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MANAGEMENT BRIEF

Age-0 Sturgeon Accessibility to Constructed and Modified
Chutes in the Lower Missouri River

Nathan J. C. Gosch,* Marcus L. Miller, and Todd R. Gemeinhardt
U.S. Army Corps of Engineers, Environmental Resources Section, 601 East 12th Street, Kansas City,

Missouri 64106, USA

Schuyler J. Sampson
Nebraska Game and Parks Commission, 2200 North 33rd Street, Lincoln, Nebraska 68503, USA

Joseph L. Bonneau
U.S. Army Corps of Engineers, Threatened and Endangered Species Section, Post Office Box 710,

Yankton, South Dakota, 57078 USA

Abstract
Shallow-water habitat is hypothesized to provide nursery hab-

itat for young fish. The construction of side-channel chutes to
restore shallow-water habitat is common in the lower Missouri
River; however, a recent adaptive management strategy docu-
ment (developed by a multiagency, multidiscipline team), as well
as previous research, has suggested that the accessibility of chutes
to age-0 Scaphirhynchus spp. (sturgeon hereafter) may be limited.
Access is a critical prerequisite for young fish utilizing chute habi-
tat; thus, we investigated chute-specific accessibility for age-0
sturgeon at seven chutes (constructed and natural). Age-0 stur-
geon were capable of accessing most chutes; however, accessibil-
ity appeared limited at sites with highly restrictive inlet
structures. Our results suggest that future consideration of chute
inlet designs that meet authorized Missouri River purposes while
providing improved fish access is warranted. Additionally, cap-
ture sites for exogenously feeding age-0 sturgeon were usually
deeper (>1.5 m) and faster (>0.5 m/s) than sites without sturgeon
in chute and adjacent main-stem habitats. This finding is consis-
tent with previous research that suggests that slow and shallow
habitats may not be used by age-0 sturgeon as frequently as other
habitat types in the lower Missouri River.

The Missouri River was highly modified during the 20th

century for the purposes of bank stabilization, flood control,

commercial navigation, hydropower generation, and water

supply. While these measures were effective in protecting and

benefiting numerous human interests, the negative effects of

river regulation were also evident with declining habitat diver-

sity as the Missouri River shifted from extensive areas of

warm, shallow, and turbid habitat (i.e., shallow-water habitat

[SWH]) to extensive areas of relatively cold, deep, and clear

habitat (USFWS 2000, 2003; NRC 2011). As a result, many

native species declined (Hesse et al. 1989; Galat et al. 2005;

NRC 2011) and the Pallid Sturgeon Scaphirhynchus albus was

listed as endangered in 1990 (USFWS 1990). Subsequently,

the U.S. Fish and Wildlife Service issued a Biological Opinion

and amendment (collectively referred to as BIOP) on the U.S.

Army Corps of Engineers (USACE) operation of the Missouri

River system (USFWS 2000, 2003). One element of the rea-

sonable and prudent alternative identified in the BIOP was the

development of 5.0–7.6 ha/km of SWH from Sioux City,

Iowa, downstream to the mouth of the Missouri River near St.

Louis, Missouri.

As a result, the USACE began actively restoring SWH

(defined as depth � 1.5 m and velocity � 0.6 m/s and further

clarified by the U.S. Fish and Wildlife Service to include “side

channels, backwaters, depositional sandbars detached from the

bank, and low-lying depositional areas adjacent to shorelines”)

to benefit Pallid Sturgeon. Estimates suggest that over 1,300

ha were restored as of the most recent SWH accounting report

(Jalili and Pridal 2010), with additional restoration projects

completed since. To date, evidence suggests that little Pallid

Sturgeon recruitment has occurred in the lower Missouri River
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(LMOR; Steffensen et al. 2014); however, only »3% of the

more than 40,000 ha of SWH lost as a result of river modifica-

tion has been restored (USACE 2003; Jalili and Pridal 2010).

