5314 and TUP1/tup1
(BCa2-3) resting cells inoculated into mGPP (pH 6.8) medium at 37°C
in the presence or absence of 20 �M farnesol and incubated at 37°C for
60 min. The average change (fold) in Tup1 protein accumulation for
farnesol-treated cells relative to that of untreated cells is shown. Act1
levels were used as a loading control.

FIG. 4. Farnesol does not affect the expression of RFG1 or NRG1,
which encode DNA binding proteins that function with Tup1, or
EFG1, which encodes a transcription activator of hypha-specific genes.
Quantitative Northern blotting analysis was used to measure the
TUP1, NRG1, RFG1, and EFG1 mRNA levels in SC5314 at 60 min
after the inoculation of resting cells under conditions that promote
GTF in the presence and absence of 20 �M farnesol. The results are
averages of three independent experiments.
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wild-type cells on most media (5). Presumably, these cells do
not make enough Tup1 to compensate for the reduced gene
copy number. We hypothesized that farnesol might suppress
this phenotype because it increases TUP1 expression 2.5-fold
in SC5314 and 4.2-fold in TUP1/tup1 (Fig. 3). This increase
should restore Tup1 to roughly wild-type levels. To test this
hypothesis, we examined the effect of farnesol on C. albicans
BCa2-3 on cornmeal agar plus Tween 80, under a coverslip for
25 h at 25°C. Under these conditions, the TUP1/tup1 mutant
was more filamentous than the wild-type colonies but less fil-
amentous than the tup1/tup1 mutant (BCa2-10 [4]; see Table
2). As a control, the TUP1/tup1 mutant was shown to respond
to farnesol because, although it forms filamentous cells when
grown in mGPP medium, the addition of 20 �M farnesol
results in growth as yeast (Fig. 1), and Tup1 protein levels were
ca. 4.2-fold higher in the TUP1/tup1 mutant treated with far-
nesol. In contrast to the haploinsufficient phenotype observed
with the absence of farnesol, in the presence of farnesol, the
TUP1/tup1 mutant looked identical to the wild-type C. albicans
(see Table 2). Thus, farnesol suppresses the haploinsufficiency
phenotype of the TUP1/tup1 heterozygote.

The tup1/tup1 and nrg1/nrg1 mutants produce excess farne-
sol. Jensen et al. (20) tested the farnesol production levels for
several filament-only mutants. A subset of these mutants pro-
duced levels of farnesol significantly higher than those of the
wild-type strains. This overproduction suggests that the ability
to respond to farnesol may be linked to the regulation of
farnesol production. Here, we tested farnesol production levels
in the CAI-4, CAF-2, tup1/tup1, nrg1/nrg1, and rfg1/rfg1 strains.
Farnesol production levels were dramatically increased in the
tup1/tup1 and nrg1/nrg1 mutants (Table 1), which were unable
to respond to farnesol (Fig. 1). The tup1/tup1 and nrg1/nrg1
mutants produced ca. 17- and 19-fold more farnesol, respec-
tively, than did CAF-2 and CAI-4. In contrast, the farnesol-
responsive rfg1/rfg1 mutant produced only ca. 2.6-fold more
farnesol than the wild-type strains (Table 1). Thus, the two
mutants that are unable to respond to farnesol (tup1/tup1 and
nrg1/nrg1) produced much higher levels of farnesol than did
strains that do respond to farnesol.

tup1/tup1 overproduction of farnesol inhibits SC5314 fila-
mentation. We tested the biological significance of farnesol
overproduction by sequentially plating tup1/tup1 and SC5314
next to one another and observing the resultant colony mor-
phologies. When SC5314 was plated and followed 1 day later
by another streak with SC5314, a small area of filament inhi-
bition was observed (Fig. 5B). In contrast, when tup1/tup1 was
plated first, followed by SC5314, a much larger area of filament
inhibition was observed (Fig. 5A). These results are consistent
with the tup1/tup1 overproduction of farnesol. As controls,
whenever tup1/tup1 was plated second, no filament inhibition
was observed (Fig. 5C and D).

