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PSR: Practical Synchronous Rendezvous in
Low-duty-cycle Wireless Networks

Hao Huang∗, Jihoon Yun∗, Ziguo Zhong∗, Songmin Kim†, and Tian He†
∗Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE

†Computer Science, University of Minnesota-TwinCities, Minneapolis, MN
Email: {{hhuang,jyun, zzhong}@cse.unl.edu, {ksong,tianhe}@cs.umn.edu}

Abstract—Low-duty-cycle radio operations have been proposed
for wireless networks facing severe energy constraints. Despite
energy savings, duty-cycling the radio creates transient-available
wireless links, making communication rendezvous a challenging
task under the practical issue of clock drift. To overcome limita-
tions of prior work, this paper presents PSR, a practical design
for synchronous rendezvous in low-duty-cycle wireless networks.
The key idea behind PSR is to extract timing information nat-
urally embedded in the pattern of radio duty-cycling, so that
normal traffic in the network can be utilized as a “free” input
for drift detection, which helps reduce (or even eliminate) the
overhead of traditional time-stamp exchange with dedicated
packets or bits. To prevent an overuse of such free information,
leading to energy waste, an energy-driven adaptive mechanism
is developed for clock calibration to balance between energy
efficiency and rendezvous accuracy. PSR is evaluated with both
test-bed experiments and extensive simulations, by augmenting
and comparing with four different MAC protocols. Results show
that PSR is practical and effective under different levels of traffic
load, and can be fused with those MAC protocols to improve their
energy efficiency without major change of the original designs.

I. INTRODUCTION

In wireless networks with severe energy constraints, e.g.,
wireless sensor networks [1], low-duty-cycle radio operations
have been proposed as one of the major techniques to elongate
the network lifetime [5], since the radio can be a main source
of energy consumption [13]. Basically, the RF module of a
node stays active only for a small percentage of time during
each duty-cycle period (e.g., 1%), while keeps in low-energy
sleep/off mode for the rest of the time [5][28]. Low-duty-cycle
radio activity has been favorable in applications such as envi-
ronment monitoring (e.g., Redwood [3], GreenOrbs [9]), ani-
mal observation (e.g., Great Duck Island [10]), civil structure
surveillance (e.g., Mine [11]), etc. In all those applications,
low-duty-cycle networking provides a nice trade-off between
service quality and energy cost; however, it also brings about
transient-available radio links that are essentially at odd with
highly efficient communication. This is because in low-duty-
cycle networks, two nodes located within each other’s radio
range can communicate only when both of them are active
simultaneously for transmitting (TX) and receiving (RX) [12].
A problem called communication rendezvous [17].

Many smart ideas have been proposed for the rendezvous
task in low-duty-cycle wireless networks. They usually func-
tion at the MAC layer and can be categorized into two general
classes: (i) asynchronous [5][6][28][17][23][39] and (ii) syn-

chronous [8][22][25][26][27][29]. In asynchronous designs,
the sender tries to capture the unknown active time of the
receiver, by sacrificing energy [5][6][28], channel efficiency
[5][6], or per-hop delay [23][17], which can work well under
low traffic load. Synchronous solutions, on the contrary, show
improved channel efficiency by controlling and tracking active
schedules. Designs in this category usually have to depend on
the underlying support of time synchronization [8][22][27] to
eliminate negative impacts of clock drift. However, synchro-
nization [4][18][19][20] itself could be costly and difficult in
low-duty-cycle wireless networks [15] due to impaired radio
channels being lack of broadcasting capability and ultra-tight
energy budgets that deny periodic time-stamp exchanges.

To overcome limitations of prior work, this paper presents
PSR, a practical design for synchronous rendezvous in low-
duty-cycle wireless networks. The novelty of PSR originates
from our observation that the pattern of radio duty-cycling can
be used as a time-domain reference for clock drift detection.
By extracting such timing information naturally embedded in
low-duty-cycle wireless networks, normal traffic can be emp-
loyed to achieve 0-bit synchronization, and thus reduces or
even eliminates the overhead of traditional time-stamp ex-
change. To prevent an overuse of such free information, which
leads to energy waste, an adaptive mechanism is proposed to
balance between energy efficiency and rendezvous accuracy. In
short, the intellectual contributions of this paper may include:

• Practical synchronous rendezvous (PSR) is proposed for
low-duty-cycle wireless networks. As a generic element
at the MAC layer, PSR can be conveniently fused with
many state-of-the-art MAC protocols to improve energy
efficiency without major change of the original designs.

• To the best of our knowledge, PSR is the first work that
enables and implements clock drift detection with normal
traffic in the network, by extracting timing information
naturally embedded in the low-duty-cycle radio pattern.

• An energy-driven adaptive mechanism is developed to
make best use of the timing information extracted from
normal traffic, allowing PSR to work with low, medium
and high traffic loads in an on-demand manner.

• PSR is implemented and tested with four different MAC
protocols from two categorizes using 24 MicaZ motes
coupled as 110 different node pairs. To reveal its perfor-
mance at scale, we also provide an extensive simulation
study obeying real-world constraints
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In the following, we start with the preliminary information
in Section II. Section III gives an overview of key ideas. Then,
PSR is detailed in Section IV and Section V reports test-bed
and simulation evalution results. Finally, Section VI concludes
the whole paper.

II. PRELIMINARY

This section provides basic information on low-duty-cycle
radio, communication rendezvous, and clock drift modeling.

A. Low-duty-cycle Radio Operation
Fig.1 illustrates a typical pattern of low-duty-cycle radio

operation [5][6], where node B turns off its RF module most
of the time during TB (node B’s duty-cycle period) to conserve
energy. Such behavior breaks the traditional always-on radio
and creates transient-available radio links for accessing this
node. As a result, “capturing” the active time slots, denoted as
black-filled bars in Fig.1, becomes the precondition for other
nodes to communicate with node B.