Detailed evaluation of the SWH management action is needed

given the expense, complexity, and uncertainty inherent in

implementing a large-scale habitat restoration effort. Although

project-specific objectives are important for evaluating

hypothesized linkages between SWH actions and Pallid Stur-

geon, the fundamental objective (Pallid Sturgeon population

increase via increased natural recruitment) will ultimately

determine if SWH creation efforts successfully reduce the neg-

ative impacts of USACE operations on Pallid Sturgeon. Thus,

a SWH evaluation strategy (USACE 2012) was developed

by a multiagency, multidiscipline team, using an adaptive

management approach, to evaluate the ability of habitat resto-

ration actions to provide the hypothesized benefits related to

physical habitat and biological response. This evaluation strat-

egy uses a nested approach emphasizing a systemwide

response of increased survivorship and population growth for

Pallid Sturgeon but also provides a framework for evaluation

at the project scale to determine if the desired physical and

biological responses are occurring locally. Both long-term

(i.e., natural recruitment of Pallid Sturgeon) and shorter-term

(e.g., increased retention of age-0 sturgeon, increased food

availability) evaluation are necessary to assess the effective-

ness of SWH restoration as a management action for Pallid

Sturgeon population growth (which may take decades) while

providing information to support short-term decision making

related to SWH restoration projects.

An intent of SWH restoration is to provide nursery habitat

for exogenously feeding Pallid Sturgeon (USACE 2012). The

construction of side-channel chutes is a common method used

to address the intent of SWH restoration projects (Gosch et al.

2013), and to date the USACE has constructed over 20 chutes

(Heimann et al., in press). The accessibility of constructed

chutes to age-0 Scaphirhynchus spp. (sturgeon hereafter) is an

important prerequisite to habitat use, and access could be

affected by various factors, including chute design, inlet con-

trol structure, river degradation, and age-0 sturgeon locomotor

capacity (USACE 2012). Ridenour et al. (2011) studied the

habitat use of age-0 sturgeon on the LMOR, finding lower

age-0 sturgeon catch rates in chute habitat than several

other mesoscale habitats. The authors suggested that limited

accessibility may be an issue; however, no analysis of chute-

specific effects was conducted and accessibility could vary

greatly among chutes. Thus, our primary objective was to

evaluate chute accessibility for LMOR age-0 sturgeon by

comparing catch rates between chute and adjacent main-stem

habitats at a variety of constructed and natural chutes, includ-

ing a chute with an inlet structure specifically designed to

increase free-embryo drift access. This information is an

important component for evaluating the success of completed

SWH projects and guiding adaptive management efforts on

the LMOR.

METHODS

The LMOR extends more than 1,300 km downstream from

Gavins Point Dam, South Dakota, to the confluence of the

Mississippi River at St. Louis, Missouri. Seven chutes from

Peru, Nebraska, downstream to St. Louis, Missouri, were

selected to represent a range of natural and constructed chutes

of different ages (Figure 1). Constructed chutes included the

following: Upper Kansas (river kilometer [rkm] 878 [mea-

sured from the confluence with the Mississippi River]; con-

structed in 2005), Rush (rkm 806; constructed in 2007),

Worthwine (rkm 737; constructed in 2006), Jameson (rkm

344; construction began in 2007 but ceased due to stakeholder

concerns [see Gosch et al. 2013 for more detail], and river

flows completed the chute in 2010), and Overton (rkm 301;

constructed in 2003). Inlet control structures limiting the

amount of main-stem flow (�10%) into each chute were con-

structed. Additionally, the Jameson chute inlet was con-

structed with a unique, V-shaped grade control structure

specifically designed to allow access to deep-drifting sturgeon

larvae. The natural chutes included Lisbon (rkm 351; located

on the next bend upstream of Jameson) and Pelican (rkm 26).

Lisbon was formed by high water events during 1993–1996

(Jacobson et al. 2004) and is relatively young compared with

Pelican, which was present on maps as early as the 1890s

(Missouri River Commission 1895). Although these two

chutes formed naturally, they are considered modified as con-

trol structures were also constructed in these chutes. All con-

trol structures (in both modified and constructed chutes) were

designed to maintain other authorized Missouri River purposes

and constructed based on site-specific conditions, resulting in

designs with varying degrees of flow restriction. The elevation

of each control structure is a potential barrier limiting age-0

sturgeon access; therefore, invert elevation (the lowest point

on the control structure representing the minimum elevation at

which water can flow over the structure) and water surface ele-

vations (from the nearest U.S. Geological Survey gauge sta-

tion) relative to the Missouri River Construction Reference

Plane (defined as the 75% exceedance probability water sur-

face elevation during the navigation season [Jacobson et al.