DISCUSSION

C. albicans responds to farnesol, in part, by changing gene
expression (8, 15). We hypothesize that some of these changes
are mediated by changes in the activity of the signaling path-
ways regulating morphogenesis. Here, we show that the tup1/
tup1 and nrg1/nrg1 null mutants are strictly filamentous strains
and that the cells remain filamentous in the presence of added

FIG. 5. Overproduction of farnesol by the tup1/tup1 mutant inhibits
SC5314 filamentation. Resting cells were grown at 37°C for 24 h on
yeast-peptone-dextrose agar plates to allow for farnesol accumulation
in the agar (horizontal streak, C. albicans strain SC5314 [B and C]; or
tup1/tup1, BCa2-10 [A and D]). Subsequently, either SC5314 (A and
B) or tup1/tup1 (C and D) resting cells were plated (vertical streak) and
incubated at 37°C for an additional 24 h. The areas above the two
arrows (A and B, left panels) are zones of filament inhibition (as
evident by smooth morphology) resulting from the farnesol produced
by the horizontally streaked strains. Filamentation gives the wrinkled
colony morphology seen below the arrows. The pictures in the two
white boxes have been magnified �2.5 so that the colony morphology
can be seen more clearly (A and B, center panels). Micrographs of
individual cells from the two bracketed regions are shown in the right
panels (A and B; scale bar � 10 �m). The cells from the smooth
regions are mainly yeast, while there is a much larger proportion of
filamentous cells in the wrinkled region.

TABLE 1. The tup1/tup1 and nrg1/nrg1 null mutants do not respond
to farnesol but overproduce farnesol

C. albicans strain Farnesol
responsea

Farnesol
production

(�g/g dry wt
of cells) � SDb

Fold
increase in
farnesolc

CAI-4 Positive 1.6 � 0.36
CAF-2 Positive 2.0 � 1.30
tup1/tup1 (BCa2-10) Negative 30.6 � 6.40 17
nrg1/nrg1 (DU152) Negative 34.5 � 12.2 19
rfg1/rfg1 (DU129) Positive 4.8 � 2.0 2.6

a Farnesol responses on GPP agar with and without 20 �M farnesol, incubated
at 37oC for 48 h. A positive response indicates smooth colony morphology (yeast
cells) in the presence of farnesol and rough colony morphology (filamentous
cells) without added farnesol. A negative response to farnesol indicates rough
colony morphology in the presence and absence of farnesol.

b Farnesol production values (�g/g dry weight of cells) � standard deviation
(SD) were the averages of three measurements.

c Values are based on fold increases over 1.8, the average value for strains
CAI-4 and CAF-2.
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farnesol (Fig. 1). In these cases, the total farnesol levels are
actually much higher than the added farnesol because the
mutants themselves produce elevated levels of farnesol (Table
1; see below). Furthermore, Tup1 mRNA and protein levels
increased in the presence of farnesol, while mRNA levels of
two Tup1-regulated genes, HWP1 and RBT1, decrease (Fig. 2,
and 3). Importantly, the timing of this increase (40 to 60 min,
Fig. 2) corresponds with the commitment point, beyond which
added farnesol no longer blocks GTF (31). Finally, we believe
that Tup1 is part of the farnesol response pathway because
farnesol suppresses the haploinsufficient phenotype of the
TUP1/tup1 strain (Table 2).

Cell synchrony, farnesol concentration, and timing were all
important considerations for our experimental design. Previ-
ous work examining farnesol-dependent changes in the global
transcription profiles of developing biofilms (8, 15) and during
resumption of growth following stationary phase (15) were
done with mixed cell populations that differed in their ability to
respond to farnesol. Furthermore, the effect of adding farnesol
on the global gene expression during biofilm formation was
determined at a single time point, 24 h after the addition of
farnesol (8). This point is significant because such a study could
measure only stable long-term farnesol-dependent changes in
gene expression. Timing is also important because of the com-
mitment phenomenon. This is the point at which a switch in the
environmental stimulus no longer causes the expected switch
in morphology (9, 30, 31). It is relevant to farnesol’s mode of
action because, while farnesol blocks the yeast-to-filament
switch, it does not block the elongation of preexisting filaments
(31). Thus, for our experiments, we added farnesol at time zero
in order to avoid the commitment to filamentous growth, and
we harvested cells at 20-min increments to observe changes in
transcript levels during the early stages of the farnesol re-
sponse (31). We also achieved a synchronous cell population
by starting with resting cells and inoculating them in mGPP;
under these conditions, we routinely got 95 to 100% filamen-
tous cells within 3 to 4 h. Exposing a synchronized cell popu-
lation to farnesol allowed us to detect subtle and consistent
changes in transcript abundance.

