
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

2014

Partitioned Multiprocessor Scheduling of Mixed-
Criticality Parallel Jobs
Guangdong Liu
University of Nebraska-Lincoln

Ying Lu
University of Nebraska-Lincoln, ying@unl.edu

Shige Wang
General Motor Global Research and Development

Zonghua Gu
Zhejiang University

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Liu, Guangdong; Lu, Ying; Wang, Shige; and Gu, Zonghua, "Partitioned Multiprocessor Scheduling of Mixed-Criticality Parallel Jobs"
(2014). CSE Conference and Workshop Papers. 279.
http://digitalcommons.unl.edu/cseconfwork/279

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/279?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages

Partitioned Multiprocessor Scheduling of
Mixed-Criticality Parallel Jobs

Guangdong Liu*, Ying Lu*, Shige Wang�, and Zonghua Gu�

*Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
�Electrical and Controls Integration Lab, General Motor Global Research and Development, Warren, MI, USA

�College of Computer Science, Zhejiang University, Hangzhou, China

Abstract—Motivated by the increasing trend in embedded
systems towards platform integration, there has been an in-
creasing research interest in scheduling mixed-criticality systems.
However, most existing efforts have concentrated on scheduling
sequential tasks and ignored intra-task parallelism. In this paper,
we study the scheduling of mixed-criticality parallel jobs on
multiprocessor platforms. We propose a synchronous mixed-
criticality job model, where each job consists of segments, each
segment having an arbitrary number of parallel threads that
synchronize at the end of the segment. A novel MinLoad algo-
rithm is developed to decompose mixed-criticality parallel jobs
into mixed-criticality sequential jobs. This decomposition enables
us to leverage existing mixed-criticality scheduling algorithms
and schedulability analysis to the multiprocessor scheduling of
mixed-criticality parallel jobs. In addition, our MinLoad job
decomposition algorithm is designed to make the decomposed
mixed-criticality sequential tasks easier to schedule, and thus
requires smaller-sized multiprocessor platforms for the mixed-
criticality systems.

I. INTRODUCTION

Modern large real-time and embedded systems, such as

those in avionics, automotive and robotics applications, typi-

cally comprise many diverse functions with different levels of

criticality, or importance. Traditional approaches implement

the system using a federated architecture. In such an architec-

ture, software control components of different criticality levels

have separate, dedicated devices for their execution. With only

functionalities of the same criticality level sharing a comput-

ing system, all associated cost of acquisition, space, power,

weight, cooling, installation, and maintenance increases. For

better cost and efficiency, an increasing trend in embedded

system design is to integrate applications and components of

different criticality levels onto a common hardware platform.

However, such mixed-criticality (MC) systems are subject to

certifications of varying degrees of rigorousness, for validating

the correctness of different subsystems on various confidence

levels. For instance, in comparison with the system designer in

designing, implementing, and testing the system, for certifica-

tion the certification authority (CA) often mandates far more

conservative assumptions about the worst-case behavior of the

system. While the CA is only concerned with the correctness

of the safety-critical part of the system, the system designer

is responsible for ensuring that the entire system is correct,

including the non-critical parts [18].

As research progresses in understanding MC systems, real-

time scheduling of certifiable MC systems has been recognized

to be a challenging problem. Initially, a number of papers

considered uniprocessor MC scheduling and analysis [9],

[45], [63], [53], [17], [62], [30]. With platforms of real-

time and embedded systems migrating from single cores to

multi-cores and, in the future, many-core architectures [21],

researchers have begun to investigate multiprocessor MC

scheduling [40], [46], [56], [18]. However, most existing

efforts have concentrated on inter-task parallelism, where

each task runs sequentially (and therefore can only run on

a single core) and multiple cores are exploited by increasing

the number of tasks. As pointed out by Li et al. [47], when

a model is limited to inter-task parallelism, each individual

task’s total execution requirement must be smaller than its

deadline since individual tasks cannot run any faster than on

a single-core machine. In order to enable tasks with higher

execution demands and tighter deadlines, such as those used

in autonomous vehicles, video surveillance, radar tracking, and

robotic systems, we must enable parallelism within tasks [38],

[68], [47]. Moreover, for many mixed-criticality applications

such as autonomous driving, integration and cooperation of

control functions are essential. With the architecture that con-

solidates relevant functions from cooperating controls into the

same task to minimize runtime overhead, traditional inter-task

parallelism seems too coarse of granularity, sometime even

yields diminishing throughput of the system. As an example,

considering a controller with consolidated powertrain control

and driver assistance [58], when engaged, the driver assistance

function interacts with powertrain control to accelerate or

decelerate a vehicle. It is common that the functions from both

controls requiring synchronization (e.g. the object tracking

and the sign detection in the driver assistance and the speed

control from the powertrain must be synchronized to achieve

collision avoidance) are aggregated into a single task. In such

a system, while there are many parallel operations, creating

them as separate tasks will result in either too many tasks or

long execution delay due to cross-task synchronization. Thus,

it is desired to have intra-task parallelism in mixed-criticality

systems to allow dynamic decision of parallel execution with-

out introducing unnecessary waiting for synchronization. To

fill in this research gap, this paper investigates multiprocessor

scheduling of mixed-criticality parallel jobs.

kasyma
Typewritten Text
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE 20th International Conference on
Year: 2014
Pages: 1 - 10, DOI: 10.1109/RTCSA.2014.6910497

There are two types of multiprocessor real-time schedul-

ing [24]: global and partitioned scheduling. In the global

scheduling [6], all eligible tasks are assembled into a single

queue, from which the global scheduler selects tasks for

execution. On the contrary, the partitioned approach allocates

each task (or subtask) to a single processor, and processors

are scheduled independently [7]. Most existing multiprocessor

real-time scheduling approaches assume sequential tasks [24].

There have been some recent progresses on scheduling real-

time parallel tasks on multiprocessors [47], [60], [61], [52].

They have, however, investigated regular, rather than MC, task

systems. Multiprocessor scheduling of parallel tasks are further

categorized into two types: one group of techniques schedules

parallel tasks directly and the other first decomposes each

parallel task into a set of sequential tasks and then applies

a sequential task scheduling method to schedule decomposed

tasks. Since a partitioned algorithm allocates each subtask to a

single processor and then schedules processors independently,

a partitioned algorithm must involve a task decomposition to

exploit intra-task parallelism. In contrast, a global scheduler

could be designed with or without a task decomposition.

Due to simplicity in design and implementation, partitioned

approaches are often considered to be more practical than

global scheduling approaches [5], [64], [32]. Thus, in this

paper we focus on the development of a partitioned approach

to schedule MC parallel jobs on multiprocessors.