2009]) were used to describe invert elevation differences

among chutes. Lisbon and Pelican were the only chutes where

invert elevation exceeded water surface elevations during

extended portions of the 2012 and 2013 sampling seasons

(Figure 2). Additionally, Upper Kansas and Lisbon chute

entrances are mostly blocked with revetment rock (Figure 3).

As a result, Upper Kansas, Lisbon, and Pelican were consid-

ered highly restricted relative to the other chutes.
Each site was sampled twice monthly, as water levels

allowed, from May through September during 2012 and 2013.

A variety of sampling gears were used to capture age-0 stur-

geon, including a benthic sled, dual bow-mounted plankton

nets, a bow-mounted push trawl (POT02), and a bow trawl

(OT04), and samples were stratified by depth as each gear had

a recommended range of depths for sampling. The benthic
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sled, similar to Yocum and Tesar (1980), utilized a 750-mm

mesh conical net (0.75-m diameter with a 1:4 width to length

ratio) mounted to a rectangular frame with runners that

allowed benthic sampling in shallow, slow-water areas (<2 m

deep). The dual bow-mounted plankton nets consisted of two

of the same nets described above, mounted on a rigid frame,

which could be adjusted from 0 to 2 m in depth. Nets were

anchored stationary in the current or pushed slowly in areas of

little to no current. For both plankton net gears, a General Oce-

anics model 2030R mechanical flowmeter was used to deter-

mine the volume of water filtered during deployment and

catch per unit effort (CPUE) was calculated as the number of

fish/100 m3. The POT02, a 4-mm-mesh push trawl (2.4 m

wide with 0.76-m £ 0.38-m otter doors), was used to sample

depths up to 2 m. The OT04, a 4-mm-mesh bow trawl (4.9 m

wide with 0.91-m £ 0.38-m otter doors) was usually used to

sample depths between 2 and 4 m, but during low water condi-

tions this depth range was not always available in some chutes

(e.g., Rush, Pelican), thus shallower samples were occasion-

ally conducted by shortening the tow ropes. Sampling depths

exceeding 4 m was usually avoided because Ridenour et al.

(2011) rarely captured age-0 sturgeon at those depths. Catches

for all benthic trawls were standardized by multiplying the

trawl distance and the effective fishing width (Ridenour et al.

2011) and reported as fish/100 m2. Trawling was conducted

according to the Missouri River Standard Operating Proce-

dures for Fish Sampling and Data Collection (Welker and

Drobish 2010).

During both years, sampling gear effort was adjusted to

effectively capture age-0 sturgeon as they increased in size

during the growing season. From May to July 2012, the ben-

thic sled, dual bow-mounted plankton nets, and POT02 were

used to sample age-0 sturgeon. Four benthic sled, four dual

bow-mounted plankton net, and eight POT02 samples were

collected during each sampling trip to each site and divided

evenly between chute and adjacent main-stem habitats. During

August–September 2012, eight POT02 and eight OT04 sam-

ples were collected during each sampling trip to each site and

divided evenly between chute and adjacent main-stem habi-

tats. Based on our 2012 efforts, we adjusted our sampling

regime during 2013 to maximize age-0 sturgeon catch. From

May to mid-July 2013, the POT02 was replaced with the

MOT02, a 2-mm-mesh bow trawl (2.4 m wide with 0.76-m £
0.38-m otter doors). Eight benthic sled, four dual bow-

mounted plankton net, and eight MOT02 samples were col-

lected during each sampling trip to each site and divided

evenly between chute and adjacent main-stem habitats. From

mid-July to September 2013, eight POT02 and eight OT04

samples were collected during each sampling trip to each site

and divided evenly between chute and adjacent main-stem

FIGURE 1. Map of constructed and modified study chutes (denoted by black squares) on the lower Missouri River.
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FIGURE 2. Control structure invert (i.e., the minimum elevation at which water can flow over the structure) and water surface elevations (based on the nearest

U.S. Geological Survey gauge station) for each chute during the 2012 and 2013 sampling seasons relative to the Missouri River Construction Reference Plane

(CRP; 75% exceedance probability).
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habitats. Our suite of gears allowed sampling of each available

habitat type in depths � 4 m, and similar to Ridenour et al.

