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The complexities of female mate choice and male  
polymorphisms: Elucidating the role of genetics, age,  
and mate-choice copying 

Kasey D. FOWLER-FINN
*#, Laura SULLIVAN-BECKERS

§, Amy M. RUNCK
§§, 

Eileen A. HEBETS 
School of Biological Sciences, University of Nebraska, Lincoln, NE 68508, USA 

Abstract  Genetic, life history, and environmental factors dictate patterns of variation in sexual traits within and across popula-

tions, and thus the action and outcome of sexual selection. This study explores patterns of inheritance, diet, age, and mate-choice 

copying on the expression of male sexual signals and associated female mate choice in a phenotypically diverse group of Schizo-

cosa wolf spiders. Focal spiders exhibit one of two male phenotypes: ‘ornamented’ males possess large black brushes on their fo-

relegs, and ‘non-ornamented’ males possess no brushes. Using a quantitative genetics breeding design in a mixed population of 

ornamented/non-ornamented males, we found a strong genetic basis to male phenotype and female choice. We also found that 

some ornamented males produced some sons with large brushes and others with barely visible brushes. Results of diet manipula-

tions and behavioral mating trials showed no influence of diet on male phenotype or female mate choice. Age post maturation, 

however, influenced mate choice, with younger females being more likely to mate with ornamented males. A mate-choice copy-

ing experiment found that, following observations of another female’s mate choice/copulation, virgin mature females tended to 

match the mate choice (ornamented vs. non-ornamented males) of the females they observed. Finally, analyses of genetic varia-

tion across phenotypically pure (only one male phenotype present) vs. mixed (both phenotypes present) populations revealed ge-

netic distinction between phenotypes in phenotypically-pure populations, but no distinctionin phenotypically-mixed populations. 

The difference in patterns of genetic differentiation and mating across geographic locations suggests a complex network of fac-

tors contributing to the outcome of sexual selection [Current Zoology 61 (6): 1015–1035, 2015]. 

Keywords  Male polymorphism, Assortative mating, Speciation, Heritability, Schizocosa 

Sexually-selected traits—e.g., signals and preferences— 
are one of the most variable aspects of phenotype across 
populations and species (West-Eberhard, 1983; Eber-
hard, 1985; Andersson, 1994; Wells and Henry, 1998; 
Coyne and Orr, 2004; Mendelson and Shaw, 2005; Co-
croft et al., 2008). They exhibit rapid rates of diversifi-
cation and elaboration, and often play a key role in the 
formation of reproductive isolation (e.g., Gray and Cade, 
2000; Boughman, 2001; Masta and Maddison, 2002; 
Boughman et al., 2005; Svensson et al., 2006; Boul et 
al., 2007; Seehausen et al., 2008; Funk et al., 2009; Sota 
and Tanabe, 2010). Divergence in sexually-selected 
traits, however, does not always correspond with gene-
tic differentiation; signals and preferences frequently 
exhibit high levels of variation within populations re-
sulting from various intrinsic and environmental factors 
(Andersson, 1982; West-Eberhard, 1983; Jennions and 

Petrie, 1997; Cotton et al., 2004; Hunt et al., 2005; Cot-
ton et al., 2006; Safran et al., 2013; Miller and Svensson, 
2014; Morehouse, 2014; West-Eberhard, 2014). By in-
fluencing the expression of—and therefore patterns of 
variation in—sexual traits, factors such as life history 
stage, resource availability, and social experience can 
affect patterns of mating, and therefore the action and 
consequences of sexual selection.  

The extent to which environmental factors influence 
the expression of sexual traits will depend, in part, on 
the genetic basis, or heritability, of those traits. Signals 
and preferences often have significant heritability (Ba-
kker and Pomiankowski, 1995; Chenoweth and Blows, 
2006; Chenoweth and McGuigan, 2010; Roff and Fair-
bairn, 2014; Fowler-Finn and Rodríguez, 2015). When 
this heritability is high, the extent to which environ-
mental factors influence the expression of a plastic sex-
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ual trait is limited (Chenoweth and McGuigan, 2010). 
For example, when heritability in a trait is high, envi-
ronmental inputs such as diet may only have a small 
effect on the expression of that trait. However, when 
heritability is low, diet may have a large influence on 
the expression of traits. In fact, diet is known to influ-
ence the expression of male sexual traits by affecting 
morph phenotype in condition-dependent polymorphi-
sms (Cade, 1980; Plaistow et al., 2004), the degree of 
expression of a trait such as brightness or size of an 
ornament (Andersson, 1982; Cotton et al., 2004; Mo-
rehouse, 2014), and mating tactic (Wilgers et al., 2009). 
Diet is similarly known to influence female mating be-
havior by influencing the degree of selectivity, likeli-
hood of mating, or preferred male phenotype (for re-
views: Jennions and Petrie, 1997; Cotton et al., 2006). 
Diet could influence patterns of mating within and acro-
ss populations due to its influence on plastic sexual 
traits. However, the degree to which it might do so will 
be determined in part by the relative role of genetics and 
environment on trait expression.  

The expression of sexual traits can also vary with life 
history traits like age. Theory predicts that female choice 
should correspond negatively with reproductive potential, 
being weaker when reproductive potential is low (Parker, 
1983). Particularly, as a female ages, her reproductive 
potential often decreases and she is expected to be less 
picky in mate choice. This pattern is seen across several 
taxa, with younger females often being choosier/more 
selective (e.g., wolf spiders, Mautz and Sakaluk, 2008; 
Wilgers and Hebets, 2011) or more likely to choose more 
ornamented males (guppies, Kodric-Brown and Nicoletto, 
2001; wolf spiders, Uetz and Norton, 2007). Given the 
plethora of recent examples highlighting the importance 
of female age in reproductive behavior, studies address-
ing the action of sexual selection on trait evolution would 
be remiss not to incorporate an assessment of age. 

Finally, variation in the social environment may in-
fluence sexual trait expression, as mate choice is ultima-
tely the outcome of a mate preference expressed within 
the context of interactions with potential mates and oth-
er conspecifics (Rodríguez et al., 2013, Miller and 
Svensson, 2014). Choice can vary as a result of direct 
interactions with others (e.g., Hebets, 2003); it can also 
vary based on observing interactions of others (Hebets 
and Sullivan-Beckers, 2010). For example, in mate-  
choice copying, females base their choice of male phe-
notype on observations of mating females (e.g., Dugatkin, 
1992; Witte and Massmann, 2003; Godin et al., 2005; 
Mery et al., 2009; Whitte et al., 2015). Such copying can 
vary with the identity of the acting female (Amlacher 

and Dugatkin, 2005; Vukomanovic and Rodd, 2007), or 
even life stage—i.e. juvenile versus adult—in which the 
learning occurs (Hebets and Sullivan-Beckers, 2010; 
Verzijden et al., 2012). Mate-choice copying can gener-
ate temporal and spatial differences in the sexual traits 
favored by choice (Miller and Svensson, 2014; Whitte 
et al., 2015), and has a variety of consequences for with-
in- and among- population patterns of variation, ranging 
from the maintenance of phenotypic variation within 
populations (Fowler-Finn and Rodríguez, 2012; Verzij-
den et al., 2012; Rodríguez et al., 2013) to reinforcement 
and speciation (Verzijden and ten Cate, 2007; Servedio 
et al., 2009; Verzijden et al., 2012; Servedio and Dukas, 
2013). Mate-choice copying can also increase rates of 
divergence among divergent populations (Dukas, 2013), 
or even slow divergence by reducing the evolution of 
further assortative mating (Servedio and Dukas, 2013). 

Understanding the contributions of this myriad of 
factors influencing sexual selection can be quite diffi-
cult. An ideal situation for exploration would be one in 
which individuals show discrete variation in sexually 
selected traits. This study focuses on one such natural 
system – a group of Schizocosa wolf spiders – and com-
bines a quantitative genetics breeding design, diet ma-
nipulations, mate-choice copying trials, and microsatel-
lite genetic analyses to explore observed phenotypic 
variation in sexual traits. The spiders of focus exhibit 
variation in male phenotype and female choice both 
within and across populations. Specifically, males of 
this group are either ornamented (sensu S. ocreata) or 
non-ornamented (sensu S. rovneri). The two male phe-
notypes are virtually identical prior to maturation, when 
they lack secondary sexual traits; even upon maturation, 
their genitalic and basic body characters are indistin-
guishable (Uetz and Dondale, 1979). The morphological 
and behavioral sexual display traits acquired upon ma-
turation, however, are quite distinct. Ornamented males 
have large prominent brushes of black hairs on their 
foreleg tibiae and their courtship display is very active, 
involving both visual components (waving of the fore-
legs, tapping on the substrate, and a ‘jerky’ walk) and 
multi-component vibratory signals (Stratton and Uetz, 
1981). In contrast, non-ornamented males lack foreleg 
ornamentation and have a primarily stationary courtship 
display involving a percussive body bounce that pro-
duces a vibratory signal when they strike their body 
against the substrate (Uetz and Denterlein, 1979; Strat-
ton and Uetz, 1981). Females associated with orna-
mented versus non-ornamented males are phenotypi-
cally indistinguishable from one another (Uetz and 
Denterlein, 1979; Uetz and Dondale, 1979). 
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These spiders show intriguing patterns of variation in 
male phenotype and female mate choice across their 
geographic distribution. This study focuses on two sets 
of populations. The first involves phenotypically- pure 
populations in the Ohio Valley where spiders are found 
in populations of either solely ornamented or solely 
non-ornamented males (Uetz and Denterlein, 1979). The 
second is a phenotypically-mixed population in Missi-
ssippi where both male phenotypes are present (Hebets 
and Vink, 2007). In the Ohio Valley, a strong genetic 
basis of male phenotype and female choice has already 
been established: females show strong choice for males 
matching their population of origin (Uetz and Denterle-
in, 1979; Stratton and Uetz, 1981; Stratton and Uetz, 
1986). Offspring from copulations forced between an 
individual from a phenotypically-pure ornamented pop-
ulation with an individual from a phenotypically- pure 
non-ornamented population produce behaviorally sterile 
females that will not mate with any male phenotype, as 
well as males of intermediate sexual displays that are 
not attractive to any female (Stratton and Uetz, 1986). 
Nothing is currently known about the genetic basis of 
male phenotype or female choice in the phenotypically-  
mixed population in Mississippi, however. 

In the phenotypically-pure populations (Ohio Valley), 
diet is known to influence signal expression within the 
ornamented male phenotype—both the vibratory com-
ponent of the courtship display (Gibson and Uetz, 2008) 
and ornament size (Uetz et al., 2002) vary with diet. 
Similarly, diet influences the expression of secondary 
sexual traits in the mixed population (Mississippi). Males 
reared on a high quantity diet from a subadult stage to 
maturation tend to have larger foreleg brushes than 
those raised on a low quantity diet (Hebets et al., 2008). 
Also, females reared on high quantity diets mate prefe-
rentially with males raised on high quantity diets (He-
bets et al., 2008). In this latter study, individuals were 
raised from a stage late in development, and females 
were provided a choice of high versus low diet males of 
a single male phenotype (high- versus low-diet orna-
mented, or high- versus low-diet non-ornamented). To 
date, nothing is known about how diet from an early age 
might influence male phenotype development (orna-
mented or non-ornamented) or a female’s choice be-
tween male phenotypes in this mixed population. 