We first present the related work in Section II. Then,

a synchronous MC job model is proposed in Section III,

followed by the problem formulation in Section IV. Section V

briefly introduces the OCBP (Own Criticality-Based Priorities)

algorithm that is adopted for scheduling MC sequential jobs

on each processor. Section VI describes the algorithms and we

present the simulation in Section VII. Section VIII concludes

the paper.

II. RELATED WORK

Motivated by the increasing trend in embedded systems

towards platform integration [66] as is evidenced by industry-

wide initiatives such as IMA (Integrated Modular Avionics)

for aerospace, and AUTOSAR (AUTomotive Open System

ARchitecture) for the automotive industry, there has been an

increasing research interest in scheduling mixed-criticality sys-

tems [21] and implementing these scheduling algorithms [35],

[34]. Initially, researchers considered the problem of schedul-

ing on a single processor a finite set of MC sequential jobs

with criticality dependent execution times [9], [19], [45], [8],

[55], [63]. This work has then been extended to scheduling a

set of recurrent MC sequential tasks on a single processor [53],

[39], [27], [44], [33], [17], [14], [62], [30], [29] and on

multiprocessors [40], [65], [46], [56], [18], [59]. Recently,

researchers began to investigate even more general MC task

model [31], where not only task execution time depends on

the criticality level, task period [11], [16], [22] and task

deadline [31] could also be criticality dependent. In addition

to schedulability analysis, some researchers investigated the

issues of robustness, where task execution times are allowed

to exceed their worst case estimates as long as the system re-

mains schedulable [62], [34]. However, most existing work on

scheduling mixed-criticality systems are limited to sequential

programming models and ignore intra-task parallelism. Only

a couple of researchers investigated the topic of scheduling

MC parallel tasks [12], [13], [65]. Nevertheless, all these

research efforts are based on static scheduling. To the best of

our knowledge, this paper is the first study of priority-based

scheduling of MC parallel jobs on multiprocessors.

There have been intensive research on scheduling parallel

tasks without deadlines (e.g., [57], [67], [28], [26], [3]) and

on scheduling real-time parallel tasks with soft deadlines [23],

[4], [37], [48] and with hard deadlines [47], [60], [61], [41],

[15], [42], [25], [51], [36], [20], [54], including our prior

work on hard real-time scheduling of arbitrarily divisible tasks

on multiprocessors [49], [50]. In earlier work on hard real-

time scheduling of parallel tasks, researchers made simplifying

assumptions about task models [42], [25], [51] or focused on

a special type of parallel tasks [49], [50]. It is until recently

that researchers began to investigate more realistic task models

like synchronous [36], [41], [60], [52] and DAG task(s) [61],

[47], [15], [20], [54]. They have, however, investigated regular

(single-criticality), rather than mixed-criticality task systems.

III. JOB MODEL

This section formally defines the mixed-criticality parallel

job model used in this paper. Although this paper focuses on

the case where a system is comprised of a finite number of

MC parallel jobs, the ideas and insights gained in this work

will be extended to scheduling a set of recurrent MC parallel

tasks in the future.

We consider a synchronous job model, where each parallel

job consists of many computation segments, and each segment

may contain many parallel threads which synchronize at

the end of the segment. As been pointed out by Saifullah

et al. [60], such tasks are generated by parallel for loops,

a construct common to many parallel languages such as

OpenMP [1] and Intel’s CilkPlus [2].

A set of n mixed-criticality (MC) synchronous paral-

lel jobs τ = {J1, J2, ..., Jn} is assumed, where each

MC job is characterized by a tuple of parameters: Ji =
((J1

i , J
2
i , ..., J

si
i), Ai, Di, χi), where

• (J1
i , J

2
i , ..., J

si
i) denotes job Ji has si number of seg-

ments, to be executed in sequence. That is, all threads of

segment k must complete before any thread of segment

k + 1 can start.

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the absolute deadline. We assume that Di ≥
Ai.

• χi ∈ {LO,HI} denotes the criticality. A HI-criticality

job (a Ji with χi = HI) is one that is subject to

certification, whereas a LO-criticality job (a Ji with

χi = LO) is one that does not need to be certified.

Job Ji’s segment is also characterized by a tuple: Jk
i =

(mk
i , c

k
i (LO), cki (HI)), where

• mk
i denotes the number of threads. We assume that

threads of a segment, are independent from each other,

can be executed in parallel, and have the same worst case

execution time (WCET) estimates.

• cki (LO) is the thread WCET estimate that is used by

the system designer (i.e., the WCET at the LO-criticality

level).

• cki (HI) is the thread WCET estimate that is used by the

certification authority (CA) (i.e., the WCET at the HI-

criticality level).

Similar to previous research [18], we assume that

• cki (LO) ≤ cki (HI), i.e., the WCET estimate used by the

system designer is never more pessimistic than the one

used by the CA, and

• cki (LO) = cki (HI) if χi = LO i.e., a LO-criticality job

is aborted if any thread comprising the job executes for

more than its LO-criticality WCET 1.

Upon release, a parallel job begins execution, where each

thread of the job needs to execute for some amount of time

γ. However, the value of γ is unknown beforehand, but only

becomes revealed by actually executing the thread until it

signals that it has completed execution. If a thread of segment

Jk
i signals completion without exceeding cki (LO) units of

execution, we say that it has exhibited LO-criticality behavior;

if it signals completion after executing for more than cki (LO)
but no more than cki (HI) units of execution, we say that

it has exhibited HI-criticality behavior. If it does not signal

completion upon having executed for cki (HI) units, we say

that its behavior is erroneous. A parallel job has exhibited

LO-criticality behavior if all threads comprising the job has

exhibited LO-criticality behavior. A parallel job has exhibited

HI-criticality behavior if any thread comprising the job has

exhibited HI-criticality behavior and no thread of the job has

exhibited erroneous behavior. A parallel job has exhibited

erroneous behavior if any thread comprising the job has

exhibited erroneous behavior.
Next, we define the minimum job length of LO-criticality

and HI-criticality (i.e., the LO-criticality and HI-criticality job

WCET on infinite number of processors)

Pi(LO) =

si∑
k=1

cki (LO) (1)

Pi(HI) =

si∑
k=1

cki (HI) (2)

We let

Wi(LO) =

si∑
k=1

mk
i c

k
i (LO) (3)

Wi(HI) =

si∑
k=1

mk
i c

k
i (HI) (4)

1As previous research [18], we assume that the run-time system provides
support for ensuring that a thread does not execute for more than a specified
amount.

respectively be the total LO-criticality and HI-criticality

WCET on a single processor, also called the LO-criticality

and HI-criticality work of the job.

IV. PROBLEM FORMULATION

In this paper, we investigate the multiprocessor mixed-

criticality scheduling of parallel jobs. More precisely, we

consider scheduling a job set τ , described by the model

in Section III, on a multiprocessor platform of m identical

processors.