(2011), main-stem thalweg and outside bend areas were

excluded because of the inconsistency and potential safety

risks associated with snagging gear in these fast, deep areas.

Water depth was recorded to the nearest 0.1 m at the begin-

ning, middle, and end of each sample run (except only one

depth was recorded for stationary, anchored samples). When

FIGURE 3. Aerial photograph of the inlet for each study chute.
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more than one depth was recorded, the mean depth was used

for analyses. Water velocity was measured near the bottom

with a Marsh–McBirney flowmeter at the middle of the each

sample run. Age-0 sturgeon were measured for fork length

when a well-defined fork in the caudal fin was present; how-

ever, total length (excluding the caudal filament) was also

measured for small individuals lacking a well-defined fork

(Braaten et al. 2007). Individuals � 109 mm were considered

age 0 (Ridenour et al. 2011) and individuals � 23 mm were

excluded from the depth and velocity analyses described

below to minimize the potential for drifting larvae to be

included in these analyses (i.e., individuals > 23 mm were

considered exogenously feeding larvae).

To evaluate the differences in accessibility for age-0 stur-

geon, both years of data were combined and pooled by gear

type (i.e., sled and bow-mounted plankton nets were catego-

rized as “plankton” and POT02, OT04, and MOT02 trawls

were categorized as “trawl”). Main-stem samples at each site

were also pooled by habitat type for comparison with chute

CPUE. Ridenour et al. (2011) found that chutes “mimicked

the velocity, depth, and substrate particle size of rootless

dikes, wing dikes, and channel sandbars” and these three hab-

itats also contained the highest catch rates of age-0 sturgeon

during their study; thus, the pooling of main-stem samples

was appropriate as these three habitats were the most fre-

quently sampled during our study. This provided a valid com-

parison between chute CPUE and main-stem CPUE of fish

that exited the thalweg and were potentially available to enter

the chute (i.e., not entrained in the thalweg). Because of

highly skewed data, we observationally compared CPUE

(mean § 95% confidence interval [CI]) for plankton nets

between each paired chute and main-stem site. The same was

done for the trawl data. Given the large amount of revetment

rock blocking the entrances to Upper Kansas and Lisbon

chutes, we expected these sites to have limited chute access.

To compare depth and velocity at sites where sturgeon were

captured and where they were absent within chute and main-

stem habitats, a Kruskal–Wallis nonparametric analysis of

variance (ANOVA) was used because the data did not meet

normality assumptions; Dunn’s multiple comparison proce-

dure was used for all pairwise comparisons. Logistic regres-

sion was also used to determine if a significant relationship

existed between the presence of age-0 sturgeon and water

depth or velocity. Additionally, simple linear regression was

used to assess length–depth and length–velocity relationships

at chute and main-stem age-0 sturgeon capture sites. Signifi-

cance was a D 0.05 for all tests.

RESULTS

During 2012 and 2013, all sites were sampled regularly,

except Pelican. Low water levels only allowed one sampling

trip to Pelican during 2012; however, water levels allowed

seven sampling trips to this site during 2013. We conducted a

total of 614 plankton (20 contained age-0 sturgeon) and 1,438

trawl (77 contained age-0 sturgeon) samples. A combined total

of 165 age-0 sturgeon were captured (31 from plankton nets

and 134 from trawls). Genetic analysis revealed that 158 age-0

sturgeon were Shovelnose Sturgeon Scaphirhynchus platoryn-

chus; however, 11 individuals were unidentifiable. Mean

length was 32.1 mm (95% CI, 6.2) and 38.0 mm (4.3) in chute

and main-stem habitats, respectively. The dominance of zero

catches for age-0 sturgeon resulted in highly skewed data with

median, 25th percentile, and 75th percentile CPUE values

equal to 0 at all sites for both plankton net and trawl data.

Furthermore, 95% CI values were usually greater than mean

CPUE values (Figure 4).

Plankton samples appeared to yield relatively low mean

CPUE for age-0 sturgeon at all sites, except Lisbon and

Jameson (Figure 4). Access appeared limited in the Lisbon

chute, as mean plankton CPUE was over 45 times higher in

main-stem habitats than in the chute; in contrast, mean plank-

ton CPUE in nearby Jameson chute was over twice that

observed in adjacent main-stem habitats. Furthermore,

Jameson chute had the highest mean plankton CPUE observed

among all chute and main-stem habitats (Figure 4).