Small changes in the expression of a transcription regulator
can have profound effects on the genes it regulates. For exam-
ple, we have shown that nonsense-mediated mRNA decay in S.
cerevisiae regulates the accumulation of the mRNA for Adr1, a
transcription regulator of the genes responsible for making

acetyl-coenzyme A and NADH from nonfermentable sub-
strates. In particular, the respiratory impairment seen with
nonsense-mediated mRNA decay mutants is due, in part, to
the overexpression of Adr1 (43). The change in ADR1 mRNA
levels is small (2.6-fold) but sufficient to affect expression of
Adr1-regulated genes. Thus, even though the change in Tup1
expression is relatively small, it can have a profound effect on
the expression of the genes it regulates.

Two Tup1 coregulators, encoded by NRG1 and RFG1, were
unaffected by farnesol at the mRNA level (Fig. 4). In this
regard, it is reasonable that farnesol regulates only one part of
the complex, i.e., that farnesol elevates TUP1 mRNA but not
NRG1 or RFG1 mRNA. By analogy, for Ca2� and calmodulin,
where only the Ca2�-calmodulin complex is active (40), fungi
have calmodulin in excess and regulate the activity of the
complex by regulating the availability of cytoplasmic Ca2�

(34).
The tup1/tup1 and nrg1/nrg1 mutants did not respond to

farnesol, suggesting that farnesol acts through a pathway re-
quiring Tup1 and Nrg1. The rfg1/rfg1 mutant responded to
farnesol, indicating that the genes regulated by Rfg1 are not
required for the response to farnesol. Furthermore, the tup1/
tup1 and nrg1/nrg1 mutants overproduced farnesol, while the
rfg1/rfg1 mutant produced only slightly elevated levels of far-
nesol (Table 1). This tup1/tup1 mutant overproduction is bio-
logically significant because the excess farnesol produced by
the tup1/tup1 mutant inhibits filamentation of the wild-type C.
albicans grown on the same plate (Fig. 5). The juxtaposition of
farnesol nonresponsive mutants with the overproduction of
farnesol implies that a farnesol-Tup1 feedback loop may exist
and that Nrg1 may work in concert with Tup1 to negatively
regulate farnesol synthesis. This regulation may be direct or
indirect. The enzyme responsible for ca. 90% of farnesol syn-
thesis is Dpp3 (35). DPP3 mRNA levels were not significantly
elevated in the whole genome profiles of the tup1/tup1 or
nrg1/nrg1 mutants (21); however, DPP3 does have a putative
Nrg1 binding site in its promoter region.

The increased TUP1 expression we observed for farnesol’s
blockage of filament development (Fig. 2A) is smaller than
that reported for farnesol’s blockage of biofilm development,
ca. 6.6-fold, as determined with DNA arrays (8). The differ-
ence in the response intensity may reflect filament versus bio-
film growth conditions, as well as the fact that Cao et al. (8)
used one time point 24 h after farnesol addition.

Efg1 is a transcriptional factor that activates hyphal gene
expression including that of HWP1 and RBT1 (7). EFG1
mRNA levels are regulated during filamentation, but they were
not affected by farnesol, since the timing and magnitude of the
changes were similar in the presence and absence of farnesol
(Fig. 4). These results are consistent with those of Soto et al.
(41), who also found no change in EFG1 mRNA levels at a
single time point with added farnesol (41). Together with our
results, this suggests that farnesol does not regulate EFG1
mRNA levels, but at this time, we cannot exclude the possi-
bility that posttranslational regulation of Efg1 is affected by
farnesol.

Two other farnesol-related findings regarding filamentous
growth can be accommodated in a Tup1-dependent model
because they are downstream from Tup1. Soto et al. (41)
suggested that farnesol acts by causing decreased CPH1 and

TABLE 2. Farnesol suppression of the TUP1/tup1 heterozygotea

C. albicans strain

Cell morphology at the colony periphery in
response to:

No farnesol 20 �M farnesol

Wild type (SC5314) Yeast plus a few
filaments

Yeast plus a few
filaments

TUP1/tup1 (BCa2–3) Yeast plus filaments Yeast plus a few
filaments

tup1/tup1 (BCa10) Filamentous form Filamentous form

a Farnesol suppressed the haploinsufficient phenotype of the TUP1/tup1 het-
erozygote. Cells were plated on a cornmeal agar plus Tween 80 plate, under a
coverslip, and grown at 25°C for 25 h. The phenotype for these strains grown on
a plate with cornmeal agar plus Tween 80 under a coverslip without farnesol was
also previously reported (5).
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HST7 mRNA levels. CPH1 is a transcription factor that regu-
lates filamentous growth, and HST7 is a mitogen-activated
protein kinase kinase involved in filamentous growth. Both are
downregulated by Tup1, and thus, their downregulation by
farnesol (41) is consistent with a secondary effect of farnesol on
Tup1. Additionally, Chk1, a histidine kinase shown to be re-
quired for the farnesol response (26), is also encoded by a
Tup1-repressed gene; CHK1 was elevated 6.5-fold in the tup1/
tup1 mutant (21). Taken together, these findings indicate that
Tup1 is involved in mediating the C. albicans response to
farnesol.

ACKNOWLEDGMENTS

We thank Alexander Johnson and Richard Cannon for providing us
with C. albicans strains and the Tup1 antibody. We also thank Jessica
A. Wiles for assisting with the germ tube assays and RNA work.

This work was supported by grants from the National Science Foun-
dation (MCB-0110999), the University of Nebraska Tobacco Settle-
ment Biomedical Research Enhancement Fund, and the Farnesol and
Candida albicans Research Fund, University of Nebraska Foundation.

Any opinions, findings, conclusions, or recommendations expressed
in this report are ours and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

1. Arnaud, M. B., M. C. Costanzo, M. S. Skrzypek, G. Binkley, C. Lane, S. R.
Miyasato, and G. Sherlock. 2005. The Candida Genome Database (CGD), a
community resource for Candida albicans gene and protein information.
Nucleic Acids Res. 33:D358–D363.

2. Atkin, A. L., N. Altamura, P. Leeds, and M. R. Culbertson. 1995. The
majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm.
Mol. Biol. Cell 6:611–625.

3. Backen, A. C., I. D. Broadbent, R. W. Fetherston, J. D. Rosamond, N. F.
Schnell, and M. J. Stark. 2000. Evaluation of the CaMAL2 promoter for
regulated expression of genes in Candida albicans. Yeast 16:1121–1129.

4. Berman, J., and P. E. Sudbery. 2002. Candida albicans: a molecular revolu-
tion built on lessons from budding yeast. Nat. Rev. Genet. 3:918–930.

5. Braun, B. R., and A. D. Johnson. 1997. Control of filament formation in
Candida albicans by the transcriptional repressor TUP1. Science 277:105–
109.

6. Braun, B. R., and A. D. Johnson. 2000. TUP1, CPH1 and EFG1 make
independent contributions to filamentation in Candida albicans. Genetics
155:57–67.

7. Braun, B. R., D. Kadosh, and A. D. Johnson. 2001. NRG1, a repressor of
filamentous growth in Candida albicans, is down-regulated during filament
induction. EMBO J. 20:4753–4761.

8. Cao, Y. Y., Y. B. Cao, Z. Xu, K. Ying, Y. Li, Y. Xie, Z. Y. Zhu, W. S. Chen,
and Y. Y. Jiang. 2005. cDNA microarray analysis of differential gene expres-
sion in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents
Chemother. 49:584–589.

9. Chaffin, W. L., and D. E. Wheeler. 1981. Morphological commitment in
Candida albicans. Can. J. Microbiol. 27:131–137.

10. Csank, C., K. Schroppel, E. Leberer, D. Harcus, O. Mohamed, S. Meloche,
D. Y. Thomas, and M. Whiteway. 1998. Roles of the Candida albicans
mitogen-activated protein kinase homolog, Cek1p, in hyphal development
and systemic candidiasis. Infect. Immun. 66:2713–2721.

11. Davis-Hanna, A., A. E. Piispanen, L. I. Stateva, and D. A. Hogan. 2008.
Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signal-
ling pathway and the regulation of morphogenesis. Mol. Microbiol. 67:47–62.

12. De Groot, P. W., K. J. Hellingwerf, and F. M. Klis. 2003. Genome-wide
identification of fungal GPI proteins. Yeast 20:781–796.

13. Dhillon, N. K., S. Sharma, and G. K. Khuller. 2003. Signaling through
protein kinases and transcriptional regulators in Candida albicans. Crit. Rev.
Microbiol. 29:259–275.

14. Eckert, S. E., C. C. Sheth, and F. A. Muhlschlegel. 2007. Regulation of
morphogenesis in Candida species, p. 263–291. In C. d’Enfert and B. Hube
(ed.), Candida: comparative and functional genomics, 1st ed. Caister Aca-
demic Press, Norfolk, United Kingdom.