Studies from the phenotypically pure (Ohio Valley) 
and phenotypically-mixed (Mississippi) populations also 
suggest differences in the patterns of plasticity in mate 
choice in response to exposure to different social envi-
ronments. Experience with the courtship of either or-
namented or non-ornamented males does not disrupt the 

pattern of strong assortative mating in spiders from phe-
notypically-pure populations, where females are unlike-
ly to encounter males of a phenotype that differs from 
their population of origin (Rutledge and Uetz, 2014). 
Within one of the phenotypically-pure ornamented pop-
ulations, females exhibit a stronger preference for larg-
er-brushed males if they encounter mature males during 
juvenile stages (Stoffer and Uetz, 2015). Plasticity de-
scribed thus far in the phenotypically-mixed Mississippi 
population shows a different pattern: experience as a 
juvenile with courting males of either male phenotype 
leads a female to be more likely to mate with an orna-
mented male (Hebets and Vink, 2007). Encounter rates 
in the mixed population of focus can be quite high, with 
densities reaching 3 individuals per 100 cm2 (Fow-
ler-Finn and Hebets, 2011); thus, females are likely to 
experience male courtship and mating in the field (He-
bets and Vink, 2007; Deng et al., 2014). Furthermore, 
mathematical modeling suggests that variable sexual 
selection on male phenotype due to sub-adult imprinting 
and habitat heterogeneity can contribute to the main-
tenance of the two male phenotypes in this mixed Mis-
sissippi population (Deng et al., 2014). Currently, how-
ever, nothing is known about how learning at the adult 
stage could influence mate choice and the potential 
maintenance of the two male phenotypes. 

The difference in the distribution of male phenotypes 
and patterns of female choice between the phenotypi-
cally-pure (Ohio Valley) and phenotypically-mixed (Mis-
sissippi) populations suggest that the action and conse-
quences of sexual selection may vary geographically in 
this group of wolf spiders. To explore this system fur-
ther, we had three major components to this study, the 
first two of which focused exclusively on the phenotyp-
ically-mixed (Mississippi) population. First, we ex-
amined the influence of genetics and diet on the expres-
sion of adult male phenotype, and the influence of ge-
netics, diet, and age on adult female mate choice using a 
quantitative genetics breeding design in combination 
with mating experiments. Second, we examined the role 
of learning via mate-choice copying to see whether mate 
choice varies with adult social experience. Our third 
aim focused on differences between the phenotypically-  
pure vs. phenotypically-mixed populations. To deter-
mine if genetic distinction existed between phenotypes 
or not, we compared patterns of correspondence be-
tween phenotypic and genetic variation in the Ohio Val-
ley and Mississippi populations. Examination of these 
patterns allowed us to identify potential consequences 
of sexual selection, in terms of assortative mating, in 
these two regions (Fig. 1). 



1018 Current Zoology Vol. 61  No. 6 

 

 
 

Fig. 1  Maps indicating the collection localities of orna-
mented and non-ornamented spiders throughout their range 
Insets show collection localities of the focal phenotypically pure lo-
calities in the Ohio Valley (indicated with light green and the number 
1 for the non-ornamented locatlity, and light blue and the numbers 2 
and 3 for the ornamented localities) and the phenotypically-mixed 
locality in Mississippi (green and blue square with the numbers 4 and 
5) as well as other nearby localities of S. nr. ocreata and S. nr. rovneri 
(indicated by the black dots). 
 

1  Materials and Methods 

1.1  Variation in male phenotype and female choice 
1.1.1  Male sexual signals: Patterns of inheritance 
and diet 

We tested patterns of inheritance and the influence of 
diet on the expression of male phenotype using off- 
spring from a classic quantitative genetics breeding de-

sign. Thus, the paternal phenotype of all individuals was 
known. The parents were wild-caught individuals that 
we collected as subadults from the grounds of the Uni-
versity of Mississippi greenhouse in Oxford, MS (La-
fayette Co, USA) in the spring of 2008. We paired 17 
unique ornamented males with a total of 21 females, 
and 31 unique non-ornamented males with a total of 34 
females (i.e., 3 ornamented and 3 non-ornamented males 
sired offspring with two different females). We reared 
the offspring in individual plastic deli dishes, which 
were visually isolated from each other, and filled with 
0.5 cm of plaster of paris to maintain humidity. The 
spiders were maintained on a 12:12 hr L:D cycle at 23 ± 

2C and provided water ad libitum. We fed each off-
spring several springtails a week for the first two weeks, 
then either one fruit fly or one pinhead cricket subse-
quently until their third molt. At the third molt, we ran-
domly split individuals from each family into high-diet 
and low-diet treatments. For the remainder of their life-
time (~5 molts), we fed high diet spiders 2 crickets ap-
proximating their body size once a week, and low diet 
spiders 1 cricket approximating their body size every 
other week.  

Upon maturation, we determined the phenotype of 
each male offspring as: no brush (no visible dark hairs 
apparent on the forelegs), partial brushes (some hairs 
present), and full brushes (hairs clearly present, forming 
a full brush).  
1.1.2  Female choice: Patterns of inheritance, diet, 
and age 

We tested for patterns of inheritance of female mate 
choice as well as age-dependence and diet-dependence 
of choice in the mixed Mississippi population using the 
offspring in the quantitative genetics breeding design 
above. Once females matured, we conducted two-choice 
and one-choice trials with females of different ages and 
diets. Throughout, we will refer to females with orna-
mented fathers as ‘ornamented females’ and females with 
non-ornamented fathers as ‘non-ornamented females’. 

For both two- and one-choice trials, we used circular 
arenas made of clear plastic with 7.5 cm walls (Amac 
Plastic Products; Westbrook, ME). Each arena had a 
filter paper substrate, which has been shown to effec-
tively transmit the vibratory signals of Schizocosa spid-
ers (e.g. Hebets, 2005; Sullivan-Beckers and Hebets, 
2011). We covered the walls of the arena with paper 
printed with an image of natural leaves, and placed a 6 
× 6 cm folded piece of filter paper (A-frame) in the 
center of the arena to provide shelter. In between trials 
we changed the filter paper and cleaned the arenas with 
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95% Ethanol to remove any chemical cues. We housed 
each female in the arena for 12 hours prior to her trial, 
during which time she deposited pheromone-laden silk 
that stimulates male courtship. It has been previously 
demonstrated that males in the Ohio Valley will court 
females from ornamented and non-ornamented popula-
tions with equal vigor (Roberts and Uetz, 2004), and 
thus the identity of the female should not influence male 
courtship effort. We weighed both female and male(s) 
immediately prior to the start of each trial, and then 
placed the test female into the arena and allowed her to 
acclimate for 2 minutes. Trials commenced when the 
male(s) were placed in the arena, and ended when either 
mating occurred or 45 minutes had elapsed. 

Two-choice mating trials – We conducted all two- 
choice trials in 20-cm diameter arenas. We simulta-
neously presented females with a male that matched her 
paternal phenotype and a male that did not (i.e., one 
ornamented and one non-ornamented male). We tested 
71 females in total – 39 ornamented females (19 high 
diet; 20 low diet), and 32 non-ornamented females (14 
high diet; 18 low diet). Males paired with females were 
of the same diet treatment as the female (i.e., high diet 
males with high diet females; low diet males with low 
diet females). For each trial, we age-matched the orna-
mented male and non-ornamented male to each other by 
± 2 days post maturation, but did not age match them to 
females.  

One-choice mating trials – Our two-choice trials re-
sulted in patterns consistent with complete assortative 
mating (i.e., ornamented females mated with ornamen-  
ted males and vice versa; see Results). Thus, we con-
ducted one-choice mating trials to increase the opportu-
nity to document non-assortative mating by removing 
the potential confound of male-male competition pre-
sented by two-choice trials. We used 13-cm diameter 
arenas where a single female and a single male were 
allowed to interact for 45 minutes. Females were always 
initially paired with a male that was the opposite phe-
notype of her father. If a female did not mate in the first 
trial, we rested her for 5 minutes and then allowed her 
to interact with a male that matched her paternal phe-
notype for 30 minutes. This second step allowed us to 
determine whether a female chose not to mate because 
she was not attracted to a given male or whether she had 
a lack of motivation to mate altogether. We conducted 
the one-choice trials towards the conclusion of the two-   
choice trials and as a result had limited availability of 
females and males that had not already been used in the 
two-choice trials. We tested 13 females: 5 ornamented 

females (all low diet) and 8 non-ornamented females (5 
high diet; 3 low diet). The 25 males we used for the 
one-choice trials ranged in age from 8‒35 days post-   
maturation. We were unable to match male age within a 
given trial, but there was no difference in age between 
ornamented and non-ornamented males across trials (t28 
= 1.13, P = 0.27). We also re-used 3 males that had not 
mated in a previous trial. 

Statistical analyses – For both the two- and one-  
choice trials, we looked at the incidence of a female 
mating with the same versus different phenotype as her 
paternal phenotype. We then examined patterns of mat-
ing across paternal phenotype, diet, age, and family ID 
for the two-choice trials using two different analyses. 
First, we used a nominal logistic regression to examine 
variation in the likelihood of mating. The dependent 
variable was whether a female mated or not, and the 
independent variables were paternal phenotype, diet, 
and age. We tested multiple females from some families, 
and thus included family ID as a random effect. Second, 
we used a nominal logistic regression to examine pat-
terns of mating among only those females who mated. 
The phenotype with which a female mated was the de-
pendent variable. Paternal phenotype, diet, age, and 
family ID nested within paternal phenotype (to account 
for families sired by the same male) were the indepen-
dent variables. 
1.1.3  Female choice: Mate-choice copying 

We tested whether learning influenced the expression 
of female mate choice by conducting a mate-choice 
copying experiment in which there were three distinct 
groups of females. The first comprised virgin females 
that had no opportunity to observe other females inte-
racting with potential mates – these were the ‘no expo-
sure’ females. The remaining groups were given the 
opportunity to observe either one or two different stages 
of reproductive interactions: (i) courtship and copula-
tion – which we refer to as ‘courtship-exposed’ or (ii) 
copulation only – which we refer to as ‘copulation-   
exposed’. Courtship-exposed females observed up to 30 
minutes of interaction between an actor trio: an actor 
female, an ornamented male, and a non-ornamented 
male. Copulation-exposed females observed 30 minutes 
of copulation between an actor female and her chosen 
male phenotype-either an ornamented or non-ornament-
ed male. These two categories represent potential inte-
ractions females may observe in the field. Mating trials 
with courtship-exposed and copulation-exposed females 
immediately followed their observation period (details 
to follow). Each actor female (unexposed female) was 
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ultimately observed by two observer females: (1) a 
courtship-exposed and (2) a copulation-exposed female. 
All individuals were field-collected as subadults from 
the grounds of the University of Mississippi greenhouse 
in Oxford, MS (Lafayette Co, USA) in the spring of 
2008. They matured in the laboratory, ensuring their 
virgin status. Given that these individuals were col-
lected from the field, however, we lack information on 
any female’s paternal phenotype.  

Prior to the start of all trials, we placed the actor fe-
male (unexposed female) in the mating arena with a 
filter paper substrate and six leaves for an hour, during 
which time she deposited pheromone-laden silk. The six 
leaves were subsequently used in pairs as a stimulus for 
male courtship during the subsequent mating trials (i) 
actor/unexposed female, (ii) courtship-exposed female, 
and (iii) copulation-exposed female. Following the hour 
pheromone deposition period, all but two leaves were 
removed from the mating arena and set aside until the 
appropriate trial (courtship-exposed mating trial or co-
pulation-exposed mating trial). For courtship-exposed 
female observation trials, the observer female (age-   
matched to the actor female) was placed inside the mat-
ing arena in a small (~1.5 cm diameter) clear acetate 
barrier so that she could observe (visual and vibratory 
exposure) all female-male interactions, but could not 
physically interact with the actor trio. At the start of the 
trial, the actor female was reintroduced into the arena 
outside of the acetate barrier, followed by the simulta-
neous release of two aged-matched (± four days) males— 
one ornamented and one non-ornamented—into oppo-
site ends of the arena. The actor female was allowed to 
interact with the two males simultaneously for 30 mi-
nutes or until copulation occurred, during which time 
the courtship-exposed female could observe. Imme-
diately following a successful copulation we removed 
both the non-copulating male and the courtship-exposed 
female from the arena and placed an acetate barrier 
around the copulating pair. The copulation-exposed fe-
male was then added to the arena with the copulating 
pair so that she could observe the pair for 30 minutes. 