Node B
TB

t

Radio is turned on briefly

Fig. 1. Pattern of Low-duty-cycle Radio

B. Communication Rendezvous
In low-duty-cycle wireless networks, communication usu-

ally consist two steps: link establishment and data exchange.
To capture active time slots for link establishment, two types of
methods have been proposed: asynchronous and synchronous
rendezvous. Fig.2 show examples for both types of methods.

Link Built

Node B t
(a) Link Establish with Asynchronous Rendezvous

(b) Link Establish with Synchronous Rendezvous

Link Establishment Data Packet Radio On

Link Built

Node B t

t0

Node A t

t0

Node A t
Wait

Fig. 2. Link Establish in Low-duty-cycle Networks

In the above Fig.2, node A and B are 1-hop neighboring
nodes in a low-duty-cycle wireless network. Consider that
node A has a data packet for node B at time t0 as marked
in the figure. With asynchronous rendezvous as shown in
Fig.2(a), node A does not have any knowledge about node
B’s active schedule and thus has to turn on its radio ever
since t0 and remains active (for TX [5][6] or RX [28][39]) till
capturing node B’s active signal to establish the radio link.
While with synchronous rendezvous as depicted in Fig.2(b),
node A has some knowledge about B’s active schedule and
therefore does not need to turn on its radio until approaching
node B’s next active time [8][25], resulting in a significantly
reduced duration for link establishment, and thus improved
energy and channel efficiency.

C. Clock Drift Modeling
The benefits of synchronous rendezvous essentially come

at the cost of synchronization efforts [8][27] for dealing with
the imperfectness of clocks that could otherwise break the
coordinated communication between node pairs.

Clock A

Clock B
0 B

A

tdrift

Fig. 3. Clock Drift Offset

In practice, nodes have clocks running at different speeds,
resulting in accumulated offsets among them. For example, τA
is the interval measured by clock A for τB elapsed at clock
B as shown in Fig.3. In this case, tdrift = τA − τB is the
clock drift between A and B during this common interval.
The speed difference between clocks is defined as clock skew,
and the average skew of clock A respective to clock B in this
example, denoted as S̄B

A , can be calculated with

S̄B
A =

τA − τB
τB

(1)

A real clock features random and dynamic skews varying
as a stochastic process [2][14][29][36][38]. Among multiple
skew models [14], we applied the WGN (white Gaussian no-
ise) random walk model [2][14], expressed by Eq.2, as a
tough-case example studied in this paper.

SB
A (t0 + t) = SB

A (t0) +

∫ t0+t

t0

η(u)du (2)

where η(μ) ∼ N(0, σ2
η) and E[η(u)η(v)] = σ2

η · δ(u− v)

In Eq.2, SB
A (t0) counts for the original speed difference betw-

een two clocks at t0; the integration part
∫
η(u)du accumulates

real-time environmental impacts during t. In practice, the value
of ση can be obtained from empirical literatures [33][14][35]
or system profiling before network deployments [16][34].

With clock skew SB
A (t), the drift offset tdrift in Fig.3 can

be formulated as follows

tdrift = S̄B
A · τB =

∫ τB

0

SB
A (t)dt (3)

Note that as the most generic form, the drift model in Eq.3
can work with any clock skew model.

III. OVERVIEW

PSR is developed as a supporting component at the MAC
layer for efficient synchronous rendezvous in low-duty-cycle
wireless networks. The major challenge is to reduce the energy
cost for the synchronization service. To address this issue, two
unique techniques are proposed: 0-bit clock drift detection and
energy-driven adaptive skew calibration, which are briefed in
the following before touching details of PSR in Section IV.

A. 0-bit Clock Drift Detection
By leveraging the low-duty-cycle radio pattern as a time-

domain reference, PSR enables normal traffic in the network
for clock drift detection without time-stamp exchanges. We
give a simplified example in Fig.4 to illustrate the idea.
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WaitNode A

Node B

Link Built
t0

t

t
t2

Link Establishment Expected Active Time Slot Radio On

t3

2L

toffset

t1 ^

Fig. 4. 0-bit Clock Drift Detection

For the sake of clarity, Fig.4 shows the link establishment
with a zoom-in view while omits the following data exchange.
Assume that at time t0, node A has a message for node B.
Based on the previous knowledge of B’s schedule, A predicts
the next active time of B at t2, and tries to capture it with a
window of length 2L centered at t2. However, node B wakes
up at t3, after which the link is built as shown in Fig.4. In
this case, the interval between t2 and t3 is just the drift offset
between two nodes, which can be estimated at node A by
comparing its original expectation t2 with its detection at t3.

The rationale behind this scheme is that the low-duty-cycle
radio pattern of a node carries implicit information about its
real-time clock readings and can be used as a time reference
equivalent to time-stamps. So, clock drift can be obtained as a
by-product during link establishment, and 0-bit drift detection
could be achieved in the presence of normal traffic.

B. Energy-driven Adaptive Skew Calibration
With 0-bit drift detection, a follow-up question is whether

all “free” detections shall be used equally for synchronization.
The answer is “no” by careful analysis. In PSR, time syn-
chronization is treated as two separate operations with diverse
energy costs (see Section V). Drift calibration can be con-
ducted after each detection for its low-energy profile; while
skew calibration is launched less frequently for dual reasons:
(i) it requires significant calculation efforts, and (ii) updating
skew at a high frequency may do harm to synchronization [36].
PSR applies an energy-driven mechanism for adaptive skew
calibration, the basic principle of which is shown in Fig.5.

t3

Traffic 

t0

sync

t1 t2

H1: Traffic 
H2: Dedicated Sync. Deadline for Skew Calibration

t

Fig. 5. Traffic for Clock Skew Calibration

Fig.5 illustrates two exclusive options for skew calibration:
(i) using the “free” drift detection from traffic α at t0 (choice
H1), or (ii) applying additional radio operations for dedicated
synchronization at t1 that is the deadline for skew calibration
(choice H2). For H1, it can extend the deadline at t1 by τα
to t2 as shown in Fig.5, at the cost of Ecal that is the energy
overhead for skew calculation. For H2, it can extend the dea-
dline by τsync to t3, however, at the cost of (Ecom + Ecal)
where Ecom is the energy cost for additional radio operations.