Scheduling of MC parallel jobs. We define an algorithm

for scheduling MC parallel job set τ to be correct if it is able

to schedule τ such that

• If all parallel jobs exhibit LO-criticality behavior, then all

of them receive enough execution between their release

time and deadline to be able to signal completion; and

• If any parallel job exhibits HI-criticality behavior, then all

HI-criticality jobs receive enough execution between their

release time and deadline to be able to signal completion.

As explained in [18], if any job exhibits HI-criticality behavior,

we do not require any LO-criticality jobs (including those

that may have arrived before this happened) to complete by

their deadlines. This is an implication of the requirements of

certification: informally speaking, the system designer fully

expects that all jobs will exhibit LO-criticality behavior, and

hence is only concerned that they behave as desired under

these circumstances. The CA, on the other hand, allows for the

possibility that some parallel jobs may exhibit HI-criticality

behavior, and requires that all HI-criticality jobs nevertheless

meet their deadlines.

This paper focuses on a partitioned approach to schedule

MC parallel jobs on multiprocessors. In such an approach, we

will first decompose each MC parallel job into a set of MC

sequential jobs by converting each thread of the parallel job

into its own sequential job and assigning appropriate release

times and deadlines to these jobs. Then, we will develop a

partitioning strategy to allocate the decomposed MC sequential

jobs to the m processors. At last, an existing method will be

used to schedule MC sequential jobs on each processor.

In developing such a partitioned approach, one of the

biggest challenges is the design of the decomposition algo-

rithm. The design objective is to decompose MC parallel jobs

into MC sequential jobs that are either schedulable on m
processors whenever possible or requiring the least number

of processors to be schedulable. The decomposition must be

carried out in such a way that achieves this goal.

Since job decomposition and partitioning must be designed

according to the job scheduling algorithm eventually used to

schedule jobs on each processor, next section briefly introduces

the OCBP (a uniprocessor MC) scheduling algorithm and a

load-based schedulability test for OCBP. Although the OCBP

algorithm is used to illustrate our approach, the ideas of

job decomposition and partitioning can be generalized and

similar algorithms can be developed for other uniprocessor

MC scheduling algorithms as well.

V. THE OCBP SCHEDULING ALGORITHM

In [10], Baruah et al. developed a priority-based algorithm

called OCBP (Own Criticality-Based Priorities) for uniproces-

sor mixed-criticality scheduling. The high-level description of

the OCBP algorithm is as follows. Given a set I of mixed-

criticality sequential jobs, the algorithm determines off-line

(i.e., prior to run-time) a total priority ordering of the jobs

such that scheduling the jobs according to this priority ordering

guarantees a correct schedule. Here, scheduling according to

a priority ordering means that at each moment in time the

highest-priority available job is executed.

In real-time scheduling, there is a common and well-known

characterization metric called load, i.e., the maximal ratio

between the processing demand and the processing capacity. Li

and Baruah [43] defined the load metrics for mixed-criticality

systems and applied these metrics for the OCBP algorithm.

The loads a processor can experience in LO-criticality and

HI-criticality scenarios are determined as follows

�LO(I) = max
0≤t1<t2

∑
Ji:t1≤Ai∧Di≤t2

Ci(LO)

t2 − t1
(5)

�HI(I) = max
0≤t1<t2

∑
Ji:χi=HI∧t1≤Ai∧Di≤t2

Ci(HI)

t2 − t1
(6)

Informally, �LO(I) is the largest load that the system designer

expects to handle during run-time, while �HI(I) is the largest

load that the CA expects to certify. Baruah et al. [10], [43]

proved that a MC sequential job set I is schedulable by the

OCBP algorithm if it satisfies the following conditions

�LO(I) ≤
√
5− 1

2
and �HI(I) ≤

√
5− 1

2
(7)

VI. ALGORITHMS

This section presents three algorithms: a baseline Equal-

Slack job decomposition algorithm, our MinLoad job decom-

position algorithm, and a job partitioning strategy. Combin-

ing a job decomposition (EqualSlack or MinLoad), the job

partitioning, and the OCBP scheduling together gives us an

(EqualSlack-Based or MinLoad-Based) algorithm for parti-

tioned multiprocessor scheduling of mixed-criticality parallel

jobs.

In a decomposition, each thread of a MC parallel job is

converted to a MC sequential job, which is assigned new

release time and deadline such that the precedence relation

of the parallel job is maintained. Since we are decomposing

synchronous jobs, threads of a common segment should be

assigned a common release time and a common deadline,

which are also called the release time and deadline of a

segment. To maintain the precedence relation of job Ji, we

must satisfy the following constraint for its adjacent segments

Jk
i and Jk+1

i : the release time of segment Jk+1
i should equal

the deadline of segment Jk
i .

A. EqualSlack Job Decomposition

We now present a baseline EqualSlack job decomposition

algorithm to separate MC parallel jobs into MC sequential

jobs. Given a job Ji, several steps are followed to determine

its segment Jk
i ’s release time Ak

i and deadline Dk
i .

First, we calculate job Ji’s slack, which is defined as the

difference between its deadline and its earliest finish time in

HI-criticality scenario, i.e., Li = Di − (Ai + Pi(HI)) (see

Equation (2) for Pi(HI)’s definition).

Second, when decomposing a job, EqualSlack algorithm

distributes the slack evenly to the job’s segments. Since a MC

parallel job has si number of segments, each MC sequential

job decomposed from Ji has a slack of Li

si
The release time Ak

i

and deadline Dk
i of each segment are calculated accordingly.

Ak
i =

{
Ai if k = 1

Dk−1
i if 1 < k ≤ si

(8)

Dk
i =

{
Di if k = si

Ak
i + cki (HI) + Li

si
if 1 ≤ k < si

(9)

Once we have derived appropriate release time Ak
i and dead-

line Dk
i , each segment Jk

i is decomposed into mk
i number of

identical MC sequential jobs: (Ak
i , D

k
i , c

k
i (LO), cki (HI), χi).

Totally,
∑n

i=1

∑si
k=1 m

k
i number of MC sequential jobs are

generated from decomposing job set τ .

B. MinLoad Job Decomposition

We develop a new MinLoad algorithm, which decomposes

MC parallel jobs in such a way as to make the resultant MC

sequential jobs easier to schedule, i.e., requiring less number

of processors to be schedulable by the partitioning and OCBP

algorithms. In Section V, we presented a sufficient condition:

Equation (7), for a job set to be schedulable by the OCBP

algorithm. By analyzing the condition, we think if we control

the values of �LO(I) and �HI(I) of the resultant MC sequen-

tial job set I , i.e., by using a job decomposition that minimizes

MaxLoad(I) = max(�LO(I), �HI(I)), we can make I easier

to schedule. Thus, we develop a heuristic algorithm, called

MinLoad, to minimize the value of MaxLoad(I) for the

decomposed sequential job set I .