Upon removing the courtship-exposed female from 
her observation arena, the exposed female was imme-
diately (within 5 minutes) run through a two-choice 
mating trial with a novel ornamented and non-orna-
mented male. Protocol for these mating trials mimicked 
those of the actor mating trials. Similarly, copulation-   
exposed females were also immediately (within 5 mi-
nutes) run through a two- choice mating trial with a 
novel ornamented and non- ornamented male after their 

observation period. In both the courtship- and copula-
tion-exposed mating trials, we placed two of the origi-
nal six leaves that were laden with the actor female’s 
silk to the arena to provide cues for male courtship.  

For all mating trials—no exposure, courtship-ex-
posed, copulation-exposed—we noted whether a female 
mated or not, and, if she did, with which male pheno-
type she mated. For the courtship-exposed and copula-
tion-exposed trials we noted whether one or both ob-
server females mated; if both mated, whether they ma-
ted with the same male type as each other; and, if they 
mated with the same or different male phenotype as the 
actor female. 

Statistics—Age was a confounding factor in the He-
bets and Vink (2007) study that showed an influence of 
juvenile experience on subsequent adult female mate 
choice, and age influenced mate choice in our initial set 
of mating experiments (see Results). Thus, we com-
pared the ages of females across the three treatments 
(unexposed, courtship-exposed, copulation-exposed) and 
the outcome of the trial (mated with ornamented, mated 
with non-ornamented, no mating). We also included age 
as a variable in all following analyses.  

The first set of analyses we ran included unexposed 
(actor), courtship-exposed, and copulation-exposed tri-
als, and examined how patterns of mating varied among 
these three treatment groups. We first tested how the 
likelihood to mate varied with treatment and age. We 
used a nominal logistic model with whether or not a 
female mated as dependent variable. The independent 
variables were treatment (unexposed, courtship-exposed, 
copulation-exposed), female age, and the treatment × 
female age interaction. For those females who mated, 
we tested whether the phenotype with which a female 
mated varied with these same factors. To do so, we used 
a nominal logistic regression with mated phenotype 
(ornamented versus non-ornamented) as the dependent 
variable, and female age, and the treatment × female 
age interaction as the independent variables. 

The second set of analyses included only exposed 
females, and looked at patterns of mating in courtship- 
versus copulation-exposed females. We used a nominal 
logistic regression to test if the likelihood for a female 
to mate varied with her treatment (courtship- versus 
copulation-exposed), age, and the phenotype observed 
mating. We then used a nominal logistic regression to 
test if the phenotype with which a female mated de-
pended on treatment (courtship- versus copulation-   
exposed), age, and the phenotype observed mating. 

The third set of analyses pooled the courtship- and 
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copulation-exposed females that mated (we found no 
differences in patterns of mating in the above analyses, 
see Results), and zeroed in on the specific factors de-
termining the phenotype with which a female mated. 
This set of analyses allowed us to determine whether or 
not mate-choice copying occurred. If no mate-choice 
copying is occurring, the incidence of mating with the 
same vs. different phenotype as the actor female should 
not differ from a random 50:50 frequency. Because all 
females were age-matched, we did not include age in 
this analysis. To test this null hypothesis, we compared 
the distribution of choice of observer females (i.e., same 
versus different than actor), with the null expectation of 
mating 50:50 using a χ2 analysis. Second, if mate-choice 
copying is occurring, we would predict that the pheno-
type with which an exposed female mates will match 
the phenotype she observed copulating. To test this pre-
diction, we used a nominal logistic regression with 
mated phenotype as the response variable, and the fol-
lowing independent variables: male phenotype observed 
copulating, female age, and the male phenotype × fe-
male age interaction. Finally, we determined whether 
the likelihood of matching the observed phenotype dif-
fered with whether a female saw an ornamented versus 
non-ornamented male mate. To do so, we used a nomin-
al logistic regression with the dependent variable: same/  
different as the observed phenotype, and the indepen-
dent variables: male phenotype observed copulating, 
female age, and the male phenotype × female age inte-
raction. A significant interaction term indicates a dif-
ference in the rate of copying that depends on whether a 
female was exposed to an ornamented versus non-orna-
mented male. 
1.2  Patterns of genetic variation 

The results from the behavioral experiments sug-
gested strong assortative mating, but also the potential 
for mate copying to influence patterns of mating (See 
Results, section 2.1.1‒2.1.3). Our next step then, was to 
use a molecular approach to determine the conse-
quences for the above patterns on population genetic 
structure. Given that our results and those of Hebets and 
Vink (2007) (where experience appears to influence 
choice) contrast with those of Rutledge and Uetz (2014) 
(where experience appears not to influence choice), we 
were particularly interested to determine whether there 
are different patterns of correspondence between geno-
typic and phenotypic variation across phenotypical-
ly-pure vs. phenotypically- mixed populations.   

Specimen collection – We collected mature Schizo-
cosa spiders from numerous populations between April 

2005 and May 2008 (Fig. 1; Online Appendix). Our 
efforts were primarily concentrated on populations used 
in previous studies characterizing female choice. In the 
Ohio Valley, we collected (i) non-ornamented males from 
a phenotypically-pure population in Kentucky (Giles 
Conrad Park, Boone County, KY; Fig. 1; Online Ap-
pendix); (ii) ornamented males collected from a pheno-
typically-pure population in Ohio (the Cincinnati Nature 
Center Rowe Woods, Clermont County, OH; Fig. 1; 
Online Appendix); (iii) ornamented males from a phe-
notypically-pure population in Kentucky (Devou Park, 
Kenton County, KY). The first two populations corres-
pond to those populations in the Ohio River Valley used 
in prior studies establishing strong assortative mate 
choice (Stratton and Uetz, 1981, 1983, 1986). The third 
was included to determine whether phenotype or the 
potential barrier created by the Mississippi River influ-
enced patterns of genetic variation. The three collection 
sites were within 35–50 km of one another (Fig. 1).  

In Mississippi, we collected at the University of Mis-
sissippi Campus Greenhouse (Lafayette County, MS; 
Fig. 1; Online Appendix): (iv) non-ornamented males 
from the phenotypically-mixed population; and (v) or-
namented males from the same phenotypically-mixed 
population. We greatly expanded upon previous sam-
pling from this population (Hebets and Vink, 2007). 

We stored two legs (usually right legs III and IV) 
from each individual in 100% ethanol at -20 °C for sub-
sequent DNA extraction. Female Schizocosa associated 
with ornamented and non-ornamented males are mor-
phologically identical, so only adult males were col-
lected to ensure proper identification. We extracted total 
DNA from the two legs of each specimen using DNeasy 
Tissue Kits (Qiagen, Valencia, CA) and ZR Genomic 
DNA II Kit (Zymo, Orange, CA).  

Mitochondrial sequence data—We determined if or-
namented and non-ornamented males formed a mono-
phyletic group, suggestive of either a lack of divergence 
or very recent divergence, by examining sequence vari-
ation at a portion (1,200 bp) of cytochrome oxidase 
subunit I (COI). This marker has been examined in pre-
vious studies of intra- and inter-species studies of wolf 
spiders (Colgan et al., 2002; Vink and Paterson, 2003; 
Chang et al., 2007; Hebets and Vink, 2007; Hebets et al., 
2013). We examined a total of 25 individuals from each 
of (i–v) above. We also generated sequences for 26 
spiders from 24 additional collecting localities, and ob-
tained 31 sequences from GenBank (Online Appendix). 
These additional sequences included ornamented and 
non-ornamented males, and 13 other species in the ge-
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nus Schizocosa (Online Appendix). All species in the S. 
ocreata clade (the major clade in the genus containing 
ornamented and non-ornamented males) were repre-
sented along with additional outgroups in the genus. 

We used the primers C1-J-1718-spider and CI-N- 
2776-spider (Vink et al., 2005) to amplify a ~1,200 bp 
region of COI via polymerase chain sequencing reaction 
(PCR). We performed all sequencing reactions in a 
Mastercycler (Eppendorf) thermal cycler. We used the 
following cycling parameters: 35 cycles of 94°C dena-
turation (30 s), 48°C annealing (30 s), and 72°C exten-
sion (60 s), with an initial 94°C denaturation (3 min), 
and 72°C final extension (5 min). We purified PCR 
products using either ExoSap or QIAGEN PCR purifi-
cation kit (Qiagen, Valecia, CA). We sequenced the pu-
rified product in both directions at the High Throughput 
Genomics Unit at the University of Washington or Ida-
ho State University Molecular Research Core Facility. 
We edited sequences in ContigExpress (Vector NTI 
suite, Informax), aligned them in BioEdit (Hall, 1999) 
and confirmed them manually by visual inspection. The 
amplified DNA sequences coded as expected, and ali-
gned with additional coding sequences of Schizocosa 
previously deposited in GenBank, thus verifying that 
the fragments we amplified were of the coding region 
found in the mitochondria and not nuclear pseudogene 
copies. 

We merged identical sequence haplotypes using 
TCS1.21 (Clement et al., 2000) before performing phy-
logenetic analyses. We used Akaike information crite-
rion (Posada and Buckley, 2004) in MrModeltest ver-
sion 2.3 (Nylander, 2008) implemented in PAUP* ver-
sion 4.0b10 (Swofford, 2002) to select the best model of 
nucleotide evolution and estimate the parameters for the 
chosen model. The model of evolution selected for the 
data was a special case of the general time reversible 
(GTR) model (Taveré, 1986) with among-site rate hete-

rogeneity (GTR+). We implemented Bayesian infe-
rence of phylogeny in MrBayes version 3.1.2 (Ronquist 
and Huelsenbeck, 2003) using GTR model of evolution 
with the gamma distribution of rate heterogeneity of 
1.5197. We ran two independent analyses, each with 
four heated chains, sampling every 5,000th tree, for 2.5×  
106 generations at which point the average standard 
deviation of split frequencies had dropped below 0.008, 
indicating convergence. We used MrBayes to construct 
majority rule consensus trees, discarding the first 25% 
of trees as burn-in.  

We calculated the number of haplotypes, haplotype 
diversity (h) and nucleotide diversity (π) for the Ohio 

Valley and mixed Mississippi localities in DnaSP ver-
sion 4.90 (Rozas et al., 2003). 

Multi-locus microsatellite data — We examined fine-  
scale population structure of the five focal groups using 
variation in microsatellites. We generated multi-locus 
genotypes at 13 microsatellite loci (see Supplemental 
Material) for 292 individuals. These individuals in-
cluded 136 from the three focal groups in the phenotyp-
ically-pure Ohio Valley localities – 49 ornamented 
males from OH, 44 non-ornamented males from KY, 
and 43 ornamented males from KY. The remaining 139 
individuals were from the phenotypically-mixed Mis-
sissippi locality – 40 ornamented males and 99 non-  
ornamented males. 

We amplified 13 microsatellite loci using polymerase 
chain reaction (for marker development and characteri-
zation, see Supplemental Material). DNA fragment ana-
lysis was performed at the University of Illinois-Urbana- 
Champaign Biotechnology Center on the ABI Prism 
3730xl Analyzer and size calling was performed ma-
nually using GeneMapper v3.7 (Applied Biosystems).  

We calculated allelic diversity, and levels of observed 
and expected heterozygosities in Genepop v 3.4 (Ray-
mond and Rousset, 1995; Rousset, 2008). We tested for 
linkage disequilibrium between all pairs of loci within 
and among localities in Genepop v 3.4. Due to the large 
number of pairwise comparisons among markers, we 
took a step-up false discovery rate (FDR) method (Ben-
jamini and Hochberg, 1995) to increase the power of 
our significance testing and control for type II errors. 
We also calculated FST values among the five focal 
groups of individuals in Arlequin (Excoffier et al., 
2005). All analyses in Genepop were performed with 
the following parameters: dememorization = 10,000, 
batches = 1,000, iterations per batch = 10,000.  