PSR selects between H1 and H2 based on their cost
performance in term of energy efficiency as follows

τα
Ecal

H1

≷
H2

τsync
(Ecom + Ecal)

(4)

Note that Eq.4 works in an adaptive manner because τα
is determined by the arrival time of traffic α. Generally, the
closer between t0 and t1, the larger τα will be, and the more
likely to select H1. In an extreme case, if traffic α arrives at
t1, i.e., t0 = t1, we would have τα = τsync, resulting in H1
by Eq.4 and by intuition. It will be revealed later that there
exists pivotal points regarding the arrival time of traffic, based
on which a quick decision can be made for skew calibration.

IV. THE PSR DESIGN

This section presents the PSR design starting with the
prediction of active schedules. To obtain the clock skew as a
key parameter, we explain the basics on drift detection (0-bit)
and skew estimation, followed by an analysis of the estimation
uncertainty and its impact on the active schedule prediction.
Then, energy-driven clock calibration is introduced. At last,
practical issues are discussed, including link initialization,
rendezvous failure recovery, and duty-cycle schedule variation.
Unless noted otherwise, x̂ and x̃ are used to express an
estimator (or a detection) and its corresponding error residual,
respectively, for the variable with true value x.

A. Active Schedule Prediction
Active schedule prediction serves as the first step towards

low-duty-cycle synchronous rendezvous. To fulfill this task, a
node requires several pieces of information depicted in Fig.6 as
an example where node A and B have diverse active schedules.
An important difference between Fig.6 and previous figures
is that in Fig.6 two nodes have different timelines: tA and
tB , respectively. This is because PSR itself does not demand
aligned clocks among nodes in the network.

Node A

Node B

tA

tB

Link Establishment Data Packet Radio On

······

······

tA(t1)

[tA(t0),          ]SA (t0)
B^

n ·TB

2L
twait

tA(Bactive)
^

^

tA(t2)

Fig. 6. Predicting the Coming Active Time Slot

Suppose that node A has a data packet for node B at tA(t1)
(time t1 by node A’s clock). To predict B’s next active time,
which eventually comes at tA(t2), node A makes use of four
pieces of information marked in Fig.6: (i) its current clock
reading tA(t1), (ii) the last captured active time of node B
t̂A(t0) (a detection by node A), (iii) its latest skew estimation
respect to node B, i.e., ŜB

A (t0), and (iv) node B’s duty-
cycle period TB. Then, A obtains its prediction, denoted as
t̂A(Bactive) in Fig.6, with the following Eq.5 and Eq.6.

t̂A(Bactive) = t̂A(t0) + n · TB · (1 + ŜB
A (t0)) (5)

where n =

⌊
tA(t1)− t̂A(t0)

TB · (1 + ŜB
A (t0))

⌋
+ 1 (6)

In the above, �· · · � stands for the floor operation, and the term
(1 + ŜB

A (t0)) is used to convert intervals between tA and tB
based on Eq.1 for the indispensable task of drift compensation.
For example, suppose that n · TB = 3000 s (seconds) and the
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average skew between two nodes is 20 ppm (parts per million)
during this interval, a normal value for clocks with embedded
devices [14][16][33], then a drift of 60 ms (milliseconds) could
get accumulated. Without drift adjustment and if L < 60 ms
in Fig.6, node A would miss node B’s active time slot and
fail the tasks of link establishment (rendezvous).

With drift compensation, in theory we shall have an accurate
prediction such that t̂A(Bactive) = tA(t2) as shown in Fig.6.
In practice, however, node A’s prediction with Eq.5 and 6
suffers from two additional error sources: (i) the detection
error of t̂A(t0), and (ii) the estimation error of ŜB

A (t0) as the
average skew. Fortunately, both errors can be modeled, profiled
and adjusted, allowing unbiased estimation of active schedules
with predictable uncertainty (Section IV-B and IV-C).

Given the active schedule prediction for node B, A can
launch its link establishment phase (the “capturing window”)
after waiting for twait since tA(t1) as follows

twait = t̂A(Bactive)− tA(t1)− L (7)

where L as a constant is the radius of node A’s capturing win-
dow in Fig.6 and can be configured in different applications.

B. Drift Detection and Skew Estimation
Clock skew estimation plays a critical role for drift compen-

sation in schedule prediction (Eq.5 and 6). However, unlike
the drift offset which can be measured with bounded error
uncertainty [7][20], instant skew estimation is challenging for
its dynamic nature [14][35]. This section presents an instant
skew estimator working with the 0-bit drift detection scheme
briefed in the overview section. For clarity, we use the same
example in Fig.6 with slight changes as Fig.7 to convey ideas.