Algorithm Overview. Here, we provide a high-level

overview of the MinLoad job decomposition algorithm. Min-

Load algorithm first invokes EqualSlack algorithm, presented

in Section VI-A, to get an initial decomposition I of the par-

allel job set τ . Then, MinLoad algorithm follows a systematic

way to repetitively change parameters Ai and Di of some

segment Si’s threads to reduce the value of MaxLoad(I).
This process stops when the parameters of jobs contribut-

ing to MaxLoad(I) can no longer be modified to make

MaxLoad(I) smaller.

Detailed Description. We now provide a detailed de-

scription of our MinLoad algorithm, whose pseudo code is

presented in Algorithm 1.

At the beginning of MinLoad algorithm, EqualSlack al-

gorithm is invoked to generate the initial job decomposi-

tion I (line 2 of Algorithm 1). Then, the current value of

MaxLoad(I) = max(�LO(I), �HI(I)) is calculated and the

corresponding interval [t1, t2] that has this maximum load is

identified (line 3). According to Equations (5) and (6), we

know t1 must be a job’s release time and t2 must be a job’s

deadline. Since I is decomposed from synchronous job set

τ , threads of a common parallel job segment are assigned a

common release time and a common deadline. Since there are

N =
∑n

i=1 si number of segments in parallel job set τ , we

have at most N unique release time points and N unique

deadlines in the resultant sequential job set I . Thus, there

are at most N2 number of different intervals for calculating

MaxLoad(I). To facilitate the decomposition change, we add

some data structures to I to record the structure of the original

parallel jobs in τ , i.e., sequential jobs are organized in segment

groups and jobs generated from a common segment must be

changed together to keep their parameters always the same.

These data structures are, however, only used by the MinLoad

algorithm and are not passed to the partitioning and OCBP

algorithms.

After identifying the interval [t1, t2], the algorithm analyzes

the segment of jobs that have contributed to the maximum load

in [t1, t2] and changes their parameters to make MaxLoad(I)
smaller (lines 4-25). More specifically, when MaxLoad(I) =
�LO(I), if a segment Si’s release time and deadline satisfy

condition: t1 ≤ Ai∧Di ≤ t2, jobs generated from segment Si

have contributed
mi×Ci(LO)

t2−t1
amount of load to MaxLoad(I),

where mi is the number of threads in Si and Ci(LO) denotes

each thread’s LO-criticality WCET; when MaxLoad(I) =
�HI(I), if segment Si belongs to a HI-criticality parallel job

and Si’s release time and deadline satisfy condition: t1 ≤
Ai∧Di ≤ t2, jobs generated from segment Si have contributed
mi×Ci(HI)

t2−t1
amount of load to MaxLoad(I), where Ci(HI)

denotes the HI-criticality WCET of Si’s threads. The MinLoad

algorithm picks such a segment and first tries to reduce the

release time Ai of the segment’s jobs (lines 5-13). Since the

goal is to reduce MaxLoad(I), we would like to decrease Ai

such that Ai becomes less than t1. If the release time change

fails, the MinLoad algorithm tries to increase the deadline Di

of the segment’s jobs (lines 14-21). Since the goal is to reduce

MaxLoad(I), we would like to increase Di such that Di

becomes larger than t2. There are, however, other constraints

and effects that must be analyzed to ensure that the change

indeed makes MaxLoad(I) smaller.

Segment Precedence Constraint. As mentioned, a job

decomposition divides MC parallel jobs into a set of MC

sequential jobs. In particular, each thread of a parallel job is

converted to a sequential job, which is assigned new release

time and deadline such that the precedence relation of the

parallel job is still maintained. The following constraints for

any adjacent segments of a job, say Si−1, Si, and Si+1 must

be satisfied.

• The release time Ai of segment Si must be equal to the

deadline Di−1 of segment Si−1. Thus, to have a feasible

job set I , Ai ≥ Ai−1+Ci−1(HI) must hold, where Ai−1

is the release time of segment Si−1’s jobs and Ci−1(HI)

is the HI-criticality WCET of Si−1’s jobs.

• The release time Ai of segment Si must be less or equal

to the deadline of segment Si minus its HI-criticality

WCET Ci(HI), i.e., Ai ≤ Di − Ci(HI).
• The release time Ai+1 of segment Si+1 must be equal to

the deadline Di of segment Si. Thus, to have a feasible

job set I , Di must be less or equal to the deadline Di+1

of Si+1 minus Si+1’s HI-criticality WCET Ci+1(HI),
i.e. Di ≤ Di+1 − Ci+1(HI).

Thus, to reduce Ai, the new value must fall in the range

[Ai−1 + Ci−1(HI), t1), and to increase Di, the new value

must fall in the range (t2, Di+1−Ci+1(HI)]. When possible,

the MinLoad algorithm uses a binary search method to pick a

new value in these ranges to make MaxLoad(I) smaller.

Before we analyze the effects of a parameter change on the

load of an interval, let us give some new definitions. Two load

metrics corresponding to interval [tb, te] are given as follows.

�LO(tb, te, I) =

∑
Ji:tb≤Ai∧Di≤te

Ci(LO)

te − tb
(10)

�HI(tb, te, I) =

∑
Ji:χi=HI∧tb≤Ai∧Di≤te

Ci(HI)

te − tb
(11)

Thus, �LO(I) and �HI(I) (originally defined in Equations (5)

and (6)) can also be defined as

�LO(I) = max
[tb,te]

�LO(tb, te, I) (12)

�HI(I) = max
[tb,te]

�HI(tb, te, I) (13)

The Effect of Ai’s Decrease on Interval [t1, t2]’s Loads.
Before the change, segment Si contributes

mi×Ci(HI)
t2−t1

and
mi×Ci(LO)

t2−t1
amount of load to �HI(t1, t2, I) and �LO(t1, t2, I)

respectively. There are two cases that need to be analyzed

separately

• Ai �= t1: After making Ai smaller than t1, �HI(t1, t2, I)

and �LO(t1, t2, I) are reduced by
mi×Ci(HI)

t2−t1
and

mi×Ci(LO)
t2−t1

amount respectively.

• t1 is Ai: In this case, to reduce Ai means to decrease t1.

Assuming Ai is decreased to Âi, t1 is also decreased to

t̂1 = Âi. The new LO load �LO(t̂1, t2, I) becomes

�LO(t̂1, t2, I) =

∑
Ji:t̂1≤Ai∧Di≤t2

Ci(LO)

t2 − t̂1
(14)

Since t̂1 < t1, more jobs may be included when cal-

culating the new LO load �LO(t̂1, t2, I). If a job Jk’s

parameters satisfy the following condition: t̂1 ≤ Ak <
t1 ∧Dk ≤ t2, its load is added to �LO(t̂1, t2, I). Let us

denote

C =
∑

Ji:t1≤Ai∧Di≤t2

Ci(LO) (15)

t = t2 − t1 (16)

Then, the original LO load is

�LO(t1, t2, I) =
C

t
(17)

Let us denote

ΔC =
∑

Ji:t̂1≤Ai<t1∧Di≤t2

Ci(LO) (18)

Δt = t1 − t̂1 (19)

Then, the LO load in the interval [t̂1, t2] is

�LO(t̂1, t2, I) =

∑
Ji:t̂1≤Ai∧Di≤t2

Ci(LO)

t2 − t̂1

=
C +ΔC

t+Δt
(20)

Since our goal is to reduce MaxLoad(I), when the

current maximum load MaxLoad(I) = �LO(t1, t2, I)
and ΔC

Δt ≥ C
t , the algorithm will not change Ai to Âi.