Hardy-Weinberg expectations – We calculated FIS 

(Weir and Cockerham, 1984) using the Markov Chain 
method implemented in Genepop. If ornamented and 
non-ornamented males represent genetically distinct 
groups, we predicted that we would find Hardy-Wein-
berg disequilibrium in the pooled data set within each 
geographic region with no deviation from Hardy-Wein-
berg expectations when the data set for each phenotype 
is analyzed separately. 

STRUCTURE analyses – We utilized a Bayesian 
clustering algorithm implemented in the program 
STRUCTURE (Version 2.2; Pritchard et al., 2000) to 
infer population structure. We ran 20 simulations for 
each putative number of genetic clusters (K = 1–10). 
For each simulation, we ran 500,000 replicates of the 
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MCMC following a burn-in period of 500,000 replicates. 
We used a model of admixture, and allowed allele fre-
quencies to be correlated among subpopulations. In 
cases where population structure is potentially subtle, 
these parameters are thought to provide the best resolu-
tion (Falush et al., 2003). To determine the most likely 
number of genetic clusters, we evaluated the magnitude 
of change in Ln (P) between each K and determined the 
largest change in ∆K using the program Structure 
Harvester (Evanno et al., 2005). We used values of q, 
the proportion of an individual’s sampled genome that is 
characteristic of each genetic cluster to assign individu-
als to genetic clusters. Values of q > 0.7 indicated un-
ambiguous assignment of individuals to a given cluster. 
Values of q < 0.7 for all clusters indicated ambiguous 
assignments. We determined the percentage correct 
unambiguous assignments to genetic clusters as the 
proportion of individuals of a given phenotype that were 
unambiguously assigned to the genetic cluster corres-
ponding to their phenotype. Using these same criteria, 
an incorrect assignment was an unambiguous assign-
ment to a genetic cluster that corresponded to a different 
phenotype. 

The ∆K method identifies large-scale population ge-
netic structure, but further analyses are often needed to 
detect substructure (Evanno et al., 2005). Thus, we re-
ran structure analyses for the genetic cluster containing 
the non-ornamented males from the Ohio Valley, and 
the two male phenotypes from Mississippi. 

2  Results 

2.1  Variation in choice and signals 
2.1.1  Male sexual signals: Patterns of inheritance 
and diet 

The number of total offspring born in each family 
was 54.8 ± 3.0 (mean ± SE). Of these, the number of 
male offspring surviving to adulthood was 7.8 ± 0.6 

(mean ± SE). The majority of males sired offspring that 
matched their phenotype (84%, n = 55 total clutches). 
However, one non-ornamented male sired one orna-
mented offspring (3%; n = 31 non-ornamented sires). 
Also, five ornamented males sired clutches with primar-
ily large-brushed males, but also sired one or more male 
offspring with either no brushes or extremely reduced 
brushes (29%; n = 17 total ornamented sires). Of the 
three ornamented males that sired two clutches (with 
different females), two sired purely ornamented 
offspring and one sired both non-ornamented and orna-
mented males (Fig.2). 

While we observed that not all sons matched the 
phenotypes of their fathers, phenotype did not vary with 

diet (paternal phenotype 2 = 455.5, P < 0.0001, diet 2 = 
2.4, P = 0.29). While the ornamented offspring sired by 
the non-ornamented father was reared on a high diet, the 
non-ornamented offspring sired by ornamented fathers 
were on a mix of diets: there were 3 reduced/absent bru-
shes in the high diet treatment group, and 4 in the low 
diet treatment group. 
2.1.2  Female choice: Patterns of inheritance, diet, 
and age 

All females that mated in the two-choice trials (n = 
44; 25 ornamented females, 19 non-ornamented females) 
and one-choice trials (n = 8: 3 ornamented females, 5 
non-ornamented females) mated with a male matching 
their paternal phenotype. Family ID influenced the 
overall likelihood of mating (Table 1). Neither diet nor 
age influenced choice, but paternal phenotype did (Ta-
ble 2). 
2.1.3  Female choice: Mate-choice copying 

Results for the first set of analyses including unex-
posed and exposed females were as follows. The like-
lihood of mating did not vary with treatment (unexposed, 
courtship-exposed or copulation-exposed) (Fig. 3) or 

age (Treatment: 2
1,3 = 0.2, P = 0.55; Age: 2

1,3 = 0.1, P = 
 

 
 

Fig. 2  Phenotypes of the Schizocosa offspring sired by males of known phenotype (ornamented or non-ornamented) from 
the quantitative genetics breeding design 
The bars indicate the proportion of clutch that had no brushes, partial brushes, and full brushes.  
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0.12; Treatment × age: 2
1,3 = 1.6, P = 0.90). For those 

trials in which a female mated, the likelihood of mating 
with an ornamented versus non-ornamented male did 
not vary with treatment, but did vary with age (Fig. 4) 

(Treatment: 2
2,5 = 0.3, P = 0.85; Age: 2

1,5 = 15.0, P =  

0.0001; Treatment × age: 2
2,5 = 0.6, P = 0.74). See Ta-

ble 3 for the female ages and trial outcome for each 
treatment. 

 
Table 1  The effects of paternal phenotype, diet, age, and 
family ID on the overall likelihood for Schiozocosa females 
to mate when presented simultaneously with an orna-
mented and non-ornamented male  

Factor df 2 P 

Paternal phenotype 1 0.0 1.0 

Female diet 1 0.0 0.4445 

Female age 1 0.3 0.5955 

Family ID (nested within  
paternal phenotype) 

29 53.7 0.0035 

Significant P-values are highlighted in bold. 
 

Table 2  The effects of paternal phenotype, diet, age, and 
family ID on whether a Schiozocosa female mated with an 
ornamented versus non-ornamented male in two-choice 
trials 

Factor df 2 P 

Paternal phenotype 1 47.4 < 0.0001

Female diet 1 0.0 1.0 

Female age 1 0.0 1.0 

Family ID (nested in paternal  
phenotype) 

22 0.0 1.0 

Significant P-values are highlighted in bold. 
 

 
 

Fig. 3  The outcome of two-choice mating trials for female 
Schizocosa wolf spiders that were unexposed, courtship-  
exposed, or copulation-exposed 
Females mated with an ornamented male, non-ornamented male, or 
not at all. 

Results for the second set of analyses included only 
exposed females, and compared patterns of mating be-
tween courtship- versus copulation-exposed females. 
First, we found that the likelihood to mate did not de-
pend on treatment (courtship- versus copulation-ex-
posed), age, or the phenotype a female observed mating 

(Treatment: 2
1,3 = 0.3, P = 0.61; Age: 2

1,3 = 0.1, P = 

0.74; Phenotype observed: 2
1,3 = 1.6, P = 0.21). Of 

those females who mated, whether a female mated with 
an ornamented or non-ornamented male did not depend 
on treatment or age, but did vary with the male pheno-
type she observed mating previously (Table 4). 

Results for the third set of analyses included court-
ship- and copulation-exposed females pooled. First, we 
compared patterns of mating of these exposed females 
(same vs. different as compared to actor) to patterns ex-
pected by chance (50:50). We note that we had 17 un-
exposed females that mated, and we exposed 33 females 
(one less copulation-exposed than courtship-exposed 
female). In every case in which both the courtship-   
exposed and copulation-exposed females mated, they 
mated with the same phenotype as each other (n = 6 
pairs). Of the exposed females, 21 mated in subsequent 
trials, and 15 of these mated with the same phenotype as 
the actor (71%; Fig.5). This 71% was significantly 

greater than the 50% null expectations 2 = 3.98, P = 
0.046. Second, we found that the phenotype with which 
a female mated depended upon the phenotype she ob- 

 
Table 3  Mean ages (days post-maturation) for females 
from the three treatments and three mating outcomes 
(mated with an ornamented male, non-ornamented male, 
or no mating) 

Treatment Ornamented Non-ornamented No mating 

Unexposed 10.6 ± 2.1 22.2 ± 2.1 19.5 ± 1.8 

Copulation- 
exposed 

13.2 ± 3.0 21.0 ± 2.7 20.8 ± 2.1 

Courtship- 
exposed 

15.0 ± 3.6 21.4 ± 3.6 20.3 ± 2.3 

 
Table 4  For female Schizocosa wolf spiders who were 
exposed to courtship and/or copulation and subsequently 
mated: The phenotype with which a female mates as a 
function of her treatment (courtship- versus copulation- 
exposed), her age, and the phenotype she observed mating 

Factor df 2 P 

Treatment 1,3 0.1 0.8171 

Age 1,3 1.5 0.2174 

Phenotype observed 1,3 4.8 0.0288 

Significant P-values are highlighted in bold. 
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served mating, her age, and their interaction (Table 5). 
The effect of phenotype observed indicates that the fe-
male mated more frequently with the male phenotype 
she observed copulating. The effect of age was due to 
the fact that older females mated more often with non-  
ornamented males (Fig. 4). Further, the significant age × 
phenotype observed interaction term indicates a differ-
ence in the likelihood of mating with the male pheno-
type observed that depended on age, with age making a 
difference only in the group of females exposed to non- 

 

 
 

Fig. 4  Ages of female Schizocosa wolf spiders that mated 
with either an ornamented or non-ornamented male in 
two-choice mating trials 
 

 
 

Fig. 5  Phenotype with which courtship-exposed and co-
pulation-exposed female Schizocosa wolf spiders mated in 
two-choice mating trials with ornamented and non-orna-
mented males 
A female mated with either the same or different phenotype to which 
she was exposed. 

ornamented males (mean ± SE, exposure phenotype/  
mated phenotype: ornamented/ornamented 14.0 ± 2.5; 
ornamented/non-ornamented 17.0 ± 4.4; non-ornamented/ 
ornamented 15 ± 4.3; non-ornamented/non-ornamented 
22.8 ± 1.5). Finally, whether an exposed female mated 
with the same or different phenotype as the actor de-
pended on the male phenotype she observed mating 
(Table 6). Females that observed ornamented males 
mating were more likely to mate with ornamented males; 
but, females that observed non-ornamented males were 
as likely to mate with ornamented males as they were to 
mate with non-ornamented males (Fig. 5). 
2.2  Patterns of genetic variation 

Mitochondrial sequence data — Ornamented and non- 
ornamented males from all localities sampled formed a 
monophyletic clade relative to the rest of the genus (Fig. 
6). We found no evidence for reciprocal monophyly or 
any delineation between ornamented and non-orna-
mented individuals, nor between southern localities (in-
cluding the phenotypically-mixed Mississippi localities) 
and northern localities (including the phenotypical-
ly-pure localities in the Ohio Valley; Fig. 6). In contrast, 
the most closely related species to ornamented and 
non-ornamented males (S. ocreata clade: S. uetzi, S. 
stridulans, S. crassipes, S. floridana) are reciprocally 
monophyletic from their most closely related species (Fig. 
6). Genetic diversity was comparable among geographic 
localities (Ohio Valley and Mississippi; Table 7). 

 
Table 5  For female Schizocosa wolf spiders who were ex-
posed (courtship- and copulation-exposed females pooled) 
and subsequently mated: The phenotype with which a 
female mates as a function of the phenotype she observed 
mating, her age, and their interaction 

Factor df 2 P 

Phenotype observed 1,3 5.2 0.0232 

Age 1,3 6.7 0.0097 

Phen obs. × age 1,3 5.2 0.0224 

Significant P-values are highlighted in bold. 
 

Table 6  For female Schizocosa wolf spiders who were ex-
posed (courtship- and copulation-exposed females pooled) 
and subsequently mated: Whether a female mated with the 
same versus different phenotype as the male she observed 
mating as a function of the observed phenotype, age, and 
their interaction 

Factor df 2 P 

Phenotype observed 1,3 1.8 0.1824 

Age 1,3 5.2 0.0224 

Phen obs. × age 1,3 6.7 0.0097 

Significant P-values are highlighted in bold. 
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Fig. 6  Bayesian consensus tree based on unique mitochondrial (COI) haplotypes for ornamented and non-ornamented 
spiders across the collection localities as well as additional species in the genus Schizocosa (collapsed into single branch tips) 
The individuals represented by each unique haplotype is indicated to the right of the phylogeny, with blue colors indicating individuals with brushes, 
and green indicated individuals without brushes. Branch lengths are proportional to the expected number of substitutions per site, indicated by the 
scale bar. Posterior probabilities represented with numbers at each node. Accession numbers for sequence data deposited in genbank: KT963556-KT9637. 