Node A

Node B

tA

tB

Link Establishment Expected Active Time Slot Radio On

2L

toffset tA(t2)tA(Bactive)
^

······

······
n ·TB

[tA(t0),          ]SA (t0)
B^

^ ^

^

Fig. 7. 0-bit Drift Detection and Skew Estimation

In Fig.7, the error offset between node A’s prior prediction
t̂a(Bactive) and the corresponding posterior detection t̂A(t2)
for node B’s active time can be expressed as

t̂offset = t̂A(t2)− t̂A(Bactive) (8)

where time detection t̂A(t2) (and t̂A(t0)) obtained with radio
operations is subject to multiple non-deterministic delays and
noise along the “critical path” of radio communication [20].
We consider the additive results of all delays and noise as a
random variable following the normal distribution based on the
central limit theorem [37] and empirical results [7][20]. With
delay adjustments, time detections in Fig.7 can be written as

t̂A(t0) = tA(t0) + φ(t0), t̂A(t2) = tA(t2) + φ(t2) (9)

where φ(t0) and φ(t2) are independent detection noise satis-
fying φ ∼ N (0, σ2

φ). On the other hand, we have

tA(t2)− tA(t0) = n · TB ·
(
1 + S̄B

A

)
(10)

tA

Skew

SA (t0)
B^

SA (t2)
B^

SA (t2)
B

SA (t)
B

SA 
B

t0 t2t

Fig. 8. Example Clock Skew as A Stochastic Process

where S̄B
A is the true average clock skew of node A respect

to node B during the interval from tA(t0) to tA(t2). By
integrating Eq.5, 8, 9 and 10, we can rewrite t̂offset as

t̂offset = n · TB · (S̄
B
A − ŜB

A (t0)) + φ(t2)− φ(t0) (11)

which tells that this offset comes from two physical compo-
nents: (i) skew estimation error (S̄B

A − ŜB
A (t0)) and (ii) active

time detection errors φ(t2) and φ(t0).
Given t̂offset from Eq.8 and based on Eq.1, node A can

update its skew estimation at tA(t2) as

ŜB
A (t2) = ŜB

A (t0) +
t̂offset
Δt

, where Δt = n · TB (12)

The true skew of node A respect to node B varies along the
time line as exampled in Fig.8. ŜB

A (t2) obtained with Eq.12
is actually an estimation of the average skew S̄B

A during Δt,
marked as the thick dashed line in Fig.8. ŜB

A (t2) may have
random offsets from SB

A (t2) that is the true instant clock skew
at tA(t2). However, we can comfortably apply ŜB

A (t2) for
future schedule prediction based on the following theorem.

THEOREM 1. ŜB
A (t2) from Eq.12 is an unbiased estimator

for S̄B
A during Δt and for the instant skew SB

A (t2), namely,

E[ŜB
A (t2)] = S̄B

A = E[SB
A (t2)] (13)

with an error variance (respect to its true value SB
A (t2)) of

σ2
ŜB
A
(t2)

=
2σ2

φ

Δt2
+

σ2
η

3
·Δt (14)

where σ2
φ is the error variance of active slot detection and σ2

η

comes from the skew model in Eq.2.
PROOF 1. With Eq.11, Eq.12 and φ ∼ N (0, σ2

φ), we have

E[ŜB
A (t2)] = E[S̄B

A ] +
E[φ(t2)− φ(t0)]

Δt
= S̄B

A (15)

Based on Eq.2 and Eq.3, we can get

S̄B
A = SB

A (t0) +
1

Δt

∫ t2

t0

∫ t

t0

η(u)dudt (16)

Combine Eq.16 with SB
A (t2) = SB

A (t0) +
∫ t2

t0
η(u)du (Eq.2),

SB
A (t2) = S̄B

A −
1

Δt

∫ t2

t0

∫ t

t0

η(u)dudt+

∫ t2

t0

η(u)du (17)

which tells E[SB
A (t2)] = S̄B

A = E[ŜB
A (t2)] with Eq.15.

From Eq.11, 12 and 17, S̃B
A (t2) = SB

A (t2)− ŜB
A (t2) equals

S̃B
A (t2) =

∫ t2

t0

η(u)du−
1

Δt

∫ t2

t0

∫ t

t0

η(u)dudt

− (φ(t2)− φ(t0)) /Δt (18)

For the above expression, we prove in Appendix A.1 that

σ2
ŜB
A (t2)

= E[(S̃B
A (t2))

2] =
2σ2

φ

Δt2
+

σ2
η

3
·Δt (19)

which converges to Eq.14 and finishes the proof. �
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C. Bounding the Error of Schedule Prediction
To guarantee the capture of active time slots of the desired

receiver, the error associated with schedule prediction must
be smaller than the radius of the capture window L with a
high probability. We apply detections at tA(t2) in previous
example as a starting point to explain the error uncertainty of
future schedule prediction as illustrated in Fig.9

Node A

Node B

tA

tB
······

[tA(t0),          ]SA (t0)
B^

t

^ [tA(t2),          ]SA (t2)
B^^

2L

t

Link Establishment Expected Active Time Slot Radio On

Fig. 9. Future Active Schedule Prediction

For the example in Fig.9, based on Eq.5 the expected active
time of node B after t since tA(t2) can be expressed as

t̂A(Bactive) = t̂BA(t2) + t · (1 + ŜB
A (t2)) (20)

where t is an integer number of TB and ŜB
A (t2) comes from

the skew updating at tBA(t2) with Eq.12. The error variance of
t̂A(Bactive) in Eq.20 can be described as follows.

THEOREM 2. The prediction with Eq.20 is unbiased with
an error variance of

σ2
t̂A(Bactive)

= σ2
φ +

2σ2
φ

Δt
· t+ σ2

ŜB
A
(t2)

· t2 +
σ2
η

3
· t3 (21)

where Δt is the interval for the latest skew detection in Fig.9.
PROOF 2. Combining Eq.9, Eq.10 and Eq.20, the error

residual t̃A(Bactive) = tA(Bactive)− t̂A(Bactive) can be

t̃A(Bactive) = t · (S̄B
A − ŜB

A (t2))− φ(t2) (22)

where S̄B
A in this case is the true average skew between node

A and B during t. Similar to Eq.16, S̄B
A can be expressed as

S̄B
A = SB

A (t2) +
1

t

∫ t2+t

t2

∫ t2+v

t2

η(u)dudv (23)

then, Eq.22 turns into

t̃A(Bactive) = t · S̃B
A (t2) +

∫ t2+t

t2

∫ t2+v

t2

η(u)dudv − φ(t2)

where ŜB
A (t2), φ(t2), and η(u) are all zero-mean Gaussian,

therefore E[t̃A(Bactive)] = 0, i.e., t̂A(Bactive) is unbiased.
For the above t̃A(Bactive), we prove in Appendix A.2 that