Only if the change reduces the load, i.e., when ΔC
Δt < C

t

and thus �LO(t̂1, t2, I) < �LO(t1, t2, I) , will the change

be made.

Similar analysis is made to evaluate the effect of Ai’s

change on the HI load �HI(t1, t2, I).

The Effect of Ai’s Decrease on Other Intervals’ Loads.
Now, we analyze the effect of Ai’s decrease on the load of an

arbitrary interval [tb, te]. There are several cases

• If Ai ≥ tb and the corresponding deadline Di ≤ te, then

the effect on the loads in [tb, te] follows the same analysis

as that in interval [t1, t2].
• If Ai < tb or the corresponding deadline Di > te, then

reducing the value of Ai does not affect the loads in

[tb, te].
• Assume Si−1 and Si are segments of a parallel job and

Si−1 is the segment preceding Si. Since Ai = Di−1,

where Di−1 denotes the deadline of Si−1’s jobs, to

reduce Ai also decreases Di−1’s value. The effect of the

deadline reduction on loads is analyzed below.

The Effect of Di’s Decrease on [tb, te]’s Loads. Now, we

analyze the effect of Di’s decrease on the load of an interval

[tb, te]. There are several cases

• If the corresponding release time Ai ≥ tb and Di ≤ te,

then reducing Di within its constrained range does not

change the loads in [tb, te].
• If the corresponding release time Ai < tb, then reducing

Di does not affect the loads in [tb, te].
• If the corresponding release time Ai ≥ tb and Di >

te, then reducing Di may increase �LO(tb, te, I) by
mi×Ci(LO)

te−tb
amount if Di becomes less or equal to te.

Similar effect holds for �HI(tb, te, I) if Si is a HI-

criticality job’s segment.

Combining all these analyses together, MinLoad algorithm

determines whether or not reducing Ai to the new value is

able to make the new MaxLoad(I) smaller than the old

MaxLoad(I) (Note, the new and old MaxLoad(I) may

correspond to different intervals.). As mentioned, if reducing

the release time Ai of a relevant segment does not make

MaxLoad(I) smaller, the MinLoad algorithm tries to increase

the deadline Di of the segment’s jobs. Since the goal is to

make MaxLoad(I) smaller, we would like to increase Di

such that Di becomes larger than t2.

The Effect of Di’s Increase on [t1, t2]’s Loads. Before the

change, segment Si contributes
mi×Ci(HI)

t2−t1
and

mi×Ci(LO)
t2−t1

amount of load to �HI(t1, t2, I) and �LO(t1, t2, I) respec-

tively. There are two cases that need to be analyzed separately

• Di �= t2: After making Di larger than t2, �HI(t1, t2, I)

and �LO(t1, t2, I) are reduced by
mi×Ci(HI)

t2−t1
and

mi×Ci(LO)
t2−t1

amount respectively.

• t2 is Di: In this case, to increase Di means to increase

t2. Assuming Di is increased to D̂i, t2 is also increased

to t̂2 = D̂i. The new LO load �LO(t1, t̂2, I) becomes

�LO(t1, t̂2, I) =

∑
Ji:t1≤Ai∧Di≤t̂2

Ci(LO)

t̂2 − t1
(21)

Since t2 < t̂2, more jobs may be included when cal-

culating the new LO load �LO(t1, t̂2, I). If a job Jk’s

parameters satisfy the following condition: t1 ≤ Ak ∧
t2 < Dk ≤ t̂2, its load is added to �LO(t1, t̂2, I). Let us

denote

ΔC =
∑

Ji:t1≤Ai∧t2<Di≤t̂2

Ci(LO) (22)

Δt = t̂2 − t2 (23)

Then, the LO load in the interval [t1, t̂2] is

�LO(t1, t̂2, I) =
C +ΔC

t+Δt
(24)

where C and t are defined in Equations (15) and (16)

respectively. Since our goal is to reduce MaxLoad(I),
when the current maximum load MaxLoad(I) =
�LO(t1, t2, I) and ΔC

Δt ≥ C
t , the algorithm will not

change Di to D̂i. Only if the change reduces the load, i.e.,

when ΔC
Δt < C

t and thus �LO(t1, t̂2, I) < �LO(t1, t2, I) ,

will the change be made.

Similar analysis is made to evaluate the effect of Di’s

increase on the HI load �HI(t1, t2, I).

The Effect of Di’s Increase on Other Intervals’ Loads.
Now, we analyze the effect of Di’s increase on the load of an

arbitrary interval [tb, te]. There are several cases

• If the corresponding release time Ai ≥ tb and Di ≤ te,

then the effect on the loads in [tb, te] follows the same

analysis as that in interval [t1, t2].

Algorithm 1: MinLoad Job Decomposition

Input: A MC parallel job set τ
Output: A MC sequential job set I

1 /* Invoke the EqualSlack Algorithm to generate the

initial sequential job set I . To facilitate the

decomposition change, we add some data structures to I
to record the structure of the original parallel jobs in τ ,

i.e., sequential jobs are organized in segment groups.

These data structures are, however, only used by the

MinLoad algorithm and are not passed to the partitioning

and OCBP algorithms. */

2 I = EqualSlackAlg(τ)

3 while Find an interval [t1, t2] with the maximal load
MaxLoad(I) do

4 FlagChange=False

5 foreach Segment Si of jobs in interval [t1, t2]
6 /* When MaxLoad(I) = �LO(I), Si is in [t1, t2] if

t1 ≤ Ai ∧Di ≤ t2. When MaxLoad(I) = �HI(I),
Si is in [t1, t2] if Si’s jobs are of HI-criticality and
t1 ≤ Ai ∧Di ≤ t2 */ do

7 while The release time of Si’s jobs can be
decreased, i.e., using a binary search method to
find a new value for Ai so that Ai is still in its
constrained range but becomes less than t1 do

8 if the new MaxLoad(I) becomes smaller
than the old MaxLoad(I) as a result of the
change then

9 Set the release time of Si’s jobs to the

new value and update the data structures

10 FlagChange=True

11 Break the For-Loop

12

13 end
14 while The deadline of Si’s jobs can be increased,

i.e., using a binary search method to find a new
value for Di so that Di is still in its constrained
range but becomes greater than t2 do

15 if the new MaxLoad(I) becomes smaller
than the old MaxLoad(I) as a result of the
change then

16 Set the deadline of Si’s jobs to the new

value and update the data structures

17 FlagChange=True

18 Break the For-Loop

19

20 end
21 end
22 if FlagChange=False
23 /* no single-parameter change is found to make

MaxLoad(I) smaller*/ then
24 Break the While-Loop

25

26 end
27 return I

• If the corresponding release time Ai < tb or Di > te,

then increasing the value of Di does not affect the loads

in [tb, te].
• Assume Si and Si+1 are segments of a parallel job and

Si+1 is the segment succeeding Si. Since Di = Ai+1,

where Ai+1 denotes the release time of Si+1’s jobs, to

increase Di also increases Ai+1’s value. The effect of the

release time increase on loads is analyzed below.