 
Multi-locus microsatellite data— Of the 13 microsa-

tellite loci that we tested, one pair was in significant 
linkage disequilibrium across localities (C101 and B2), 

and so we removed one (B2) from further statistical 
analysis. We found no further evidence of linkage dise-
quilibrium between pairs of loci within each of the five 
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focal groups of individuals for the remaining 12 mark-
ers. Four markers (D12, D104, C107, D107) showed 
particularly high levels of FIS across groups, potentially 
indicative of the presence of null alleles or some other 
factor confounding analyses, so we removed these 
markers from further analyses (see Supplemental Ma-
terial for analyses with these five markers). Thus, our 
final analyses included eight of the original 13 microsa-
tellite markers. We obtained multi-locus genotypes for 
296 individuals – of these, we had high amplification 
success for 271 individuals (92% of these amplified for 
at least seven of eight loci)—we included these 271 
individuals in further analyses. Levels of FST among the 
five focal groups varied from 0.01–0.04 (Table 8).  

In the phenotypically-pure localities, deviations from 
Hardy-Weinberg equilibrium did not correspond to male 
phenotype; those loci where the observed homozygosity 
did not meet the expected values for the pooled data 
also exhibited homozygote excess within one or more 
localities (Table 9). In the phenotypically-mixed locality, 
deviations from Hardy-Weinberg equilibrium also did 
not correspond to male phenotypes; further, those loci 
exhibiting homozygote excess in the pooled sample also 
exhibited homozygote excess within either one or both 
male phenotypes (Table 10). 
 

Table 7  Genetic diversity in mitochondrial sequences 
(COI) in the ornamented and non-ornamented Schizocosa 
from phenotypically-pure localities (Ohio Valley), and the 
phenotypically-mixed locality (Mississippi) 

Region n H h (mean ± SE) π, (mean ± SE) 

Ohio Valley 75 31 0.887 ± 0.003 0.00727 ± 0.00013

Mississippi 50 20 0.868 ± 0.005 0.00564 ± 0.00018

n = number of individuals; H = number of haplotypes, h = haplotype 
diversity, π = nucleotide diversity. 

 
Table 8  Pairwise FST values between the 5 focal groups of 
ornamented and non-ornamented Schizocosa wolf spiders: 
Three phenotypically-pure localities from the Ohio Valley 
and a phenotypically-mixed locality in Mississippi (com-
prised of a group of ornamented individuals and a group 
of non-ornamented individuals) 

 Ohio Valley localities 
Mississippi  

locality 

 
Non-orn 

(KY) 
Orn 

(OH)
Orn 

(KY) 
Non-orn Orn

Non-orn (KY) --     

Orn (OH) 0.035 --    

Orn (KY) 0.031 0.008 --   

Non-orn (MS) 0.037 0.031 0.023 --  

Orn (MS) 0.027 0.019 0.015 0.009 -- 

All values were non-significant. 

Table 9  Measures of genetic diversity derived from mul-
ti-locus microsatellite genotypes for Schizocosa individuals 
from the Ohio Valley localities. A. All individuals (orna-
mented, n = 94) and non-ornamented (n = 47) Schizocosa. 
B. Non-ornamented individuals from Giles Conrad Park 
(KY; n = 47). C. Ornamented individuals from Rowe 
Woods (OH; n = 50). D. Ornamented individuals from De-
vou Park (KY; n = 44) 

A. Ohio Valley: Ornamented and non-ornamented 

Locus n Na He Ho 
FIS 

(WandC) 
P 

A3 137 14 0.57 0.23 0.45 < 0.0001 

D4 135 28 0.27 0.07 0.22 < 0.0001 

C104 137 6 0.66 0.36 0.48 < 0.0001 

D6 139 10 0.50 0.33 0.25 < 0.0001 

A4 138 25 0.18 0.09 0.10 0.1201 

C116 139 35 0.09 0.10 -0.02 0.6217 

C101 140 13 0.33 0.25 0.08 < 0.0001 

C12 140 13 0.33 0.25 0.08 0.0199 
       

B. Ohio Valley: Kentucky non-ornamented  

Locus n Na He Ho 
FIS 

(WandC) 
P 

A3 43 9 0.47 0.35 0.31 < 0.0001 

D4 41 22 0.93 0.80 0.34 < 0.0001 

C104 42 5 0.57 0.17 0.27 0.0768 

D6 44 7 0.75 0.64 0.15 0.0777 

A4 44 18 0.86 0.75 0.04 0.4904 

C116 42 20 0.91 0.86 -0.06 0.4080 

C101 43 9 0.51 0.53 0.12 0.0862 

C12 44 8 0.70 0.68 0.03 0.3686 
       

C. Ohio Valley: Cincinnati Nature Center (OH) ornamented 

Locus n Na He Ho 
FIS 

(WandC) 
P 

A3 49 11 0.82 0.57 0.31 < 0.0001 

D4 48 22 0.92 0.60 0.34 < 0.0001 

C104 49 5 0.65 0.49 0.27 0.0768 

D6 48 9 0.58 0.50 0.15 0.0777 

A4 47 16 0.87 0.85 0.01 0.4904 

C116 49 23 0.90 0.96 -0.06 0.4080 

C101 48 13 0.73 0.65 0.12 0.0862 

C12 49 10 0.78 0.76 0.03 0.3686 
       

D. Ohio Valley: Devou park (KY) ornamented  

Locus N Na He Ho 
FIS 

(WandC) 
P 

A3 41 9 0.80 0.34 0.60 < 0.0001 

D4 41 22 0.93 0.80 0.14 0.0076 

C104 41 5 0.63 0.32 0.51 < 0.0001 

D6 42 7 0.52 0.36 0.34 0.0030 

A4 42 18 0.90 0.88 0.03 0.5548 

C116 42 20 0.86 0.93 -0.07 0.8774 

C101 42 8 0.74 0.69 0.09 0.1668 

C12 42 8 0.71 0.62 0.16 0.0602 

Shown are the number of individuals analyzed per locus (note that not 
all loci amplified for all individuals), the number of alleles (Na), ex-
pected heterozygosities (He), observed heterozygosities (Ho), FIS and 
P-values from Hardy-Weinberg test for homozygote excess (Weir and 
Cockerham, 1984). Italicized P-values are those remaining significant 
after a sequential Bonferroni correction. 
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Table 10  Measures of genetic diversity derived from mul-
ti-locus microsatellite genotypes for Schizocosa individuals 
from the phenotypically-mixed locality in Mississippi. A. All 
individuals (ornamented, n = 48; non-ornamented, n = 108). 
B. Ornamented males only. C. Non-ornamented males only 

A. Mississippi: Ornamented and non-ornamented 

Locus n Na He Ho 
FIS 

(WandC) 
P 

A3 145 19 0.41 0.12 0.31 < 0.0001

D4 150 38 0.49 0.05 0.44 < 0.0001

C104 155 12 0.48 0.35 0.26 < 0.0001

D6 117 10 0.54 0.33 0.34 0.0009

A4 145 21 0.40 0.12 0.34 < 0.0001

C116 156 25 0.19 0.09 0.11 0.0283

C101 144 13 0.40 0.39 -0.01 0.4550

C12 144 13 0.40 0.39 -0.01 0.1019

       

B. Mississippi: Ornamented    

Locus n Na He Ho 
FIS 

(WandC) 
P 

A3 33 10 0.82 0.42 0.23 < 0.0001

D4 38 26 0.92 0.45 0.39 0.0010

C104 39 7 0.62 0.49 0.28 < 0.0001

D6 34 7 0.62 0.47 0.26 0.0671

A4 39 12 0.85 0.87 0.47 < 0.0001

C116 39 17 0.90 0.77 0.09 0.1043

C101 33 7 0.36 0.36 -0.03 0.4511 

C12 36 7 0.61 0.56 -0.06 0.6271

       
C. Mississippi: Non-ornamented  

Locus n Na He Ho 
FIS 

(WandC) 
P 

A3 94 18 0.88 0.68 0.49 < 0.0001

D4 96 29 0.95 0.57 0.52 < 0.0001

C104 96 9 0.65 0.49 0.23 0.0134

D6 73 8 0.66 0.51 0.29 0.0193

A4 90 17 0.84 0.46 -0.03 0.1966

C116 97 18 0.90 0.84 0.16 0.0546

C101 90 8 0.41 0.42 0.02 0.8314

C12 91 9 0.58 0.63 0.12 0.0710

Shown are the number of individuals analyzed per locus (n; note that 
not all loci amplified for all individuals), the number of alleles (Na), 
expected heterozygosities (He), observed heterozygosities (Ho), FIS 
and P-values from Hardy-Weinberg test for homozygote excess. Itali-
cized P-values are those remaining significant after a sequential Bon-
ferroni correction. 

 
STRUCTURE analyses – The ∆K method indicated 

that K = 2 was the most likely number of populations 
for the total sample, which had a mean ln(p) = -8145. 
Visual inspection of STRUCTURE output for both K = 
2 and K = 3 indicates differentiation between the non- 
ornamented and ornamented males in the phenotypically-  
pure population, but not between ornamented and non-  
ornamented males from the phenotypically-mixed popu-
lation (Fig. 7 A, B). When K = 3 was forced on the en-
tire sample, we found high rates of unambiguous as-
signment to the associated genetic clusters for the phe-

notypically pure populations (78% unambiguous assign-
ment to the pure non-ornamented cluster for the non-  
ornamented males in the Ohio Valley; 92% and 95% to 
the pure ornamented cluster for the two sets of orna-
mented males in the Ohio Valley). The rate of unambi-
guous assignment to its own cluster was lower for the 
Mississippi population (44% for the ornamented males, 
64% for non-ornamented males).  

Inspection of the STRUCTURE output for K = 2 for 
the analyses of the non-ornamented males in the Ohio 
Valley and both male phenotypes from Mississippi sug-
gest differentiation between the disparate geographic 
locations, but not between phenotypes in the mixed 
population (Fig. 7 C). When K = 2 was forced on the 
subpopulation containing the non-ornamented males 
from the Ohio Valley and both male phenotypes from 
Mississippi, we found high rates of unambiguous as-
signment of the non-ornamented males from the Ohio 
Valley to their respective cluster (80%). We found lower 
levels of unambiguous assignment of males from Mis-
sissippi to their own cluster (60% for ornamented, 46% 
for non-  ornamented), but also low levels of assign-
ment to the other cluster (20% for ornamented, 38% for 
non-ornamented). 

3  Discussion 

We found that a complex set of factors likely deter-
mines variation in the action and outcome of sexual 
selection in a group of ornamented and non-ornamented 
wolf spiders. Using a quantitative genetics breeding 
experiment, we found a strong genetic basis to male 
phenotype and mate choice in the phenotypically-mixed 
population in Mississippi, as has been found previously 
in the phenotypically-pure populations in the Ohio Val-
ley (Stratton, 1983, Stratton and Uetz, 1986). We found 
no support that diet influences either male phenotype or 
mate choice in the mixed population. However, younger 
females tended to mate with ornamented males, and 
mate-choice copying likely influences patterns of mat-
ing. Examining the correspondence between genetic and 
phenotypic variation across both locations, we find ge-
netic distinction between male phenotypes in the Ohio 
Valley where learning does not influence choice of or-
namented versus non-ornamented males. However, we 
find no genetic distinction between male phenotypes in 
the mixed population in Mississippi where learning ap-
pears to play a role in mate choice. 