15. Enjalbert, B., and M. Whiteway. 2005. Release from quorum-sensing mole-
cules triggers hyphal formation during Candida albicans resumption of
growth. Eukaryot. Cell 4:1203–1210.

16. Fonzi, W. A., and M. Y. Irwin. 1993. Isogenic strain construction and gene
mapping in Candida albicans. Genetics 134:717–728.

17. Hornby, J. M., E. C. Jensen, A. D. Lisec, J. J. Tasto, B. Jahnke, R. Shoe-
maker, P. Dussault, and K. W. Nickerson. 2001. Quorum sensing in the

dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ.
Microbiol. 67:2982–2992.

18. Inglis, D. O., and A. D. Johnson. 2002. Ash1 protein, an asymmetrically
localized transcriptional regulator, controls filamentous growth and viru-
lence of Candida albicans. Mol. Cell. Biol. 22:8669–8680.

19. Jarvis, W. R., and W. J. Martone. 1992. Predominant pathogens in hospital
infections. J. Antimicrob. Chemother. 29(Suppl. A):19–24.

20. Jensen, E. C., J. M. Hornby, N. E. Pagliaccetti, C. M. Wolter, K. W. Nick-
erson, and A. L. Atkin. 2006. Farnesol restores wild-type colony morphology
to 96% of Candida albicans colony morphology variants recovered following
treatment with mutagens. Genome 49:346–353.

21. Kadosh, D., and A. D. Johnson. 2005. Induction of the Candida albicans
filamentous growth program by relief of transcriptional repression: a ge-
nome-wide analysis. Mol. Biol. Cell 16:2903–2912.

22. Kadosh, D., and A. D. Johnson. 2001. Rfg1, a protein related to the Sac-
charomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth
and virulence in Candida albicans. Mol. Cell. Biol. 21:2496–2505.

23. Kaneko, A., T. Umeyama, Y. Utena-Abe, S. Yamagoe, M. Niimi, and Y.
Uehara. 2006. Tcc1p, a novel protein containing the tetratricopeptide repeat
motif, interacts with Tup1p to regulate morphological transition and viru-
lence in Candida albicans. Eukaryot. Cell 5:1894–1905.

24. Kebaara, B., T. Nazarenus, R. Taylor, A. Forch, and A. L. Atkin. 2003. The
Upf-dependent decay of wild-type PPR1 mRNA depends on its 5�-UTR and
first 92 ORF nucleotides. Nucleic Acids Res. 13:3157–3165.

25. Khalaf, R. A., and R. S. Zitomer. 2001. The DNA binding protein Rfg1 is a
repressor of filamentation in Candida albicans. Genetics 157:1503–1512.

26. Kruppa, M., B. P. Krom, N. Chauhan, A. V. Bambach, R. L. Cihlar, and
R. A. Calderone. 2004. The two-component signal transduction protein
Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3:1062–
1065.

27. Kulkarni, R. K., and K. W. Nickerson. 1981. Nutritional control of dimor-
phism in Ceratocystis ulmi. Exp. Mycol. 5:148–154.

28. Kullberg, B. J., and S. G. Filler. 2002. Candida and candidiasis. ASM Press,
Washington, DC.

29. Kumamoto, C. A., and M. D. Vinces. 2005. Contributions of hyphae and
hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol.
7:1546–1554.

30. Mitchell, L. H., and D. R. Soll. 1979. Commitment to germ tube or bud
formation during release from stationary phase in Candida albicans. Exp.
Cell Res. 120:167–179.

31. Mosel, D. D., R. Dumitru, J. M. Hornby, A. L. Atkin, and K. W. Nickerson.
2005. Farnesol concentrations required to block germ tube formation in
Candida albicans in the presence and absence of serum. Appl. Environ.
Microbiol. 71:4938–4940.

32. Murad, A. M., C. d’Enfert, C. Gaillardin, H. Tournu, F. Tekaia, D. Talibi, D.
Marechal, V. Marchais, J. Cottin, and A. J. Brown. 2001. Transcript profiling
in Candida albicans reveals new cellular functions for the transcriptional
repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42:981–993.

33. Murad, A. M., P. Leng, M. Straffon, J. Wishart, S. Macaskill, D. MacCallum,
N. Schnell, D. Talibi, D. Marechal, F. Tekaia, C. d’Enfert, C. Gaillardin,
F. C. Odds, and A. J. Brown. 2001. NRG1 represses yeast-hypha morpho-
genesis and hypha-specific gene expression in Candida albicans. EMBO J.
20:4742–4752.