The Effect of Ai’s Increase on [tb, te]’s Loads. Now, we

analyze the effect of Ai’s increase on the load of an interval

[tb, te]. There are several cases

• If Ai ≥ tb and the corresponding deadline Di ≤ te,

then increasing Ai within its constrained range does not

change the loads in [tb, te].
• If Ai < tb and the corresponding deadline Di ≤ te, then

increasing Ai may increase �LO(tb, te, I) by
mi×Ci(LO)

te−tb
amount if Ai becomes larger or equal to tb. Similar

effect holds for �HI(tb, te, I) if Si is a HI-criticality job’s

segment.

• If the corresponding deadline Di > te, then increasing

Ai does not affect the loads in [tb, te].

Combining all these analyses together, the MinLoad algo-

rithm determines whether or not increasing Di to its new

value is able to make the new MaxLoad(I) smaller than the

old MaxLoad(I) (Note, the new and old MaxLoad(I) may

correspond to different intervals.). The algorithm stops when

the parameters of jobs contributing to MaxLoad(I) can no

longer be modified to make MaxLoad(I) smaller (lines 22-

25).

C. Partitioning Algorithm

After decomposing MC parallel jobs τ into MC sequential

jobs I , a two-phase partitioning algorithm is developed to

schedule I on the multiprocessor platform of m processors.

Algorithm 2 gives the pseudo code of the partitioning algo-

rithm.

The partitioning algorithm proceeds in two phases

1) During the first phase (Lines 2 to 13), only HI-criticality

jobs are considered to be allocated to the multiproces-

sor platform. For a HI-criticality job, the partitioning

algorithm considers an available processor only when

the HI load �HI(I[k]) of the processor does not exceed√
5−1
2 (Line 6). According to Equation (7), as long as

each processor’s HI load does not exceed
√
5−1
2 , all HI-

criticality jobs that have been allocated to the system

are schedulable by the OCBP algorithm even in HI-

criticality scenario.

2) During the second phase (Lines 14 to Line 25), only

LO-criticality jobs are considered. For a LO-criticality

job, the partitioning algorithm considers an available

processor only when the LO load �LO(I[k]) of the

processor does not exceed
√
5−1
2 (Line 18). According

to Equation (7), as long as each processor’s LO load

does not exceed
√
5−1
2 , all jobs that have been allocated

to the system are schedulable by the OCBP algorithm

when all jobs exhibit LO-criticality behaviors.

Upon the completion of the algorithm, any unassigned jobs

are considered failed.

Algorithm 2: Multiprocessor Job Partitioning

Input: A MC sequential job set I , Number of

Processors m
Output: Job allocation array I[1 · · ·m]

1 Initialize(I[1 · · ·m])
2 foreach HI-criticality job Ji ∈ I do
3 for k = 1; k ≤ m; k ++ do
4 Add Ji to I[k]
5 Calculate �HI(I[k])

6 if �HI(I[k]) >
√
5−1
2 then

7 Remove Ji from I[k]
8 else
9 Remove Ji from I

10 break
11

12 end
13 end
14 foreach LO-criticality job Ji ∈ I do
15 for k = 1; k ≤ m; k ++ do
16 Add Ji to I[k]
17 Calculate �LO(I[k])

18 if �LO(I[k]) >
√
5−1
2 then

19 Remove Ji from I[k]
20 else
21 Remove Ji from I
22 break
23

24 end
25 end
26 return I[1 · · ·m]

VII. EVALUATION

We have carried out simulations on randomly-generated

mixed-criticality parallel jobs, where we apply EqualSlack-

Based and MinLoad-Based partitioned algorithms to schedule

the parallel job sets on multiprocessor platforms. A series of

randomly generated job sets of different sizes are used. More

precisely, the size of the parallel job set varies from 10 to

30. The release time and deadline of the parallel jobs are also

randomly generated, in the range [10, 100] and [200, 1000]

respectively. It is assumed that there are more LO-criticality

jobs than HI-criticality jobs. Specifically, the number of LO-

criticality jobs is twice of the number of HI-criticality jobs.

The number of segments of each MC parallel job is randomly

generated from 3 to 6. The number of threads for each segment

is randomly generated from 2 to 6. We make the sum of the

HI-criticality WCET of all segments of job Ji fall between

0.30× |Di −Ai| and 0.40× |Di −Ai|, while the distribution

of the HI-criticality WCET sum to the segments is random. We

make the sum of LO-criticality WCET of all segments of job

Ji fall between 0.10×|Di−Ai| and 0.20×|Di−Ai|, while the

distribution of the LO-criticality WCET sum to the segments

is random. In other words, the following conditions must be

satisfied when randomly generating the WCETs: cji (HI) and

cji (LO) for segment Jj
i of job Ji.

0.3× |Di −Ai| ≤
si∑
j=1

cji (HI) ≤ 0.4× |Di −Ai| (25)

0.1× |Di −Ai| ≤
si∑
j=1

cji (LO) ≤ 0.2× |Di −Ai| (26)

After randomly generating a MC parallel job set τ , we apply

either EqualSlack or MinLoad algorithm to convert it to a

set of MC sequential jobs I . Then, the set of MC sequential

jobs I are scheduled according to the partitioning algorithm

(i.e., Algorithm 2). To compare the two algorithms, we use the
number of processors required to make τ schedulable as the

metric. Given a job set τ , a binary search approach is adopted

to find these numbers for EqualSlack-Based and MinLoad-

Based partitioned algorithms.

The simulation results are presented in Figure 1. The curves

show the number of processors required by the two algorithms

to make MC parallel job sets of different sizes, ranging from

10 to 30, schedulable. From these curves, we can see that

our MinLoad-Based partitioned algorithm always requires less

number of processors. In comparison to EqualSlack-Based

algorithm, MinLoad-Based algorithm reduces the number of

required processors by 12% to 32%. MinLoad algorithm

achieves its design goal: it indeed decomposes MC parallel

jobs in such a way that makes the resultant MC sequen-

tial jobs easier to schedule, i.e., requiring less number of

processors to be schedulable by the partitioning and OCBP

algorithms. These results have also proved our hypothesis: if

we control the values of �LO(I) and �HI(I) of the resultant

MC sequential job set I , i.e., by reducing MaxLoad(I) =
max(�LO(I), �HI(I)), we can make I easier to schedule.