We found a strong genetic basis on male phenotype 
in the mixed Mississippi population. Males tended to 
have the same phenotype as their father, except in a few  
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Fig. 7  Representation of the population structure of ornamented and non-ornamented male Schizocosa (from phenotypi-
cally-pure localities in the Ohio Valley and a phenotypically-mixed locality in Mississippi) generated by the program 
STRUCTURE 
A. The selected number of populations is set to K = 2. Each vertical bar represents a single individual and the proportion of assignment to each 
genetic cluster is equal to the fraction of color in each bar (blue and light green). B. The selected number of populations is set to K = 3, the propor-
tion of assignment to each genetic cluster is equal to the fraction of color in each bar (blue, green, and yellow). C. Population structure of the Ohio 
Valley non-ornamented with Mississippi ornamented and non-ornamented with the selected number of populations set to K = 3. The proportion of 
assignment to each genetic cluster is equal to the fraction of color in each bar (green and yellow). 

 
notable cases where some families show male offspring 
exhibiting no brushes, partial brushes and full brushes. 
The partial brushes resemble hybrid phenotypes result-
ing from forced copulation among populations in the 
Ohio Valley (Stratton, 1983, Stratton and Lowrie, 1984). 
We found no variation in male phenotype across diet 
treatments, and so we interpret variation in brush size in 
some families as an indication of mating among histor-
ically ornamented and non-ornamented lineages. 

We also found a strong genetic basis for female mate 
choice in the mixed Mississippi population. Females 
from our breeding experiment—where mate-choice lea-

rning was not possible—mated with males that matched 
their father’s phenotype. While male-male competition 
may factor into mating outcome in the two-choice trials, 
previous work suggests little influence of male-male 
competition on the outcome of mating trials (Scheffer et 
al., 1996). Additionally, our one-choice trials showed 
the same pattern of assortative mating as our two-choice 
trials. We also found genetic variation in the likelihood 
of a female to mate, with some families being more 
likely to copulate than others. The potential underlying 
causes of this variation are many, including variation in: 
the motivation to mate, female mate selectivity, and 
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responses females elicit from males. Genetic variation 
in mate choice behavior is commonly assumed in many 
models of sexual selection (Kokko et al., 2002), and has 
been detected in a number of case studies (Chenoweth 
and Blows, 2006; Prokuda and Roff, 2014; Fowler-Finn 
and Rodríguez, In Press). It can play an important role 
in patterns of variation in traits (Roff and Fairbairn, 
2014), and thus should be considered as a potential fac-
tor contributing to genetic and phenotypic variation 
observed in this group of Schizocosa wolf spiders. Fur-
thermore, if females that are more likely to mate copy 
are also overall more likely to mate, the influence of 
learning could have a stronger effect on patterns of 
choice within the population. 

Even when mate choice has a strong genetic basis, 
associations between genetic and phenotypic variation 
can be disrupted by environmentally-induced plasticity 
(Verzijden et al., 2012), and also potentially by life-  
history based changes in choice. While we found no 
plasticity in female choice due to diet, choice did vary 
with age. Younger females tended to mate more fre-
quently with ornamented males. Furthermore, the in-
fluence of being exposed to a mating male (i.e. mate-  
choice copying) also appeared to depend on age. Thus, 
age could play a significant role not only in terms of 
choice over a female’s lifetime, but also in the strength 
of the influence of social experience, influencing pat-
terns of mating in complex ways. 

The social context in which mate selection takes 
places can have profound implications for the action 
and outcome of sexual selection (West-Eberhard, 1983, 
West-Eberhard, 2014), not the least of which is the op-
portunity for mate choice copying to result in patterns 
of choice that differ from genetically-based preferences 
(Whitte et al., 2015). Social context varies dramatically 
between the Ohio Valley location where females en-
counter either only ornamented males or only non-    
ornamented males, and the Mississippi location where 
females encounter both male phenotypes and population 
densities can reach three individuals/100 cm2 (Fow-
ler-Finn and Hebets, 2011). Interestingly, we have evi-
dence that learning from social experience at the juve-
nile stages influences patterns of female choice only in 
the Mississippi location (Hebets and Vink, 2007; Rut-
ledge and Uetz, 2014). Here, we show that social expe-
rience during the adult stage can also affect mate choice 
in the form of mate-choice copying in the Mississippi 
location. Even when we accounted for the influence of 
age, we still found an effect of the phenotype a female 
observed mating on her mate choice decisions. Fur-

thermore, similar to Hebets and Vink (2007), the phe-
notype of male with which a female had experience 
affected patterns of mating. Females that observed or-
namented males mating were more likely to mate with 
ornamented males, but females who observed non-orna-
mented males were equally likely to mate with either 
phenotype. Given that there is variation in brush size 
within the population, it would be interesting to explore 
how the size of brushes influences the magnitude of this 
effect.  

The difference in the effect of learning on mate 
choice between the Ohio Valley and Mississippi loca-
tions could evolve as a result of variation between the 
locations in the costs of mating with males that deviate 
from a female’s paternal phenotype, encounter rates of 
different male phenotypes, or a plethora of other factors. 
Regardless of how it evolves, the consequences of 
mate-choice learning can be profound. While learning 
generally is thought to increase rates of divergence 
among populations (Dukas, 2013), our results suggest 
that learning may contribute to a weakening of assorta-
tive mating indicated by a lack of genetic distinction 
between phenotypes (this study; Deng et al., 2014). 
Given the patterns of genetic and phenotypic variation 
we observed in the Ohio Valley and Mississippi, it is 
even possible that learning contributes to the mainten-
ance of genetic variation in Mississippi. Interestingly, 
our results suggest that social experience may eventual-
ly lead to the fixation of ornamented male phenotypes 
in the Mississippi population. While there have been 
small fluctuations in the proportion of each phenotype 
in the Mississippi location, five years of data show or-
namented males remaining at a proportion of ~60% in 
the population (Deng et al. 2014; Fowler-Finn pers. 
Obs.), but this is a process that likely takes many genera-
tions. Furthermore, the apparent advantage that social 
experience confers to ornamented males may be ba-
lanced by an advantage of non-ornamented males with 
older females.  

Another potential social factor that could influence 
patterns of reproductive success in the phenotypical-
ly-mixed population is multiple male mountings. Inse-
mination by both male phenotypes is not likely to occur 
in the Ohio Valley, where populations contain either pure-
ly ornamented or purely non-ornamented males. How-
ever, in two-choice mating trials using individuals from 
the Mississippi location, we have witnessed numerous 
instances of an ornamented and a non-ornamented male 
simultaneously mounted on a female and attempting to 
mate (Hebets, pers. obs.). Future work is necessary to 
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determine whether both males are able to successfully 
transfer sperm and fertilize eggs. However, given that 
females tend to mate only once during their lifetime 
(Norton and Uetz, 2005), any incidence of multiple fer-
tilizations could reduce the effect of mate choice deci-
sions by females.  

Habitat heterogeneity provides another potential fac-
tor that could influence the patterns of genetic and phe-
notypic variation observed. For example, in the Ohio 
Valley, the two male phenotypes occupy different mi-
crohabitats that are fairly homogeneous for a given po-
pulation, whereas in the Mississippi location, the habitat 
is quite heterogeneous, with each male phenotype hav-
ing a mating advantage depending on substrate (Hebets, 
unpublished data). Habitat heterogeneity can influence 
the maintenance of multiple phenotypes within a popu-
lation (Chunco et al., 2007), and modeling in the Deng 
et al. (2014) study shows that a combination of habitat 
heterogeneity and social experience can lead to the per-
sistence of the two male phenotypes in the Mississippi 
population.  

Our genetic data suggest a very recent evolution of 
any population-level differences in patterns of variation 
in male phenotype and mate choice, and supports the 
sister species status of ornamented and non-ornamented 
Schizocosa in the Ohio Valley (Stratton and Uetz, 1981; 
Stratton and Uetz, 1983; Stratton and Uetz, 1986). This 
evidence comes from a lack of genetic structure using a 
mitochondrial marker, very low levels of FST among po-
pulations, and genetic structure corresponding to phe-
notype only among the phenotypically-pure populations 
using the more quickly-evolving microsatellite markers. 
Weak distinction among some locations may be due to 
recent divergence or high gene flow, but also a lack of 
power with the microsatellite markers. We cannot be 
certain of the origin of the differences in patterns of 
phenotypic and genetic variation across the Ohio Valley 
and Mississippi locations. However, we do know that 
variation in the composition of phenotypes across envi-
ronments can increase the speed at which speciation can 
occur (McLean and Stuart-Fox, 2014), and we do ob-
serve genetic distinction between the Mississippi and 
Ohio Valley locations. Therefore, this group of wolf 
spiders we studied may provide a prime example of a 
polymorphism that becomes fixed for different pheno-
types across populations, leading to rapid speciation 
(West-Eberhard, 1986; Corl et al., 2010). Finally, any 
processes contributing to genetic and phenotypic diffe-
rentiation, as well as variation in patterns across popula-
tions, is likely to be influenced by a variety of genetic, 

life history, ecological and social factors, as well as 
complex interactions arising among them.  
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Supplemental Material  
Development and characterization of novel microsatellite markers for Schizocosa wolf spiders 

We extracted whole genome DNA from the legs of S. ocreata and S. rovneri collected from 10 individuals from 
seven localities (Table 1) using the DNeasy kit (Qiagen). Genetic Identification Services (http://www.genetic-id-services. 
com/; Chatsworth, CA) pooled DNA fragments of 350‒700 base pairs long to construct libraries enriched for the re-
peats ATG-, CAG-, TACA-, and TAGA-. Bacterial cultures were produced by ligating Schizocosa ocreata genomic 
DNA fragments enriched for each of the four motifs into the Bam H1 (GGATCC) cut site of pUC19 plasmid (forward 
primer 5′- AGG AAA CAG CTA TGA CCA TG -3′; reverse primer 5′- ACG ACG TTG TAA AAC GAC GG -3′; an-
nealing temperature of 57°C).  

The recombinant plasmids were electroporated into E. coli strain DH5. These colonies were screened for successful 
transformations using bluo-gal/IPTG/ampicillin LB (BIA-LB). Plasmid DNA from successful clones was purified us-
ing using Millipore MultiScreen MAFB NOB Plates (http://www.millipore.com/publications.nsf/docs/TN004). Plas-
mids of successful clones were sequenced using Amersham’s DYEnamic™ ET Terminator Cycle Sequencing Kit 
(Amersham Biosciences P/N US81050), followed by electrophoresis on an Applied BioSystems Model 377 DNA Se-
quencer. After identifying appropriate microsatellites, PCR primers for the flanking regions were designed in Desig-
nerPCR, version 1.03 (Research Genetics, Inc.).  

For initial screening, a total of 40 unlabeled primers were tested for polymorphism on seven individuals from five 
localities (Table 1) by PCR amplification and visualization on 3% agarose gels stained with ethidium bromide. Cycl-
ing parameters were: 94°C initial denaturation (3 min); 35 cycles of: 94°C denaturation (30 s), 48°C annealing (30 s), 
and 72°C extension (60 s); 72°C final extension (5 min). We identified potentially suitable primer pairs that yielded 
polymorphic fragment lengths across the screening individuals. We converted to a 4-dye system and assayed loci in 
304 individuals from 4 populations for primer performance and variation among individuals. Fragment analysis of 
fluorescent PCR product was performed on an ABI 3730xl Analyzer and manually sized using GeneMapper version 
3.7 (Applied Biosystems). 

Testing yielded 13 polymorphic loci that produced at most two alleles per individual. All but one pair of loci segre-
gated independently (B2 with C101). The number of alleles per locus ranged from 12‒86 Online Appendix. We com-
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puted observed and expected heterozygosity using Genepop v 3.4. (Raymond and Rousset, 1995). Tests for departure 
from HWE showed evidence of high inbreeding in a number of loci Online Appendix. We sequenced one ore more 
individuals for each locus, and deposited sequences in GenBank (accession numbers KT954050-KT954095). 