E[t̃A(Bactive)
2] = σ2

φ +
2σ2

φ

Δt
· t+ σ2

ŜB
A
(t2)

· t2 +
σ2
η

3
· t3

which converges to Eq.21 and finishes the proof. �
Theorem 2 enables quantitative evaluation of the error un-

certainty associated with future schedule predication, based on
which PSR adaptively sets a deadline tsync (an interval τsync
into the future) for the next skew calibration, immediately after
the current skew calibration by solving

3σt̂A(Bactive)
= L (24)

where σt̂A(Bactive)
is a function of τsync in Eq.21 in this case.

Eq.24 assures that in theory a “capture window” of radius L
can catch any active time slots before the deadline tsync at the
probability of at least 99.7% (i.e., the 3σ confidence range).

D. Energy-Driven Adaptive Clock Calibration

With 0-bit drift detection, normal traffic in the network can
be utilized for clock calibration, including drift calibration
and skew calibration. For drift calibration, a node can simply
update its record for the receiver’s active schedule with the
new detection, e.g., t̂A(t2) in Fig.9, which incurs little cost.
While for skew calibration, besides skew updating with Eq.12,
the deadline Tsync for future skew calibration also needs to
be refreshed by solving the equation listed as Eq.24, which
could demand considerable computation efforts. Realizing the
different energy costs, PSR develops diverse mechanisms for
offset and skew calibration, respectively.

1) Immediate Drift Calibration: A node updates its record
of the receiver’s active schedule immediately after obtaining
the “free” offset information from each traffic in the network.

tASA (t2)
B^

t2 tsync

toffset

Traffic Traffic Traffic

Immediate Offset Calibration

Fig. 10. Immediate Offset Calibration

Fig.10 illustrates an example of immediate offset calibra-
tion, where the deadline tsync is set after skew estimation at
t2. The operation of immediate offset calibration can reset the
error of schedule prediction, denoted as the y-axis toffset in
Fig.10, upon traffic α, β and γ. This is because a new and
accurate active time detection can be obtained with each traffic.
As a result, tsync set at t2 becomes a conservative deadline.

Note that the slope of offset accumulation enlarges after
each traffic as depicted in Fig.10. This is actually not because
of the traffic but the nature of dynamic clock skew variation.
Without skew calibration, the confidence of ŜB

A (t2) employed
as the expected average skew for schedule prediction decreases
quickly as time elapses, the uncertainty of which is essentially
evaluated by the term (σ2

η ·t
3/3) in Eq.21. Therefore, it is clear

that such immediate drift calibration alone is not sufficient
for sustaining the synchronous rendezvous, especially for net-
works without extra-high traffic load.

2) Energy-driven Skew Calibration: A node conducts skew
calibration based on the “free” drift detection form normal
traffic only when it is more energy efficient than not doing so.

tsync

tA

SA (t0)
B^

t0 sync

tsync

t t2

SA (t2)
B^

sync

Traffic

Fig. 11. Not Using Traffic for Skew Calibration

Fig.11 depicts the situation of not using the “free” drift
detection from normal traffic for skew calibration, in which
skew recalibration has to be conducted with additional radio
operations at tsync, extending the deadline by τ ′sync to t′sync.
Note that τ ′sync is obtained by solving the same equation
in Eq.24, and in this case Δt in Eq.21 and Eq.14 becomes
τsync. Such option in Fig.11 is named as H2 that contributes
a synchronous interval τsync′ at the cost of (Ecal + Ecom)
where Ecal and Ecom are the energy overhead for the radio
operation and computation (equation solving), respectively.

2013 Proceedings IEEE INFOCOM

2665



t

tsync

tA

SA (t0)
B^

t0

Traffic tsync

t2

SA (t2)
B^

t sync- t
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Fig.12 shows the opposite situation of using normal traffic
for skew calibration, in which skew recalibration can also be
conducted at tsync but with the “free” drift detection recorded
from traffic α, extending the deadline by τα to t′sync. In theory,
skew calibration with traffic α contributes a synchronous
interval of (τsync − Δtα) + τα in Fig.12, by solving Eq.24,
Eq.21 and Eq.14. However, (τsync−Δtα) can not be counted
as “new”, because it is an duration before the deadline tsync.
Therefore, the option of using traffic for skew calibration,
denoted as H1, contributes τα at the cost of Ecal.

Based on the above analysis, we can choose H1 or H2 by
comparing their energy efficiency as follows

τα
Ecal

H1
≷
H2

τ ′sync
(Ecom + Ecal)

(25)

Eq.25 is simple and conceptually elegant, however it can hard-
ly be used directly in practice, because neither τα nor τsync is
available before conducting the corresponding skew calibrati-
on. PSR overcomes this challenging dilemma by identifying
pivotal points computed off-line based on Eq.25 and potential
network settings, so that a node can select H1 or H2 simply
depending on whether the traffic occurs after or before the
pivotal point. For example, Δtα in Fig.12 determines the use
of traffic α or not for skew calibration.
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Fig. 13. Example Pivotal Point Profiling

Fig.13 shows results of off-line pivotal point profiling for
an example set of parameters used in our test-bed experiments
(L, Ecal, Ecom, σφ, ση). The x-axis shows Δt in Fig.11.
The envelop of the pattern depicted as the red-solid curve
gives the deadline tsync for different Δt, which is also the
possible range of traffic arrival time, since Δtα in Fig.11 can
not be larger than tsync. The green-dashed curve gives the
lower bound of Δtα in Fig.11 for selecting H1, above which
using the traffic for skew calibration is always more energy
efficient. The color density (or darkness) in Fig.13 indicates
additional deadline extensions comparing with the threshold
value given by the lower bound. For this example, two pivotal
points are selected: if Δt < 2600, the pivotal point is set as
7682 s (the black square), otherwise 1078 s (the black circle),
as marked in Fig.13. Note that both pivotal points are set in a
very conservative manner for the sake of simplicity, and such
pivotal points can always be set with different systems.