VIII. CONCLUSION

There has been an increasing research interest in scheduling

mixed-criticality tasks in multiprocessor systems as multi-

processor technology becomes main stream in processor de-

sign [18], [46]. However, most existing work on scheduling

mixed-criticality systems are limited to sequential program-

ming models and they are ineffective in exploiting the process-

ing power of multiprocessor systems. In this paper, we have

proposed a mixed-criticality parallel job model targeting at

fully harassing the power of multiprocessor systems. We have

developed a novel job decomposition algorithm, called Min-

Load, based on which a new partitioned algorithm is created

to schedule mixed-criticality parallel jobs on multiprocessors.

Comparing to a baseline EqualSlack job decomposition, our

MinLoad method requires smaller-sized multiprocessor plat-

forms for the mixed-criticality systems.

Fig. 1. Required Multiprocessor Platform Size.

IX. ACKNOWLEDGEMENTS

The authors acknowledge support from General Motors

Global Research & Development and NSFC award 61272127.

REFERENCES

[1] OpenMP, http://openmp.org.

[2] Intel R©CilkTMPlus, http://software.intel.com/en-us/intel-cilk-plus.

[3] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Adaptive work
stealing with parallelism feedback. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 112–
120, 2007.

[4] James H. Anderson and John M. Calandrino. Parallel real-time task
scheduling on multicore platforms. In IEEE Real-Time Systems Sympo-
sium (RTSS), pages 89–100, 2006.

[5] Theodore P. Baker. Comparison of empirical success rates of global vs.
partitioned fixed-priority and edf scheduling for hard real time, tech rep
tr-050601. Technical report, Florida State University, 2005.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D.A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
15:600–625, 1994.

[7] Sanjoy Baruah. Task partitioning upon heterogeneous multiprocessor
platforms. In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 536–543, 2004.

[8] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan
Li, Alberto Marchetti-Spaccamela, Nicole Megow, and Leen Stougie.
Scheduling real-time mixed-criticality jobs. IEEE Transactions on
Computers, 61(8):1140–1152, 2012.

[9] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of
certifiable mixed-criticality systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 13–22, 2010.

[10] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design
of certifiable mixed-criticality systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010 16th IEEE, pages
13–22. IEEE, 2010.

[11] Sanjoy K. Baruah. Certification-cognizant scheduling of tasks with
pessimistic frequency specification. In IEEE International Symposium
on Industrial Embedded Systems (SIES), pages 31–38, 2012.

[12] Sanjoy K. Baruah. Semantics-preserving implementation of multirate
mixed-criticality synchronous programs. In International Conference
on Real-Time and Network Systems (RTNS), pages 11–19, 2012.

[13] Sanjoy K. Baruah. Implementing mixed criticality synchronous reactive
systems upon multiprocessor platforms. Technical report, University of
North Carolina at Chapel Hill, 2013.

[14] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan
Li, Alberto Marchetti-Spaccamela, Suzanne van der Ster, and Leen
Stougie. The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 145–154, 2012.

[15] Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
Leen Stougie, and Andreas Wiese. A generalized parallel task model
for recurrent real-time processes. In IEEE Real-Time Systems Symposium
(RTSS), pages 63–72, 2012.

[16] Sanjoy K. Baruah and Alan Burns. Implementing mixed criticality
systems in ada. In Ada-Europe International Conference on Reliable
Software Technologies (Ada-Europe), pages 174–188, 2011.

[17] Sanjoy K. Baruah, Alan Burns, and Robert I. Davis. Response-time
analysis for mixed criticality systems. In Real-Time Systems Symposium
(RTSS), pages 34–43, 2011.

[18] Sanjoy K. Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin.
Mixed-criticality scheduling on multiprocessors. Real-Time Systems,
50(1):142–177, 2014.

[19] Sanjoy K. Baruah and Gerhard Fohler. Certification-cognizant time-
triggered scheduling of mixed-criticality systems. In Real-Time Systems
Symposium (RTSS), pages 3–12, 2011.

[20] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and
Andreas Wiese. Feasibility analysis in the sporadic dag task model. In
Euromicro Conference on Real-Time Systems (ECRTS), pages 225–233,
2013.

[21] A. Burns and R. Davis. Mixed criticality systems: a review, http://www-
users.cs.york.ac.uk/ burns/review.pdf, July 2013.

[22] Alan Burns and Sanjoy K. Baruah. Timing faults and mixed criticality
systems. In Dependable and Historic Computing, pages 147–166, 2011.

[23] John M. Calandrino and James H. Anderson. On the design and
implementation of a cache-aware multicore real-time scheduler. In
Euromicro Conference on Real-Time Systems (ECRTS), pages 194–204,
2009.

[24] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James
Anderson, and Sanjoy Baruah. A categorization of real-time multipro-
cessor scheduling problems and algorithms. In Handbook on Scheduling
Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[25] Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job
parallelism in real-time scheduling theory. Information Processing
Letters, 106(5):180–187, May 2008.

[26] Xiaotie Deng, Nian Gu, Tim Brecht, and KaiCheng Lu. Preemptive
scheduling of parallel jobs on multiprocessors. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 159–167, 1996.

[27] Franois Dorin, Pascal Richard, Michal Richard, and Jol Goossens.
Schedulability and sensitivity analysis of multiple criticality tasks with
fixed-priorities. Real-Time Systems, 46(3):305–331, 2010.

[28] Maciej Drozdowski. Real-time scheduling of linear speedup parallel
tasks. Information Processing Letters, 57(1):35–40, January 1996.

[29] Arvind Easwaran. Demand-based scheduling of mixed-criticality spo-
radic tasks on one processor. In IEEE Real-Time Systems Symposium
(RTSS), 2013.

[30] Pontus Ekberg and Wang Yi. Outstanding paper award: Bounding and
shaping the demand of mixed-criticality sporadic tasks. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 135–144, 2012.

[31] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of
generalized mixed-criticality sporadic task systems. Real-Time Systems,
50(1):48–86, 2014.

[32] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos, Slobodan Matic,
Bodhi Priyantha, and Feng Zhao. Energy-optimal software partitioning
in heterogeneous multiprocessor embedded systems. In DAC, pages
191–196, 2008.

[33] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and
efficient scheduling of certifiable mixed-criticality sporadic task systems.
In RTSS, pages 13–23, 2011.

[34] Jonathan L. Herman, Christopher J. Kenna, Malcolm S. Mollison,
James H. Anderson, and Daniel M. Johnson. Rtos support for multicore
mixed-criticality systems. In IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 197–208, 2012.