 
Supplemental Table 1. Characterization and variability of 13 microsatellite loci in 4 populations of the wolf spiders S. ocreata and 
S. rovneri. 

Marker name Primer sequences (5′-3′) Motif 
Annealing 

temp. 
No. of 
alleles 

Allele size 
range 

Ho He 

    

Schiz_A3 
F: GCA TTG AGC CCA AAC TAT C 
R: CGA-AAA-TAA-GCA-CCC-TAA-CTG 

(CAT)2-8 57.4° 20 164-191 0.51 0.84

    

Schiz_D12 
F: CCC-CAA-CTT-CAT-TTA-TCT-GG 
R: GGT-GTG-TTC-ATC-AAT-TTC-TTT-G 

(AC)4-14(TA)4-19    
(TAGA)5-22(GA)6-8

57.4° 86 187-375 0.64 0.97

    

Schiz_D4 
F: GAG-TGG-TGA-AGT-TTG-ACA-TAA 
R: CTT-AAA-AGC-ACC-TTG-AAC-TG 

(TAGA)8-9 58.6° 43 152-226 0.61 0.95

    

Schiz_C104 
F: AAA-CGG-CTA-AGT-CTT-TTG-GG 
R: TGA-ACC-GCT-TTG-GAA-ATG 

(TACA)8 57.4° 12 170-196 0.43 0.65

    

Schiz_D6 
F: TTA-GCA-GAT-TTT-TGG-TTA-CGA-C 
R: GCC-CCG-CTC-TAT-TAC-TTG 

(TCTA)4-13 57.4° 13 230-272 0.48 0.68

    

Schiz_A4 
F: GGC-AAG-GCT-TTA-CAA-GGA-C 
R: GCT-TTT-TTG-GCT-CTT-CAG-TG 

(GAT)5-10(GTT)1-6 57.4° 33 223-306 0.71 0.91

    

Schiz_C107 
F: TTT-AGA-GTT-ATA-CCC-CTC-AGT-G 
R: TAT-GGC-TAG-TTT-AGT-CGT-GAA 

(CATA/G)5-23 58.6° 22 219-311 0.46 0.85

    

Schiz_D107 
F: TCC-CAC-TCT-CTT-AAC-TGA-AAT-C 
R: ATC-TGC-AAA-GGT-GAA-TCT-TAT 

(TAGA)9(TAGA)5 
(GA)12 

58.6° 78 124-302 0.77 0.98

    

Schiz_C116 
F: GCG-ACA-TTC-ATT-ACC-GAA-AC 
R: GGT-TCC-AGA-ACG-AAT-ACG-C 

(GTAT)4-7(AT)2-12 57.4° 40 259-327 0.86 0.91

    

Schiz_B2 
F: AAT-GGC-AAT-AAT-AAC-GGG-GTA 
R: AAA-TCG-CCG-AGG-TCA-TCT 

(AAC)5AGC(AAC)3 57.4° 18 212-256 0.65 0.66

    

Schiz_C12 
F: AAA-CGA-AAA-TGC-CCT-AAA-GTC 
R: GGA-AAT-GGG-AGT-TTT-GGA-G 

(TACA)5 57.4° 17 254-322 0.63 0.69

    

Schiz_D104 
F: TAA-AGG-CCG-TGA-ATT-TTA-CTC 
R: CAG-AAG-ACC-GGA-TAT-GAA-CTA-G 

(CTAT)10 56.8° 19 186-258 0.31 0.81

    

Schiz_C101 
F: AGC-ACG-CAA-CAA-CAG-CAG 
R: ATG-CCG-GAT-CAA-GAC-CTG 

(TGTA)6 58.6° 21 166-204 0.51 0.7
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Online Appendix: Schizocosa specimens used for phylogenetic analyses (Fig. 6). 

Species Specimen code Location 
GenBank  

accession number

Schizocosa sp.--ornamented 001_011_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963556 

Schizocosacrassipes 007_001_05_crassipesCCNA 
USA, MS, Wilkinson County, Clark Creek Natural 
Area 

KT963562 

Schizocosacrassipes 007_030_05_crassipesCCNA 
USA, MS, Wilkinson County, Clark Creek Natural 
Area 

KT963563 

Schizocosastridulans 007_037_05_stridCCNA 
USA, MS, Wilkinson County, Clark Creek Natural 
Area 

KT963564 

Schizocosacrassipes 008_005_05_crassipes_natchez USA, MS, Adams County, Natchez State Park  KT963565 

Schizocosacrassipes 008_1_002_06_crassipes_natchez USA, MS, Adams County, Natchez State Park KT963566 

Schizocosastridulans 022_026_05_amys_stridulans 
USA, MS, Lafayette County, Molly Barr Road and 
Park Boulevard 

KT963574 

Schizocosacrassipes 024_001_06_S_crass_legion USA, MS, Winston County, Legion State Park KT963576 

Schizocosauetzi 026_001_06_gumsprLA_uetzi USA, LA, Winn County, Gum Springs campgound KT963578 

Shizocosa non-ornamented 004_041_06_tobytuby_non USA, MS, Lafayette County, "Toby Tuby" KT963559 

Schizocosa sp.--ornamented 002_1_001_06_sardis_brush USA, MS, Penola County, Sardis Reservoir KT963557 

Schizocosa 
sp.--non-ornamented 

004_034_06_tobytuby_non USA, MS, Lafayette County, "Toby Tuby" KT963558 

Schizocosa sp.--ornamented 005_054_06_hurrland_brush USA, MS, Lafayette County, Hurricane Landing KT963560 

Schizocosa sp.--ornamented 006_006_05_hurrland_brush USA, MS, Lafayette County, Hurricane Landing KT963561 

Schizocosa sp.--ornamented 009_001_05_natchez_brush USA, MS, Adams County, Natchez State Park KT963567 

Schizocosa sp.--ornamented 014_005_06_Clarcko_brush USA, MS, Clarke County, Clarcko State Park KT963568 

Schizocosa sp.--ornamented 017_001_05_grahamlake_brush USA, MS, Lafayette County, Graham Lake KT963569 

Schizocosa sp.--ornamented 018_002_05_grahamlake_brush USA, MS, Lafayette County, Graham Lake KT963570 

Schizocosa 
sp.--non-ornamented 

020_001_05_bagleybott_non USA, MS, Lafayette County, Baggley Bottoms KT963571 

Schizocosa 
sp.--non-ornamented 

021_006_05_strawpl_non 
USA, MS, Marshall County, Strawberry Plains 
Audubon Sanctuary 

KT963572 

Schizocosa 
sp.--non-ornamented 

022_001_05_amys_non 
USA, MS, Lafayette County, Molly Barr Road and 
Park Boulevard 

KT963573 

Schizocosa 
sp.--non-ornamented 

023_005_05_ecru_non USA, MS, Pontotoc County, Ecru woods KT963575 

Schizocosa sp.--ornamented 025_001_06_vicksburg_brush USA, MS, Warren County, Vicksburg KT963577 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_002 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963579 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_003 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963580 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_004 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963581 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_006 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963582 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_008 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963583 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_011 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963584 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_012 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963585 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_013 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963586 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_014 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963587 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_015 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963588 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_016 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963589 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_017 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963590 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_018 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963591 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_019 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963592 

Schizocosaocreata  
(Hentz 1844)--ornamented 

030_020 
USA, OH, Clermont County, Rowe Woods,  
Cincinnati Nature Center 

KT963593 
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Continued Table 

Species Specimen code Location 
GenBank  

accession number

Schizocosaocreata (Hentz 1844)--ornamented 030_022 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963594 

Schizocosaocreata (Hentz 1844)--ornamented 030_023 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963595 

Schizocosaocreata (Hentz 1844)--ornamented 030_027 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963596 

Schizocosaocreata (Hentz 1844)--ornamented 030_028 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963597 

Schizocosaocreata (Hentz 1844)--ornamented 030_030 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963598 

Schizocosaocreata (Hentz 1844)--ornamented 030_035 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963599 

Schizocosaocreata (Hentz 1844)--ornamented 030_038 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963600 

Schizocosaocreata (Hentz 1844)--ornamented 030_039 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963601 

Schizocosaocreata (Hentz 1844)--ornamented 030_043 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963602 

Schizocosaocreata (Hentz 1844)--ornamented 030_046 
USA, OH, Clermont County, Rowe Woods, 
Cincinnati Nature Center 

KT963603 

? Schizocosaocreata (Hentz 1844)--ornamented 031_001 USA, KY, Kenton County, Devou Park KT963604 

? Schizocosaocreata (Hentz 1844)--ornamented 031_002 USA, KY, Kenton County, Devou Park KT963605 

? Schizocosaocreata (Hentz 1844)--ornamented 031_003 USA, KY, Kenton County, Devou Park KT963606 

? Schizocosaocreata (Hentz 1844)--ornamented 031_004 USA, KY, Kenton County, Devou Park KT963607 

? Schizocosaocreata (Hentz 1844)--ornamented 031_005 USA, KY, Kenton County, Devou Park KT963608 

? Schizocosaocreata (Hentz 1844)--ornamented 031_006 USA, KY, Kenton County, Devou Park KT963609 

? Schizocosaocreata (Hentz 1844)--ornamented 031_008 USA, KY, Kenton County, Devou Park KT963610 

? Schizocosaocreata (Hentz 1844)--ornamented 031_009 USA, KY, Kenton County, Devou Park KT963611 

? Schizocosaocreata (Hentz 1844)--ornamented 031_010 USA, KY, Kenton County, Devou Park KT963612 

? Schizocosaocreata (Hentz 1844)--ornamented 031_011 USA, KY, Kenton County, Devou Park KT963613 

? Schizocosaocreata (Hentz 1844)--ornamented 031_012 USA, KY, Kenton County, Devou Park KT963614 

? Schizocosaocreata (Hentz 1844)--ornamented 031_013 USA, KY, Kenton County, Devou Park KT963615 

? Schizocosaocreata (Hentz 1844)--ornamented 031_014 USA, KY, Kenton County, Devou Park KT963616 

? Schizocosaocreata (Hentz 1844)--ornamented 031_016 USA, KY, Kenton County, Devou Park KT963617 

? Schizocosaocreata (Hentz 1844)--ornamented 031_017 USA, KY, Kenton County, Devou Park KT963618 

? Schizocosaocreata (Hentz 1844)--ornamented 031_018 USA, KY, Kenton County, Devou Park KT963619 

? Schizocosaocreata (Hentz 1844)--ornamented 031_019 USA, KY, Kenton County, Devou Park KT963620 

? Schizocosaocreata (Hentz 1844)--ornamented 031_024 USA, KY, Kenton County, Devou Park KT963621 

? Schizocosaocreata (Hentz 1844)--ornamented 031_026 USA, KY, Kenton County, Devou Park KT963622 

? Schizocosaocreata (Hentz 1844)--ornamented 031_027 USA, KY, Kenton County, Devou Park KT963623 

? Schizocosaocreata (Hentz 1844)--ornamented 031_032 USA, KY, Kenton County, Devou Park KT963624 

? Schizocosaocreata (Hentz 1844)--ornamented 031_035 USA, KY, Kenton County, Devou Park KT963625 

? Schizocosaocreata (Hentz 1844)--ornamented 031_036 USA, KY, Kenton County, Devou Park KT963626 

? Schizocosaocreata (Hentz 1844)--ornamented 031_042 USA, KY, Kenton County, Devou Park KT963627 

? Schizocosaocreata (Hentz 1844)--ornamented 031_044 USA, KY, Kenton County, Devou Park KT963628 

Schizocosarovneri, Uetz and Dondale, 1979 032_002_c USA, KY, Boone County, Giles Conrad Park KT963629 

Schizocosarovneri, Uetz and Dondale, 1979 032_005 USA, KY, Boone County, Giles Conrad Park KT963630 

