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Abstract-We discuss the possibility of realizing a microscopic Stern--Gerlach magnet for electrons using 
counter-propagating bichromatic laser light. Absorption of two photons with frequency 0) combined with stim­
ulated emission of one photon with frequency 2w allows for the conservation of energy, momentum, and angu­
lar momentum, The possibility of constructing such a device appears to be an open question, 

1, INTRODUCTION 

At the 1930 Solvay conference, Pauli and Bohr 
stated that the magnetic moment of an electron cannot 
be determined with the help of macroscopic electro­
magnetic fields [1, 2]. The consequences of this state­
ment have found their way into many contemporary 
textbooks [3] and imply that the construction of elec­
tron Stem-Gerlach magnets is impossible. Although 
Pauli and Bohr's dictum is a currently debated issue 
[4-8], we would like to attempt to sidestep this issue 
altogether by asking the question, "Can an electron 
beam be split completely into its two spin components 
with microscopic fields?" In Mott scattering, micro­
scopic fields are used to obtain good polarization at cer­
tain scattering angles. This good polarization can only 
be obtained for a marginal fraction of the incident elec­
tron beam. Indeed, no polarizing beam splitters for 
electrons appear to exist to this date. It is unknown to 
the authors whether such a device is possible or perhaps 
a physical principle forbids this. 

As an example of a microscopic field, consider a 
standing wave of light. When electrons pass through 
such a field, it is possible for the electron wave to dif­
fract from the periodic light structure, just as light 
waves can diffract from the periodic structure of a 
material grating. This effect, known as the Kapitza­
Dirac effect, was proposed in 1933 [9], and we recently 
realized this experiment [10]. The motion of the elec­
tron has to be described by a wave to predict the out­
come ofthe experiment correctly. In this case, it is clear 
that the standing wave of light does constitute a micro­
scopic electromagnetic field. Because the diffracted 
beams are coherent with each other, the Kapitza-Dirac 
effect is, in effect, a beam splitter for electrons. In rela­
tion to the question posed above, it appears natural to 
wonder whether or not the electron spin will flip while 
it is diffracted into different beams and as such consti­
tutes a Stem-Gerlach magnet. We will first show that 
the electron spin is not influenced in the diffracted 
beams of the Kapitza-Dirac effect. Then, we will pro­
ceed to consider a modified laser field configuration 
involving counter-propagating laser beams with fre-

quencies 0) and 20), which is more interesting in this 
respect. 

2. THE KAPITZA-DIRAC EFFECT 

2.1. Photon Picture 

Consider an electron that is approached by two pho­
tons from opposing sides. One photon will be absorbed, 
while the other stimulates an emission. This is the basic 
process behind the Kapitza-Dirac effect and is called 
stimulated Compton scattering (Fig. la). In the rest of 
the paper, we will ignore all possibilities where photon 
scattering is involved with frequencies other than the 
specified laser frequencies (i.e., to or from unoccupied 
modes). Processes such as spontaneous Compton scat­
tering are ignored. In stimulated Compton scattering, 
energy and momentum can be conserved as illustrated 
in Figs. Ib and lc, in contrast to the scattering of a free 
electron from a free photon. We are free to choose the 
polarization of the photons. When both photons carry 
the same angular momentum with respect to the lab 
frame, the angular momentum carried by the photons 
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Fig. 1. (a) Stimulated Compton scattering is the basis for 
the Kapitza-Dirac effect. (b) Energy is conserved in this 
process. (c) Momentum is conserved in this process. 
(d) Angular momentum is conserved when the electron 
spin does not flip, 
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Fig. 2. Deflection of an electron by a standing wave of light starting at different positions, x = IJ8 (left) and x = 3)../8 (right), in 3000 
oscillators of the light field. The inset shows the deflection for three field oscillations, and the quiver motion can be seen. 

before and after the interaction is unchanged. We can 
conclude directly that the spin of the electron in the 
Kapitza-Dirac effect should not have changed (Fig. Id). 
For completeness, we should point out that in our 
experiment [10] we did not attempt to measure the spin 
dependence of the effect. When one photon carries an 
angular momentum opposite to that of the other photon, 
the electron should absorb two units of angular momen­
tum, which is not possible. We did verify this prediction 
experimentally. 

2.2. Field Picture 

It is interesting to compare the photon picture with 
that of electrons interacting with a standing wave of 
light. Consider a charged particle (ignoring spin) in an 
arbitrary electromagnetic field. The classical equation 
for the evolution of the momentum is given by 

~~ = q(E+vxB), (1) 

where q is the charge of an electron, E is the electric 
field, B is the magnetic induction, and v is the electron 
velocity. Now, calculate the motion of the electron 
through a standing wave formed by one color of laser 
light described by the vector potential 

A = AyY = Aocos(kx)sin(oot)y, (2) 

where k is the light wavevector, 00 is laser light fre­
quency, x is the laser light propagation direction, and A 
is directed along y. This yields the electric field and 
magnetic induction as 

E = EyY = -Aooocos(kx)cos(oot)y, (3) 

B = Bzz. = -kAo sin(kx) sin(oot)z.. (4) 