Algorithm 1: PSR Adaptive Clock Calibration

input : [t̂offset,Δtα], Δt, Ŝ(k − 1), tsync(k − 1)
output: t̂A(Bactive), Ŝ(k), tsync(k)

t̂A(Bactive) ← driftCal(t̂offset);1
if Δtα exceeds the pivotal point for Δt then2

sample ← detectionRec([t̂offset,Δtα]);3
end4
if reach deadline tsync(k − 1) then5

if sample = ∅ then6

sample ← radioAct(t̂A(Bactive), Ŝ(k − 1));7
end8

[Ŝ(k), tsync(k)] ← skewEst(sample, Ŝ(k − 1));9
end10

return [t̂A(Bactive), Ŝ(k), tsync(k)];11

To summarize, we list major operations for clock calibration
as Algorithm 1 triggered upon traffic or at the calibration
deadline. Line 1 conducts immediate drift calibration with
each traffic. Line 2 to 4 performs the pivotal point test to
determine whether the current traffic can be used for skew
calibration later. Line 5 to 10 describes tasks at the calibration
deadline, including skew and deadline updating with the latest
traffic sample or additional radio actions. Skew calibration
with the latest traffic may not be optimal, but good enough as
a heuristic solution featuring little cost (see Fig.13). Finally,
line 11 returns results for future active schedule prediction.

E. Discussion on Practical Issues
In practical systems, rendezvous failure happens because of

various reasons, including (i) schedule prediction error that
occurs with expected marginal probability, (ii) poor radio link
quality, (iii) uninformed duty-cycle schedule variation, (iv)
node malfunction, etc. For failures caused by (i), (ii) and
(iii), PSR degrades to the asynchronous rendezvous method for
reestablishing the line as a special case of system initialization.

PSR launches normal system initialization under two cir-
cumstances: (i) a new node joins the network; and (ii) lost
neighbor is declared. In both situations, a long link estab-
lishment phase is used by either the new node or the sender
node experiencing neighbor lost, the length of which equals the
maximum possible period as that in B-MAC [5], X-MAC [6]
or RI-MAC [28] so as to guarantee active schedule capturing.

V. EVALUATION

We implemented the PSR design as an non-intrusive sup-
porting layer with four low-duty-cycle MAC protocols (i.e.,
X-MAC [6], RI-MAC [28], Wise-MAC [25], and CSMA-MPS
[26]) as illustrated in Fig.15, and evaluated their performance
with test-bed experiments (using 24 MicaZ nodes coupled as
110 different node pairs) as well as an extensive simulation
study obeying real world conditions.

RI-MAC X-MAC Wise-MAC 

PSR (Practical Synchronous Rendezvous) 

CPU Radio Timer Flash 

PSR Task 

TinyOS 

5406 Byte ROM 

96 Byte RAM 

Traffic Generator 

CSMA-MPS 

Fig. 15. Implementation of PSR with TinyOS

2013 Proceedings IEEE INFOCOM

2666



R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

−4500

−3000

−1500

0

1500

3000

4500
 O

ffs
et

 (
μ

s)
RI−PSR X−PSR Wise−PSR MSP−PSR

 Experiments with Various Traffic Loads

Fig. 14. Rendezvous Offset Measurements of RI-PSR (L = 2ms,σφ = 15.03μs), X-PSR, Wise-PSR, and MPS-PSR (L = 7.5ms, σφ = 1ms)

Table II. RI-MAC vs. RI-PSR: Average Energy Cost Per Rendezvous
Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

RI-MAC (in mJ) 40.447 34.743 37.285 46.946 34.348 36.713 47.752 38.377 30.106 43.187

RI-PSR (in mJ) 0.190 0.243 0.279 0.349 0.394 0.428 0.477 0.502 0.552 0.655

Efficiency Improvement (in X) 213.447 143.780 134.691 135.442 88.110 86.756 101.171 77.366 55.512 66.903

Table III. X-MAC vs. X-PSR: Average Energy Cost Per Rendezvous
Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

X-MAC (in mJ) 34.990 37.136 49.281 33.300 42.629 39.661 37.272 40.839 40.414 41.484

X-PSR (in mJ) 0.776 0.867 0.959 0.990 1.025 1.200 1.267 1.318 1.385 1.354

Efficiency Improvement (in X) 46.076 43.826 52.389 34.636 42.565 34.050 30.412 31.983 30.178 31.631

Table IV. Wise-MAC vs. Wise-PSR: Average Energy Cost Per Rendezvous
Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

Wise-MAC (in mJ) 10.176 21.436 33.121 35.251 45.573 50.621 52.760 64.819 67.470 56.056

Wise-PSR (in mJ) 1.961 2.100 2.115 2.582 2.593 2.999 3.193 4.155 3.651 3.398

Efficiency Improvement (in X) 6.188 11.206 16.659 14.653 18.577 17.880 17.525 16.599 19.478 17.494

Table V. CSMA-MPS vs. MPS-PSR: Average Energy Cost Per Rendezvous
Traffic Density Q (in min) 15′ 30′ 45′ 60′ 75′ 90′ 105′ 120′ 135′ 150′

CSMA-MPS (in mJ) 7.509 13.499 13.368 18.026 16.742 22.657 30.040 24.741 22.111 27.549