Trawl samples appeared to yield relatively low mean CPUE

for age-0 sturgeon in chute and main-stem habitats at Rush,

Worthwine, and Overton; however, mean trawl CPUE was rel-

atively high in at least one of the habitats (i.e., chute or main

stem) at Upper Kansas, Lisbon, Jameson, and Pelican (Fig-

ure 4). Access appeared limited in the Upper Kansas chute,

where no age-0 sturgeon were captured despite adjacent main-

stem habitats yielding the second highest mean trawl CPUE.

Similarly, both Lisbon and Pelican mean trawl CPUE was

over 4.5 times higher in the adjacent main-stem habitats than

within each of these chutes. In contrast, Jameson mean trawl

CPUE in main-stem habitats, although appearing higher, was

less than twice that observed in the chute. Further, mean trawl

CPUE in Jameson chute was still more than 2.5 times higher

than in the nearby Lisbon chute, while adjacent main-stem

CPUE at Jameson and Lisbon appeared identical (Figure 4).

Significant differences in depth existed in chute and main-

stem habitats between sturgeon (exogenously feeding) capture

sites and sites where sturgeon were not captured (nonsturgeon

sites), with these sturgeon capture sites occurring in deeper

water in both chute and main-stem habitats than nonsturgeon

sites (Figure 5). Exogenously feeding age-0 sturgeon were

usually sampled in water more than 1.5 m deep. Similarly, sig-

nificant differences in velocity existed between sturgeon cap-

ture sites and nonsturgeon sites, with sturgeon capture sites

occurring in faster water in chute habitats relative to nonstur-

geon sites; in contrast, velocity was not significantly different

between sturgeon capture sites and nonsturgeon sites in main-

stem habitats. However, velocity at sturgeon capture sites

tended to be near the upper end of the range of velocities

observed at nonsturgeon sites in these main-stem habitats (Fig-

ure 5). Exogenously feeding age-0 sturgeon were usually
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sampled in water velocities greater than 0.5 m/s. Additionally,

there was a relationship between the presence of exogenously

feeding age-0 sturgeon and water depth, with the highest prob-

abilities of presence occurring at depths � 2 m in both chute

and main-stem habitats (Figure 6). A relationship also existed

between the presence of exogenously feeding age-0 sturgeon

and water velocity, with the highest probabilities occurring at

velocities � 0.5 m/s in both chute and main-stem habitats

(Figure 6). Furthermore, there was no relationship between

exogenously feeding age-0 sturgeon length and water depth or

water velocity in chute habitats; the same was true between

length and water velocity in main-stem habitats (Figure 7).

Relationships did exist between exogenously feeding age-0

sturgeon length and water depth in main-stem habitats; how-

ever, very little variation was explained by the regression

model (Figure 7).

DISCUSSION

The consideration of project-level refinements, such as

modifying existing chute inlet control structures that may

improve access without negatively affecting other authorized

Missouri River purposes, may be warranted because it appears

that age-0 sturgeon accessibility is limited at some chute sites.

This was most evident at the Upper Kansas chute, where no

age-0 sturgeon were captured despite a relatively high trawl

catch in nearby main-stem habitats; similar findings were

observed at Lisbon chute. Access also appeared limited at Peli-

can chute. Given this information, our findings support previ-

ous research suggesting that limited chute accessibility may be

an issue for age-0 sturgeon (Ridenour et al. 2011). In contrast,

Jameson chute, located on the next bend downstream of Lis-

bon, appeared to provide the best opportunity for age-0 stur-

geon chute access despite main-stem plankton and trawl mean

CPUE being nearly identical to Lisbon main-stem habitats.

Interestingly, Jameson has a more open inlet design coupled

with a unique V-shaped grade control structure specifically

designed to allow access to deep-drifting sturgeon larvae.

As expected, the sites appearing to limit age-0 sturgeon

accessibility (Upper Kansas, Lisbon, and Pelican chutes) had

FIGURE 4. Age-0 sturgeon CPUE (mean § 95% CI) for chute and adjacent

main-stem habitats in the lower Missouri River using plankton (upper panel)

and trawl (lower panel) gears. The number of sturgeon captured is provided

above each bar.