Such a standing wave of light is obtained by counter­
propagating two travelling waves. The equation of 
motion can be solved both analytically [11] and numer­
ically. For our present argument, the numerical solution 
will tum out to be more valuable. The resulting acceler-
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ation of the electron depends on where it starts in the 
standing wave. At the nodes or antinodes of the stand­
ing waves, the electron only experiences the usual 
quiver motion due to the fast oscillations of the fields 
but no net time-averaged acceleration. The electron 
experiences a net acceleration to the left or right just 
between these points, indicating a force grating. This 
force can be expressed as a periodic potential with a 
periodicity of half the optical wavelength, which turns 
out to be the ponderomotive potential [II]. Note that 
the standing wave in the electric field coincides in posi­
tion with the average potential and for that reason the 
two are often not explicitly mentioned separately. The 
result of the numerical integration of the classical equa­
tion of motion [1] is given in Fig. 2. For a laser intensity 
of 1010 W/cm2 and an interaction time of 10-11 s (which 
is comparable to the experimental parameters used in 
reference [10]), electrons starting at x = 1J8 and x = 
31J8 are deflected in opposite directions. 

One can now use the above found potential and 
solve the Schrodinger equation [11]. It is interesting to 
observe that if the laser intensity in this calculation is 
sufficient to cause some appreciable scattering into the 
first order (at a transverse momentum kick of 2fik = 
2000 m/s), then the classically accelerated electron also 
has reached a velocity of several thousand meters per 
second. Within both pictures where the electron is 
treated as a wave and the picture where the classical 
deflection is calculated, we may now observe the fol­
lowing qualitative behavior. When the counter-propa­
gating waves have the same polarization (their photons 
carry the same angular momentum), they interfere and 
form a standing wave from which the electron wave dif­
fracts (or classically the electron deflects). When the 
two waves have opposite polarization, they cannot 
interfere and no diffraction (or deflection) is found, 
which is in very nice agreement with the photon picture 
discussed above. Based on our previous argument of 
angular momentum conservation, the electron does not 
flip sign even when the diffraction takes place. 
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Fig. 3. When two counter-propagating travelling waves, one 
with frequency 00 and one with 2c.o, interact with a free elec­
tron, energy, momentum, and angular momentum can be 
conserved. Two photons of frequency 00 are absorbed, while 
one photon of frequency 200 stimulates an emission. Angu­
lar momentum can only be conserved when the electron 
flips its spin. 

3. THE MICROSCOPIC STERN-GERLACH 
EFFECT 

3.1. Photon Picture 

The basic idea of this paper is to change the light 
field in such a way that one would expect a spin flip. We 
would like to consider the following arrangement as a 
candidate to do just that: an electron interacts with 
counter-propagating laser beams, one with frequency 00 
and the other with frequency 200 (Fig. 2). Now, assume 
that two photons from the laser with frequency 00 are 
absorbed while a photon from the laser with frequency 
200 causes a stimulated emission. When the electron 
does not change its kinetic energy in this process, the 
total energy is conserved. Momentum is also conserved 
when the electron enters the light field at the Bragg 
angle e = hklPe. The recoil momentum of the photon is 
given by hk, and the electron momentum is given by P e' 

Again, we are free to choose the polarization of the 
photons. Assume that, before the interaction, all pho­
tons carry the same angular momentum (totaling 3h) 
with respect to the lab frame. After the interaction, the 
remaining two photons carry 2h of angular momentum. 
This interaction can only conserve angular momentum 
when the electron absorbs one h of angular momentum 
and spin flips (Fig. 2a). In the same light field, it is also 
possible that one photon from the laser with frequency 
200 will be absorbed and two photons from the other 
laser will both cause a stimulated emission (Fig. 2b). In 
this case, the angular momentum can only be conserved 
when the electron supplies one unit of angular momen­
tum in a spin-flip process. This implies that incident 
spin-up electrons can only be kicked one way, while 
spin-down electrons can only be kicked the other way. 
In the Bragg scattering regime, one polarization of elec­
trons will be scattered away from the beam, while in the 
unscattered beam some polarization mixture remains. 
Only when the Bragg scattering is complete will the 
incident beam be separated into two orthogonally 
polarized beams. In the diffraction regime, the electron 
does not need to enter at the Bragg angle. The diverging 

laser light will provide the necessary angles between 
the electrons and photons. The resulting unpolarized 
incident electron beam is split into two spin-polarized 
components and a nonscattered component. Blocking 
this latter part of the beam gives effectively a micro­
scopic Stern-Gerlach magnet for electrons. 

At this point, it is perhaps interesting to compare 
this situation with the existing optical Stern-Gerlach 
magnets for atoms [12]. In this experiment, a 2 Ilm 
atomic beam crosses a standing wave of light with a 
period of 15 Ilm. The force on the atom depends on its 
internal state, and, because the atoms are localized 
within the optical periodicity, the external motion can 
be treated classically. This is a strong analogy to the 
usual Stern-Gerlach magnet and as such not a micro­
scopic Stern-Gerlach magnet as discussed above. 