MPS-PSR (in mJ) 0.768 0.954 0.892 1.000 1.200 1.189 1.481 1.318 1.345 1.357

Efficiency Improvement (in X) 10.780 15.143 15.993 19.021 14.952 20.061 21.284 19.770 17.443 21.296

A. Test-bed Evaluation

We implemented PSR with four MAC protocols: X-MAC,
RI-MAC, Wise-MAC, and CSMA-MPS, considering that X-
MAC and RI-MAC are typical asynchronous rendezvous so-
lutions while Wise-MAC and CSMA-MPS are typical syn-
chronous rendezvous methods. Their PSR-augmented versions
are denoted as X-PSR, RI-PSR, Wise-PSR, and MPS-PSR,
respectively. For each protocol, 20 (for RI-MAC) to 30 (for
X-MAC, Wise-MAC, and CSMA-MSP) different MicaZ node
pairs are tested and each experiment lasted for at least 24
hours so as to cover one cycle of daily environment variation.
Table I lists basic system configurations, where the expected
energy parameters Ecal and Ecom are obtained from system
measurements and component data sheets [30][32], details of
which are provided with each experiment in the following.
RI-MAC vs. RI-PSR

RI-MAC [28] is a receiver initiated asynchronous MAC
design. When a node needs to send packets, it keeps listening
for incoming beacons from the desired receiver to build the
link. The expected duration for link establishment in RI-
MAC is about half of the receiver’s duty-cycle period. In
its PSR-augmented version RI-PSR, the maximum RX time
of the sender for each rendezvous is only about 3ms in our
implementation, which is the summation of capture window
width (2L = 2ms) and the duration for beacon receiving
(1ms). The corresponding Ecom is calculated as 160.68μJ .

Table II compares average energy costs per rendezvous be-

Table I. Implementation Configurations
Protocol σφ, ση , L, Ecal, Ecom Sample Size

RI-PSR 15.3μs, 10−9, 1ms, 95.76μJ , 160.68μJ 292

X-PSR 1ms, 10−9, 7.5ms, 95.76μJ , 743.28μJ 454

Wise-PSR 1ms, 10−9 , 7.5ms, 95.76μJ , 1896.93μJ 399

MPS-PSR 1ms, 10−9, 7.5ms, 95.76μJ , 743.28μJ 398

tween RI-MAC and RI-PSR. The traffic is generated following
a uniform random distribution with the density of 1 packet
per Q minutes (min) as a variable listed in the first row.
Throughout our experiments, RI-PSR performs at least 50
times more energy efficient than RI-MAC as shown in the
bottom row of the table, where X stands for “times” obtained
by dividing the energy cost of RI-MAC by that of RI-PSR.
Under high traffic density, for example 1 packet per 15 min,
RI-PSR is about 213X more energy efficient. While as the
traffic load decreases, the synchronization cost increase for RI-
PSR because less traffic can be used for “free” drift detection,
leading to reduced efficiency improvements.

Fig.14 shows boxplots of offsets at recalibration deadlines
for all methods. The left-most part for RI-PSR tells that its
offsets are smaller than the error bound L = 1ms, which is
because (i) a tough-case skew model is used for triggering the
recalibration, resulting in reduced error offsets; and (ii) normal
traffic is utilized by PSR for immediate offset calibration,
contributing to smaller synchronization errors.
X-MAC vs. X-PSR

X-MAC [6] is a typical sender initiated asynchronous MAC
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protocol that proposes the mechanism of early ACK (termi-
nation). We set σφ for X-PSR as 1 ms that is determined by
the minimum TX/RX period within X-MAC’s preamble [31].
With the support of PSR, X-PSR exhibits high efficiency
improvements as shown in Table III. X-PSR requires a longer
link establishment phase (L = 7.5ms in Table I) than that of
RI-PSR due to its larger detection error σφ = 1ms comparing
with σφ = 15.3μs for RI-PSR. Consequently, the rendezvous
offsets of X-PSR spread in a wider range in Fig.14.
Wise-MAC vs. Wise-PSR

Wise-MAC [25] is a typical synchronous MAC protocol
feathering a simple design with adaptive preamble stretch-
ing. The detection uncertainty σφ for Wise-PSR is still 1
ms, because with the MicaZ platform, we have to apply a
packet radio [32] to emulate the continues preamble in the
original Wise-MAC . And in this case, the accuracy of drift
detection is determined by the minimum packet transmission
time as that in X-MAC. Table IV shows the performance
comparison between Wise-MAC and Wise-PSR. Both Wise-
MAC and Wise-PSR favor high traffic load; however, as the
traffic density decreases, Wise-MAC’s energy cost quickly
increases, because its simple drift compensating mechanism
(with 4θ [25]) does not scale well with long periods. Wise-
PSR, supported with skew estimation and uncertainty model,
provides high performance gains with lower traffic densities
towards the right side of Table IV.
CSMA-MPS vs. MPS-PSR

CSMA-MPS [26] is essentially a combined version of Wise-
MAC and X-MAC with better energy performance than both
of them, which can be observed by comparing Table III,
IV and V. With early ACK, MPS-PSR requires less energy
than Wise-PSR in Table V as expected. Like Wise-PSR, the
efficiency improvement of MSP-PSR increases as the traffic
load decreases, because of the power of skew estimation and
on-demand recalibration brought about by PSR.