34. Muthukumar, G., A. W. Nickerson, and K. W. Nickerson. 1987. Calmodulin
levels in yeasts and filamentous fungi. FEMS Microbiol. Lett. 41:253–255.

35. Navarathna, D. H., J. M. Hornby, N. Krishnan, A. Parkhurst, G. E. Du-
hamel, and K. W. Nickerson. 2007. Effect of farnesol on a mouse model of
systemic candidiasis, determined by use of a DPP3 knockout mutant of
Candida albicans. Infect. Immun. 75:1609–1618.

36. Ramage, G., S. P. W. Saville, B. L., and J. L. Lopez-Ribot. 2002. Inhibition
of Candida albicans biofilm formation by farnesol, a quorum-sensing mole-
cule. Appl. Environ. Microbiol. 68:5459–5463.

37. Ramon, A. M., A. Porta, and W. A. Fonzi. 1999. Effect of environmental pH
on morphological development of Candida albicans is mediated via the
PacC-related transcription factor encoded by PRR2. J. Bacteriol. 181:7524–
7530.

38. Semighini, C. P., J. M. Hornby, R. Dumitru, K. W. Nickerson, and S. D.
Harris. 2006. Farnesol-induced apoptosis in Aspergillus nidulans reveals a
possible mechanism for antagonistic interactions between fungi. Mol. Mi-
crobiol. 59:753–764.

39. Shchepin, R., J. M. Hornby, E. Burger, T. Niessen, P. Dussault, and K. W.
Nickerson. 2003. Quorum sensing in Candida albicans: probing farnesol’s
mode of action with 40 natural and synthetic farnesol analogs. Chem. Biol.
10:743–750.

40. Soto, T., Y. Ueno, T. Watanabe, T. Mikami, and T. Matsumoto. 2004. Role
of Ca2�/calmodulin signaling pathway on morphological development of
Candida albicans. Biol. Pharm. Bull. 27:1281–1284.

41. Soto, T., T. Watanabe, T. Mikami, and T. Matsumoto. 2004. Farnesol, a
morphogenetic autoregulatory substance in the dimorphic fungus Candida
albicans, inhibits hyphae growth through suppression of a mitogen-activated
protein kinase cascade. Biol. Pharm. Bull. 27:751–752.

986 KEBAARA ET AL. EUKARYOT. CELL

  



42. Sprague, E. R., M. J. Redd, A. D. Johnson, and C. Wolberger. 2000. Structure
of the C-terminal domain of Tup1, a corepressor of transcription in yeast.
EMBO J. 19:3016–3027.

43. Taylor, R., B. W. Kebaara, T. Nazarenus, A. Jones, R. Yamanaka, R.
Uhrenholdt, J. P. Wendler, and A. L. Atkin. 2005. Gene set coregulated by
the Saccharomyces cerevisiae nonsense-mediated mRNA decay pathway. Eu-
karyot. Cell 4:2066–2077.

44. Tebarth, B., T. Doedt, S. Krishnamurthy, M. Weide, F. Monterola, A.
Dominguez, and J. F. Ernst. 2003. Adaptation of the Efg1p morphogenetic

pathway in Candida albicans by negative autoregulation and PKA-dependent
repression of the EFG1 gene. J. Mol. Biol. 329:949–962.

45. Toyoda, M., T. Cho, H. Kaminishi, M. Sudoh, and H. Chibana. 2004. Tran-
scriptional profiling of the early stages of germination in Candida albicans by
real-time RT-PCR. FEMS Yeast Res. 5:287–296.

46. Westwater, C., E. Balish, and D. A. Schofield. 2005. Candida albicans-con-
ditioned medium protects yeast cells from oxidative stress: a possible link
between quorum sensing and oxidative stress resistance. Eukaryot. Cell
4:1654–1661.

VOL. 7, 2008 FARNESOL AND Tup1 IN C. ALBICANS 987

  


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	6-2008

	Candida albicans Tup1 Is Involved in Farnesol-Mediated Inhibition of Filamentous-Growth Induction
	Bessie W. Kebaara
	Melanie L. Langford
	Dhammika H. M. L. P. Navarathna
	Raluca Dumitru
	Kenneth W. Nickerson
	See next page for additional authors
	Authors


	tmp.1460044670.pdf.ZYJaT