FIGURE 5. Box plots of depth (upper panel) and velocity (lower panel) at

exogenously feeding age-0 sturgeon (present) and nonsturgeon (absent) chute

and main-stem (denoted as MOR) sites. The horizontal line in each box indi-

cates the median, the box dimensions represents the 25th and 75th percentiles,

the whiskers represent the 10th and 90th percentiles, and the black dots are

outliers. Box plots with the same letter are not statistically different at a D
0.05.
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designs consistent with highly restrictive chute inlet control

structures relative to the other chutes. At normal to low river

levels, only a small notch in the chute inlet control structure

would allow free-embryo drift into the Upper Kansas and Lis-

bon chutes. Furthermore, Pelican not only has a relatively

restrictive control structure, it is perched compared with the

main stem of the river, further deterring free-embryo drift dur-

ing low water levels (i.e., Pelican often experienced minimal

to nonexistent flow when the other chutes were still flowing).

Even during high water, these structures may limit age-0 stur-

geon access. For example, the majority of free-embryo stur-

geon drift is near the bottom (Braaten et al. 2008, 2010), thus,

even when these inlet control structures are overtopped during

high water, young sturgeon may not be capable of successfully

drifting over these structures. Woodward and Rus (2011)

found that chute inlet control structures limited the amount of

Missouri River course-grained suspended sediment entering

Upper Hamburg and Glovers Point chutes, demonstrating the

potential barrier that these structures may pose to other objects

drifting near the bottom, such as sturgeon larvae. While inlet

structure design likely plays a major role in chute accessibility,

other factors (e.g., chute inlet location on the bend, inlet loca-

tion relative to the thalweg, location of other river training

structures, and the interaction of these factors) may also

contribute to this issue, warranting further investigation of

these potential factors. Additionally, the location of con-

structed SWH restoration sites relative to spawning locations

may affect the ability of chutes to provide nursery habitat for

age-0 sturgeon. Although we sampled sites along a longitudi-

nal gradient spanning over 850 km and captured exogenously

feeding age-0 sturgeon at each site, a better understanding of

age-0 sturgeon drift dynamics in the LMOR would provide

important insight towards identifying the most appropriate

location for habitat restoration projects designed to increase

age-0 sturgeon nursery habitat. Modeling simulations con-

ducted by Erwin and Jacobson (in press) in the LMOR pro-

vided important baseline information; however, the authors

concluded that additional research is needed because a lack of

data limited their ability to completely describe the relation-

ships regarding free-embryo dispersion.

While drifting age-0 sturgeon may be most susceptible to

limited accessibility, exogenously feeding fish that did not

enter the chute via the inlet during their free-embryo drift

period may also experience limited access. As such, age-0

sturgeon entering the chute via the downstream outlet may

have had little effect on our comparisons between chute and

main-stem habitats because access via the chute outlet would

require exogenously feeding sturgeon to be able to hold

FIGURE 6. Probability of presence for exogenously feeding age-0 sturgeon by water depth and velocity in chute and main-stem (MOR) habitats.
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position after settling and then swim upstream in order to enter

a chute. Laboratory studies indicated that recently settled age-

0 sturgeon (Kynard et al. 2007), as well as individuals up to

75 mm total length (D. Deslauriers, South Dakota State Uni-

versity, unpublished data), may have difficulty holding posi-

tion in water velocities that are relatively slow within the

LMOR (e.g., � 0.3 m/s). Furthermore, even if exogenously

feeding sturgeon can hold position, these fish may experience

a velocity barrier preventing them from swimming upstream

into the chute as currents can be turbulent and swift at down-

stream chute outlets, particularly during higher water levels

that are common during the free-embryo drift period. Thus, if

age-0 sturgeon are not able to access the chute through the

inlet during or shortly after the free-embryo drift period, these

fish may not be able to gain access via the outlet in sufficient

time to take advantage of the potential nursery habitat within a

chute. It is possible that some exogenously feeding age-0 stur-

geon were able to access these chutes via the downstream out-

let and, after entering the chute, returned to main-stem

habitats instead of remaining in the chute, which may have

affected our results. However, this was unlikely based on the

laboratory studies cited above and the small size of age-0 stur-

geon typically captured during this study (e.g., over 75% of

the age-0 sturgeon sampled were < 50 mm).