B. Simulation Evaluation
A discrete event-driven simulator has been developed to

explore PSR’s performance under (i) a broad range of traffic
load, (ii) various environmental conditions, and (iii) different
environmental factor estimation errors. For each data point, we
simulated 30 node pairs running for a duration of 1000 hours
with and without the support of PSR. Unless noted otherwise,
default parameters in Table.I are used in simulation.
Impact of Traffic Density

Fig.16 shows efficiency improvements of PSR-augmented
protocols under a broad range of traffic densities varying from
10−5/s to 10−1/s as the x axis. For RI-PSR and X-PSR,
their efficiency improvements are comparatively low under low
traffic load. However, as traffic density increases, so do their
improvements as shown in the figure. When the traffic density
reaches 10−3/s, RI-PSR achieves 200X or larger, and two
curves becomes flat afterwards as expected. For Wise-PSR
and MPS-PSR (two curves almost overlap in Fig.16), their
maximum efficiency improvements appear with medium traffic
load. Under extremely low traffic load, improvements of Wise-
PSR and MSP-PSR are relatively low because in this case the
synchronization cost can not be amortized among traffic; while
under high traffic load, Wise-MAC and CSMA-MPS improves
regarding energy efficient due to their simple mechanism of
schedule updating and adaptive preamble stretching.
Impact of Environmental Factor ση

Fig.17 gives improvements of PSR-augmented protocol in
different environments, represented by varying ση values as
the x axis. For all four protocols, Fig.17 shows similar trends
for their performance gains: efficiency improvements decline
with increasing ση . This is expected because more energy
is required for synchronization with tougher environments in
which clock skew varies dynamically with a larger ση .
Impact of ση Estimation Error

In practice, estimation errors for the environment factor ση

is unavoidable. We investigated the impact of underestimation
(by factors between 0.05∼0.8) and overestimation (by factors
between 1.6∼12.8) of ση to the rendezvous probability and
energy improvement as shown in Fig.18. Underestimation
of ση results in reduced rendezvous probability, especially
with low traffic load (e.g., 10−4/s denoted as square-marked
curves in the figure) and worse efficiency due to rendezvous
failures. Overestimation of ση does not affect the rendezvous
probability, however at the cost of extra energy for redundant
synchronization, which also results in worse efficiency.

VI. CONCLUSION

This paper presents PSR, a practical design for synchronous
communication rendezvous in low-duty-cycle wireless netwo-
rks. By leveraging the duty-cycle pattern of radio operations,
PSR enables “free” clock drift detection with normal traffic
in the network, which works together with an energy-driven
adaptive scheme for skew calibration. Test-bed and simulation
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evaluations demonstrate that PSR is practical, versatile, and
can be conveniently embedded in state-of-the-art low-duty-
cycle MAC protocols to greatly improve energy efficiency.
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APPENDIX

A.1 Proof for Eq.19. Given the expression of S̃B
A (t2) as Eq.18,

where φ(t2), φ(t0) and η(u) are independent, we can have

E[(S̃B
A (t2))

2] = E[X2] +
2σ2

φ

Δt2
(26)

where X =

∫ t2

t0

η(u)du−
1

Δt

∫ t2

t0

∫ t

t0

η(u)dudt (27)

E[X2] includes three terms addressed one by one in the following.
(i) For the left term of X in Eq.27, we have

E

[(∫ t2

t0

η(u)du

)2
]
=

∫ t2

t0

∫ t2

t0

E[η(u)η(v)]dudv = σ
2
η ·Δt

which is because E[η(u)η(v)] = δ(u− v) · σ2
η from Eq.2.

(ii) For the right term of X , let w(m) =
∫ t0+m

t0
η(u)du, then

E

[(∫ t2

t0

∫ t

t0

η(u)dudt

)2
]
=

∫ Δt

0

∫ Δt

0

E[w(m)w(n)]dmdn

w(m) is a standard Wiener Process[24], and has a covariance of
E[w(m)w(n)] = min(m,n) · σ2

η [21]. Thus, we have∫ Δt

0

∫ Δt

0

min(m,n) · σ2
ηdmdn =

Δt3

3
· σ

2
η

And the overall expectation is 1
Δt2

· Δt3

3
· σ2

η = σ2
η ·

Δt
3

(iii) For the cross-product term in X2, we use similar substitution:

E

[∫ t2

t0

η(u)du ·

∫ t2

t0

∫ t

t0

η(u)dudt

]
=

∫ Δt

0

E[w(Δt)w(m)]dm

where E[w(Δt)w(m)] = m · σ2
η since 0 ≤ m ≤ Δt. As a result∫ Δt

0

E[w(Δt)w(m)]dm =

∫ Δt

0

(m · σ
2
η)dm =

Δt2

2
· σ

2
η

So this term has an expectation of − 2
Δt
· (Δt2

2
· σ2

η) = −σ
2
η ·Δt.

Combining results from (i), (ii) and (iii) with Eq.26, we have

E[(S̃B
A (t2))

2] =
2σ2

φ

Δt2
+

Δt

3
· σ

2
η �

A.2 Given the expression of t̃A(Bactive) in PROOF 2., we have
E[t̃A(Bactive)

2] = t
2
· σ

2
ŜB
A

(t2)
+ σ

2
φ − 2t ·E[S̃B

A (t2)φ(t2)]

+E

[(∫ t2+t

t2

∫ t2+v

t2

η(u)dudv

)2
]

(28)

because S̃B
A (t2) and φ(t2) are correlated while both of them are

independent from η(u) during t.
Following the same method in A.1 (ii), the last term in Eq.28 is

E

[(∫ t2+t

t2

∫ t2+v

t2

η(u)dudv

)2
]
=

σ2
η

3
· t

3 (29)

For E[S̃B
A (t2)φ(t2)], apply S̃B

A (t2) in Eq.18, we have

E[S̃B
A (t2)φ(t2)] = E

[
−
φ2(t2)− φ(t0)φ(t2)

Δt

]
= −

σ2
φ

Δt
(30)

Combining above results, finally we have

E[t̃A(Bactive)
2] = σ

2
φ +

2σ2
φ

Δt
· t+ σ

2
ŜB
A

(t2)
· t

2 +
σ2
η

3
· t

3 (31)

which converges to Eq.21 in THEOREM 2. �
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