Schizocosarovneri, Uetz and Dondale, 1979 032_006 USA, KY, Boone County, Giles Conrad Park KT963631 

Schizocosarovneri, Uetz and Dondale, 1979 032_008 USA, KY, Boone County, Giles Conrad Park KT963632 

Schizocosarovneri, Uetz and Dondale, 1979 032_009 USA, KY, Boone County, Giles Conrad Park KT963633 

Schizocosarovneri, Uetz and Dondale, 1979 032_011 USA, KY, Boone County, Giles Conrad Park KT963634 

Schizocosarovneri, Uetz and Dondale, 1979 032_012 USA, KY, Boone County, Giles Conrad Park KT963635 
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Species Specimen code Location 
GenBank  

accession number

Schizocosarovneri, Uetz and Dondale, 1979 032_014 USA, KY, Boone County, Giles Conrad Park KT963636 

Schizocosarovneri, Uetz and Dondale, 1979 032_015 USA, KY, Boone County, Giles Conrad Park KT963637 

Schizocosarovneri, Uetz and Dondale, 1979 032_018 USA, KY, Boone County, Giles Conrad Park KT963638 

Schizocosarovneri, Uetz and Dondale, 1979 032_022 USA, KY, Boone County, Giles Conrad Park KT963639 

Schizocosarovneri, Uetz and Dondale, 1979 032_025 USA, KY, Boone County, Giles Conrad Park KT963640 

Schizocosarovneri, Uetz and Dondale, 1979 032_026 USA, KY, Boone County, Giles Conrad Park KT963641 

Schizocosarovneri, Uetz and Dondale, 1979 032_028 USA, KY, Boone County, Giles Conrad Park KT963642 

Schizocosarovneri, Uetz and Dondale, 1979 032_029 USA, KY, Boone County, Giles Conrad Park KT963643 

Schizocosarovneri, Uetz and Dondale, 1979 032_030 USA, KY, Boone County, Giles Conrad Park KT963644 

Schizocosarovneri, Uetz and Dondale, 1979 032_031 USA, KY, Boone County, Giles Conrad Park KT963645 

Schizocosarovneri, Uetz and Dondale, 1979 032_032 USA, KY, Boone County, Giles Conrad Park KT963646 

Schizocosarovneri, Uetz and Dondale, 1979 032_033 USA, KY, Boone County, Giles Conrad Park KT963647 

Schizocosarovneri, Uetz and Dondale, 1979 032_034 USA, KY, Boone County, Giles Conrad Park KT963648 

Schizocosarovneri, Uetz and Dondale, 1979 032_035 USA, KY, Boone County, Giles Conrad Park KT963649 

Schizocosarovneri, Uetz and Dondale, 1979 032_037 USA, KY, Boone County, Giles Conrad Park KT963650 

Schizocosarovneri, Uetz and Dondale, 1979 032_039 USA, KY, Boone County, Giles Conrad Park KT963651 

Schizocosarovneri, Uetz and Dondale, 1979 032_041 USA, KY, Boone County, Giles Conrad Park KT963652 

Schizocosarovneri, Uetz and Dondale, 1979 032_045 USA, KY, Boone County, Giles Conrad Park KT963653 

Schizocosa sp.--non-ornamented o007_05e_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963654 

Schizocosa sp.--non-ornamented o010_05_3_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963655 

Schizocosa sp.--non-ornamented o011_05_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963656 

Schizocosa sp.--ornamented o015_05_2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963657 

Schizocosa sp.--ornamented o022_05e_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963658 

Schizocosa sp.--ornamented o028_05_3_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963659 

Schizocosa sp.--non-ornamented o030_05_2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963660 

Schizocosa sp.--non-ornamented o035_05_2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963661 

Schizocosa sp.--non-ornamented o038_05e_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963662 

Schizocosa sp.--ornamented o041_05_1_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963663 

Schizocosa sp.--ornamented o042_05_4_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963664 

Schizocosa sp.--non-ornamented o043_05_2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963665 

Schizocosa sp.--non-ornamented o044_06_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963666 

Schizocosa sp.--non-ornamented o046_05_1_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963667 

Schizocosa sp.--non-ornamented o049_05_4_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963668 

Schizocosa sp.--ornamented o050_05_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963669 

Schizocosa sp.--ornamented o059_05e_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963670 

Schizocosa sp.--non-ornamented o060_05_3_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963671 

Schizocosa sp.--non-ornamented o060_05_4_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963672 

Schizocosa sp.--non-ornamented o063_05e_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963673 

Schizocosa sp.--ornamented o075_05_4_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963674 
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Schizocosa sp.--non-ornamented o091_05u_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963675 

Schizocosa sp.--ornamented o116_06_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963676 

? Schizocosaocreata, (Hentz 1844)--ornamented ON_034_06 USA, NE, Lancaster County, Wilderness Park KT963677 

Schizocosa sp.--non-ornamented p4_11c_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963678 

Schizocosa sp.--non-ornamented p4_11d_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963679 

Schizocosa sp.--ornamented p4_a1_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963680 

Schizocosa sp.--ornamented p4_b2_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963681 

Schizocosa sp.--ornamented p4_b3_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963682 

Schizocosa sp.--ornamented p4_b4_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963683 

Schizocosa sp.--ornamented p4_b7_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963684 

Schizocosa sp.--ornamented p4_b8_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963685 

Schizocosa sp.--ornamented p4_c1_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963686 

Schizocosa sp.--ornamented p4_c4_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963687 

Schizocosa sp.--non-ornamented p4_c6_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963688 

Schizocosa sp.--non-ornamented p4_d1_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963689 

Schizocosa sp.--non-ornamented p4_d2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963690 

Schizocosa sp.--ornamented p4_d3_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963691 

Schizocosa sp.--ornamented p4_d4_brush1 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963692 

Schizocosa sp.--non-ornamented p4_d6_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963693 

Schizocosa sp.--non-ornamented p4_e2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963694 

Schizocosa sp.--ornamented p4_e3_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963695 

Schizocosa sp.--ornamented p4_e4_brush1 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963696 

Schizocosa sp.--non-ornamented p4_e6_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963697 

Schizocosa sp.--non-ornamented p4_f2_non 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963698 

Schizocosa sp.--ornamented p4_f3_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963699 

Schizocosa sp.--ornamented p4_g3_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963700 

Schizocosa sp.--ornamented p4_h1_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963701 

Schizocosa sp.--non-ornamented p4_h2_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963702 

? Schizocsaocreata(Hentz 1844)--ornamented S_ocreata_o1 
USA, MS, Penola County, Sardis Reservoir nature 
trail 

EF112506 

? Schizocsaocreata(Hentz 1844)--ornamented S_ocreata_o2 USA, MS, Lafayette County, 1 mile SW Abbeville EF112507 

? Schizocsaocreata(Hentz 1844)--ornamented S_ocreata_o3 USA, MS, Lafayette County, 1 mile SW Abbeville EF112508 

? SchizocsarovneriUetz and Dondale 
1979--non-ornamented 

S_roverni_r1 USA, MS, Lafayette County, Clear Creek EF112509 

? SchizocsarovneriUetz and Dondale 
1979--non-ornamented 

S_rovneri_r2 
USA, MS, Penola County, Sardis Reservoir nature 
trail 

EF112510 

Schizocosa sp.--ornamented p4_h4_brush 
USA, MS, Lafayette County, grounds of UM 
Campus Greenhouse 

KT963703 

Schizocosabilineata (Emerton, 1885) S_bilineata USA, MS, Lafayette County, UM field station EF112511 

Schizocosa duplex (Chamberlin, 1925) S_duplex 
USA, MS, Penola County, Sardis Reservoir nature 
trail 

EF112512 
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Schizocosa maximaDondale and Redner, 1978 S_maxima USA, CA, San Diego County, Jamul EF112513 

Schizocosamccooki(Montgomery 1904) S_mccooki USA, CA, San Diego County, Laguna Mountains EF112514 

Schizocosaretrorsa(Banks 1911) S_retrorsa USA, MS, Penola County, Sardis Reservoir EF112515 

Schizocosasaltatrix(Hentz 1844) S_saltatrix USA, MS, Lafayette County, "Lonesome 80" EF112516 

SchizocosastridulansStratton 1984 s1 USA, MS, Penola County, Sardis Reservoir  EF112517 

SchizocosastridulansStratton 1984 s2 
USA, MS, Marshall County, Strawberry Plains  
Audubon Sanctuary 

EF112518 

SchizocosastridulansStratton 1984 s3 USA, MS, Lafeyette County, 1 mile SW Abbeville EF112519 

SchizocosastridulansStratton 1984 s4 
USA, OK, Cleveland County, Lake Thunderbird State 
Park 

EF112520 

SchizocosastridulansStratton 1984 s5 
USA, MS, Marshall County, Strawberry Plains  
Audubon Sanctuary 

EF112521 

SchizocosauetziStratton 1997 u1 
USA, MS, Penola County, Sardis Reservoir nature 
trail 

EF112522 

SchizocosauetziStratton 1997 u2 USA, MS, Lafeyette County, "Lonsesome 80" EF112523 

SchizocosauetziStratton 1997 u3 USA, MS, Lafeyette County, "Lonsesome 80" EF112524 

SchizocosauetziStratton 1997 u4 USA, MS, Lafeyette County, "Lonsesome 80" EF112525 

SchizocosaauloniaDondale 1969 S_aulonia 
USA, KS, Montgomery County, Elk City Lake  
St Park 

JX870624 

Schizocosaavida (Walckenaer 1837) S_avida USA, NE, Lancaster County JS870625 

Schizocosabilineata(Emerton 1885) S_bilineata 
USA, OH, Licking County, Ohio State University- 
Newark 

JX870626 

SchizocosacrassipalpataRoewer 1951 S_crassipalpata USA, OH, Summit County, Akron JX870627 

Schizocosamccooki(Montgomery 1904) S_mccooki USA, CO, Douglas County, Roxborough JX870631 

Schizocosaretrorsa(Banks 1911) S_retrorsa USA, MS, Marshall County JX870632 

Schizocosasaltatrix(Hentz 1844) S_saltatrix USA, MS, Lafeyette County EF112523 

Schizocosa duplex Chamberlin 1925 S_duplex_JX… USA, MS, Penola County, Sardis Reservoir JX870629 

Schizocosafloridana(Hentz 1844) S_florid_JX… USA, FL, Alchua County JX970630 

 
Online Appendix: List of individuals sharing unique mitochondrial sequence haplotypes (COI) represented on the Schizo-
cosa phylogeny (Fig. 6). 

Individual represented on phylogeny Individuals with matching haplotypes 

030_003 

030_012, 030_018, 030_030, _030_035, _030_038, 030_043, 031_010, 031_012, 031_027, 031_044, 
032_009, 032_012, 032_022, 032_028, 032_030, 032_041, o028_05_3_brush, o030_05_2_non, 
o035_05_2_non, o042_05_4_brush, o044_06_non, o049_05_4_non, o059_05e_brush, o060_05_3_non, 
o091_05u_non, p4_a1_brush, p4_b8_brush, p4_c1_brush, p4_e3_brush, p4_f3_brush, p4_g3_brush 

030_006 032_006 

030_014 032_014 

030_019 031_008 

030_023 
030_027, 031_003, 031_017, 031_026, 032_005, 032_029, 032_034, o022_05e_brush, p4_c6_non, 
p4_d3_brush, p4_e2_non, p4_h2_non 

030_039 031_016 

031_002 031_036, p4_b4_brush 

031_005 032_031 

031_006 032_033 

032_008 032_011, 032_018, p4_b3_brush 

o007_05e_non o063_05e_non, p4_d1_non 

o010_05_3_non o011_05_non 

o015_05_2_non o075_05_4_brush, o116_06_brush 

S-ocr_o1_sar_EF112508 S_rovneri_r2_Sar_EF112510 

S_stridulans_s2_EF112518 S_stridulans_s3_EF112519, S_stridulans_s5_EF112521 
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