[35] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. Implemen-
tation and evaluation of mixed-criticality scheduling approaches for
periodic tasks. In Real Time and Embedded Technology and Applications
Symposium (RTAS), pages 23–32, 2012.

[36] Shinpei Kato and Yutaka Ishikawa. Gang edf scheduling of parallel

task systems. In IEEE Real-Time Systems Symposium (RTSS), pages
459–468, 2009.

[37] Oh-Heum Kwon and Kyung-Yong Chwa. Scheduling parallel tasks with
individual deadlines. Theoretical Computer Science, 215(1-2):209–223,
1999.

[38] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and
Yunheung Paek. A retargetable parallel-programming framework for
mpsoc. ACM Transactions on Design Automation Electronic Systems,
13(3), 2008.

[39] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar.
Mixed-criticality task synchronization in zero-slack scheduling. In IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 47–56, 2011.

[40] Karthik Lakshmanan, Dionisio de Niz, Ragunathan Rajkumar, and
Gabriel A. Moreno. Resource allocation in distributed mixed-criticality
cyber-physical systems. In International Conference on Distributed
Computing Systems (ICDCS), pages 169–178, 2010.

[41] Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar.
Scheduling parallel real-time tasks on multi-core processors. In IEEE
Real-Time Systems Symposium (RTSS), pages 259–268, 2010.

[42] Wan Yeon Lee and Heejo Lee. Optimal scheduling for real-time parallel
tasks. IEICE Transactions on Information and Systems, 89-D(6):1962–
1966, 2006.

[43] Haohan Li and Sanjoy Baruah. Load-based schedulability analysis of
certifiable mixed-criticality systems. In Proceedings of the tenth ACM
international conference on Embedded software, pages 99–108. ACM,
2010.

[44] Haohan Li and Sanjoy K. Baruah. An algorithm for scheduling
certifiable mixed-criticality sporadic task systems. In IEEE Real-Time
Systems Symposium (RTSS), pages 183–192, 2010.

[45] Haohan Li and Sanjoy K. Baruah. Load-based schedulability analysis
of certifiable mixed-criticality systems. In International Conference on
Embedded Software (EMSOFT), pages 99–108, 2010.

[46] Haohan Li and Sanjoy K. Baruah. Outstanding paper award: Global
mixed-criticality scheduling on multiprocessors. In Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 166–175, 2012.

[47] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. Analysis
of global edf for parallel tasks. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 3–13, 2013.

[48] Cong Liu and James H. Anderson. Supporting soft real-time parallel
applications on multicore processors. In International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 114–123, 2012.

[49] Anwar Mamat, Ying Lu, Jitender Deogun, and Steve Goddard. Efficient
real-time divisible load scheduling. Journal of Parallel and Distributed
Computing (JPDC), 72(12):16031616, December 2012.

[50] Anwar Mamat, Ying Lu, Jitender Deogun, and Steve Goddard. Schedul-
ing real-time divisible loads with advance reservations. Real-Time
Systems, 48(3):264–293, May 2012.

[51] G. Manimaran, C. Siva Ram Murthy, and Krithi Ramamritham. A new
approach for scheduling of parallelizable tasks in real-time multiproces-
sor systems. Real-Time Systems, 15(1):39–60, 1998.

[52] Geoffrey Nelissen, Vandy Berten, Joel Goossens, and Dragomir Miloje-
vic. Techniques optimizing the number of processors to schedule multi-
threaded tasks. In Euromicro Conference on Real-Time Systems, pages
321–330, 2012.

[53] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On
the scheduling of mixed-criticality real-time task sets. In IEEE Real-
Time Systems Symposium (RTSS), pages 291–300, 2009.

[54] Luı́s Nogueira and Luı́s Miguel Pinho. Server-based scheduling of
parallel real-time tasks. In ACM International Conference on Embedded
Software (EMSOFT), pages 73–82, 2012.

[55] Taeju Park and Soontae Kim. Dynamic scheduling algorithm and
its schedulability analysis for certifiable dual-criticality systems. In
International Conference on Embedded Software (EMSOFT), pages
253–262, 2011.

[56] Risat Mahmud Pathan. Schedulability analysis of mixed-criticality
systems on multiprocessors. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 309–320, 2012.

[57] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers. IEEE
Transactions on Computers, 36(12):1425–1439, December 1987.

[58] Dominik Reinhardt, Dirk Kaule, and Markus Kucera. Achieving a

scalable e/e-architecture using autosar and virtualization. SAE Int. J.
Passeng. Cars Electron. Electr. Syst., 6(2):489–497, 2013.

[59] Paul Rodriguez, Laurent George, Yasmina Abdeddam, and Jol Goossens.
Multi-criteria evaluation of partitioned edf-vd for mixed-criticality sys-
tems upon identical processors. In Workshop on Mixed Criticality
Systems, November 2013.

[60] Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher
Gill. Multi-core real-time scheduling for generalized parallel task
models. In Real-Time Systems Symposium (RTSS), pages 217–226, 2011.

[61] Abusayeed Saifullah, David Ferry, Kunal Agrawal, Chenyang Lu, and
Christopher Gill. Real-time scheduling of parallel tasks under a general
dag model. Technical Report WUCSE-2012-14, Washington University
in St Louis, 2012.

[62] François Santy, Laurent George, Philippe Thierry, and Joël Goossens.
Relaxing mixed-criticality scheduling strictness for task sets scheduled
with fp. In Euromicro Conference on Real-Time Systems (ECRTS), pages
155–165, 2012.

[63] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga.
Mixed critical earliest deadline first. In Euromicro Conference on Real-
Time Systems (ECRTS), pages 93–102, 2013.

[64] Anand Srinivasan, Philip Holman, James H. Anderson, and Sanjoy K.
Baruah. The case for fair multiprocessor scheduling. In 11th Interna-
tional Workshop on Parallel and Distributed Real-time Systems, April
2003.

[65] Domitian Tamas-Selicean and Paul Pop. Design optimization of mixed-
criticality real-time applications on cost-constrained partitioned archi-
tectures. In Real-Time Systems Symposium (RTSS), pages 24–33, 2011.

[66] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In IEEE International
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

[67] Qingzhou Wang and Kam Hoi Cheng. A heuristic of scheduling parallel
tasks and its analysis. SIAM Journal on Computing, 21(2):281–294,
April 1992.

[68] Albert Y. Zomaya. Parallel processing for real time simulation: a
case study. IEEE Parallel and Distributed Technoloqy: systems and
Applications, 4(2):49–62, 1996.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2014

	Partitioned Multiprocessor Scheduling of Mixed-Criticality Parallel Jobs
	Guangdong Liu
	Ying Lu
	Shige Wang
	Zonghua Gu

	untitled