Also, we may consider our above example for atoms 
instead of electrons. For the above process, we require 
a one-photon absorption followed by a two-photon 
stimulated emission. For a two-level system this neces­
sitates, for example, an electric dipole transition fol­
lowed by a magnetic dipole transition. Although this is 
possible, the weakness of such a transition would 
require intense laser light for its observation. 

3.2. Field Picture 

Let us compare this photon picture with that of elec­
trons interacting with waves of light, analogous to the 
line of reasoning we followed in our discussion of the 
Kapitza-Dirac effect. At the same time, such an 
approach may also provide us with an estimate of how 
much intensity would be needed to realize a micro­
scopic Stern-Gerlach magnet for electrons. Consider a 
charged particle including spin in an arbitrary electro­
magnetic field. The classical equation for the evolution 
of the momentum is given by 

~~ = q(E+vxB)+V(Jl(t)·B), (5) 

where q is the charge of an electron, E is the electric, 
field, B is the magnetic induction, v is the electron 
velocity, and Jl is the electron's magnetic moment. In 
tum, the magnetic moment of the electron is evolving 
in the magnetic field and has a time dependence given -
by the Bargman, Michell, and Telegdi (BMT) equation 
[13] (forg = 2 and Y= 1): 

dJl = !'Jl x (B -!.!. x E) 
dt m 2c2 ' 

(6) 

where the first term is the usual Larmor precession and 
the second term is the Thomas precession. Both of 
these sets of differential equations are coupled and 
should be integrated simultaneously. We calculate the 
motion of the electron through a laser field formed by 
one travelling beam of laser light of frequency co 
counter-propagating with a laser beam of frequency 20>. 
The vector potential for such a field is given by 
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Fig. 4. The evolution of the velocity and the magnetic moment of an electron in two counter-propagating laser beams both of fre­
quency 00 (left) at 1014 W/m2. The same for two laser frequencies 00 and 200 (right) at 1018 W/m2. 

A = AS' 
= [AI cos(kx - rot) + A2COS( - 2kx - 2rot)]», 

(7) 

which yields the electric field and magnetic induction as 

E = ES' 
= -roAo[sin(kx - rot) + 2sin(- 2kx- 2rot)]», 

B = Bzz 

= kAo[ - sin(kx - rot) + 2sin(- 2kx - 2rot)]z. 

(8) 

(9) 

It is important to note that no standing wave in the 
electromagnetic field is formed. However, this does not 
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appear to exclude the formation of a time-averaged 
potential given the coupled dynamics of the magnetic 
moment and the momentum. We also used the vector 
potential for circular polarization, 

Ax = 0, (10) 

Ay = A 1sin(kx-rot)+A2cos(-2kx-2rot), (11) 

A z = A 1cos(kx-rot)+A 2cos(-2kx-2rot), (12) 

which leads to qualitatively identical results. The equa­
tions of motion can now be numerically integrated 
starting with an electron at rest at different starting 
positions x in the laser field. Laser intensities from 1014 
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up till 1018 W/m2 give no spin flip and no time-averaged 
force in the laser propagation direction (see Fig. 3, right 
column). The same calculation is compared for the 
Kapitza-Dirac situation at 1014 W/m2, where a force 
dependent on starting position accelerates the electrons 
to several thousand meters per second (Fig. 3, left col­
umn). This calculation differs from the calculation in 
Section 2.2 in that here the laser field is turned on and 
off smoothly, as indicated in Fig. 3 (top left). For the 
low intensity result, the difference is negligible 
between a slow tum on or an instantaneous tum on. For 
the high intensity case, an instantaneous tum on gives 
the electron an initial kick where the direction depends 
on the phase of the electric field. For the present paper, 
we were interested to find out whether or not a time­
averaged potential existed. For the case considered 
here, the answer is negative. 

4. SUMMARY AND CONCLUSION 

We raised the question if it is possible to construct a 
beam-splitting polarizer for electron beams with micro­
scopic electromagnetic fields. The exchange with pho­
tons from two counter-propagating laser beams allows 
for such a process to conserve energy, momentum, and 
angular momentum, even though a classical integration 
of the equation of motion gives neither a position­
dependent force nor spin flip. We view this result as a 
first step in a series of calculations. The dependence of 
our result on laser intensity should be carefully studied. 
A comparison between this simple classical calculation 
and a full quantum calculation may indicate if there are 
some purely quantum mechanical effects. Different 
configurations of laser polarization, k vectors, and laser 
frequencies could be studied easily with the current 
approach. For instance, the combination of three laser 
frequencies 0>, 20>, and 300 also allows the conservation 
of energy, momentum, and angular momentum but 
involves only exchange of even numbers of photons. 
This case would not require the electron to spin flip, but 
still there is no standing wave in the electric field! With­
out performing any calculation, we find it hard to pre­
dict if there will be a time-averaged potential in this 
case. We also plan to extend the present calculation to 
the full BMT equation and the relativistic equations of 
motion to investigate the dependence of this result on 

the g factor and relativistic effects. In tum, this can be 
compared to QED calculations, which in some cases 
are available [14]. 
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