Interestingly, it has been suggested that slow and shallow

areas may have little direct benefit as nursery habitat (e.g., ref-

uge, foraging, and growth) for age-0 sturgeon in the LMOR

(Ridenour et al. 2011). During our study, exogenously feeding

age-0 sturgeon were usually sampled from sites with greater

depths and faster velocities relative to nonsturgeon sites in

both chute and main-stem habitats. Additionally, the probabil-

ity of presence for exogenously feeding age-0 sturgeon was

highest at depths � 2 m and velocities � 0.5 m/s in both chute

and main-stem habitats. Our results were similar to Ridenour

et al. (2011), who found Missouri River age-0 sturgeon were

usually sampled from depths more than 1.5 m and velocities

of 0.5–0.7 m/s. Similarly, contingency sampling on the

LMOR during the high water event of 2011 found a mean

depth of 3.2 m and a mean velocity of 0.57 m/s for small stur-

geon � 200 mm (Ridenour et al. 2012). Phelps et al. (2010)

also reported that middle Mississippi River age-0 sturgeon

were usually sampled at depths of 2–5 m; however, these stur-

geon were usually found in slow velocities around 0.1 m/s.

Our results, coupled with previous research, may support find-

ings that the combination of slow and shallow habitats may

not be as important to age-0 sturgeon as expected. However,

other possible explanations exist; for example, minimizing

human disturbance is more difficult in shallow areas (e.g., the

FIGURE 7. Scatter plots of the length of exogenously feeding age-0 sturgeon by depth and velocity in chute and main-stem (MOR) habitats. The significant

linear regression relationship is denoted with a trend line.
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boat and motor pass through the sampling zone before the net

for the sled, MOT02, and OT04 gears), which may affect catch

rates. Additionally, Ridenour et al. (2011) suggested that age-

0 sturgeon may only use slow habitats (e.g., � 0.2 m/s) shortly

after settling out of the drift (e.g., 20–30 mm in length) before

moving to faster areas. Our results, however, showed little to

no relationship between exogenously feeding age-0 sturgeon

length and water depth or velocity in chute or main-stem habi-

tats. Furthermore, only 6% of the exogenously feeding age-0

sturgeon up to 30 mm long were sampled from sites with

velocity � 0.2 m/s; however, it is possible that some of the

individuals that were sampled in the faster, deeper water may

have been entrained by these currents. Little is known about

the size at which age-0 sturgeon begin choosing their habitat,

and an improved understanding in this area would allow

researchers to more conclusively determine if age-0 sturgeon

actually prefer fast and deep habitats or if they simply have

difficulty navigating to slow and shallow areas in the highly

engineered, self-scouring LMOR.

Adaptive management is founded on the principles of learn-

ing through doing and translating lessons learned into project

refinements, if needed. This study suggests that the potential

benefits of chute habitat use by age-0 sturgeon may not be

maximized due to limited accessibility at some sites; however,

numerous SWH chute construction projects are still in the

planning stages (Gosch et al. 2013), providing an opportunity

to consider potential access-friendly designs (e.g., a V-shaped

design similar to Jameson chute) before construction begins.

Regardless of accessibility, however, it is still unknown

whether increased habitat availability results in increased sur-

vivorship of age-0 sturgeon and subsequent population

growth. The primary hypothesis linking SWH restoration to

population growth is based on the assumption that poor larval

survival, due to reduced nursery habitat (USFWS 2000), is

currently limiting Pallid Sturgeon populations. If this assump-

tion is false (e.g., larval survival is not low or more critical

limitations occur before sturgeon settle from the drift), the

evaluation of additional hypotheses regarding increased Pallid

Sturgeon survival and population growth is warranted. Addi-

tionally, our data are consistent with previous research sug-

gesting that slow and shallow habitats may not be used by

age-0 sturgeon as frequently as other habitat types (Ridenour

et al. 2011). This does not necessarily suggest that shallow

and slow habitat is not limiting to Pallid Sturgeon or that

SWH projects cannot provide the desired benefits; however,

future research should focus on determining if habitat avail-

ability is a limiting factor for Pallid Sturgeon and, if so, what

type of habitats are required for increased survivorship and

population growth.
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