
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

2013

Cut-Through Switching Options in a MobilityFirst
Network with OpenFlow
Adrian Lara
University of Nebraska-Lincoln, alara@cse.unl.edu

Byrav Ramamurthy
University of Nebraska-Lincoln, bramamurthy2@unl.edu

Kiran Nagaraja
Rutgers University, nkiran@winlab.rutgers.edu

Aravind Krishnamoorthy
Rutgers University, aravind@winlab.rutgers.edu

Dipankar Raychaudhuri
Rutgers University, ray@winlab.rutgers.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Lara, Adrian; Ramamurthy, Byrav; Nagaraja, Kiran; Krishnamoorthy, Aravind; and Raychaudhuri, Dipankar, "Cut-Through Switching
Options in a MobilityFirst Network with OpenFlow" (2013). CSE Conference and Workshop Papers. 273.
http://digitalcommons.unl.edu/cseconfwork/273

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/33148019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/273?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F273&utm_medium=PDF&utm_campaign=PDFCoverPages


Cut-Through Switching Options in a MobilityFirst
Network with OpenFlow

Adrian Lara , Byrav Ramamurthy

University of Nebraska-Lincoln

{alara,byrav}@cse.unl.edu

Kiran Nagaraja, Aravind Krishnamoorthy , Dipankar Raychaudhuri

Rutgers University

{nkiran,aravind,ray}@winlab.rutgers.edu

Abstract—Mobile devices are expected to become the Internet’s
predominant technology. Current protocols such as TCP/IP were
not originally designed with mobility as a key consideration, and
therefore underperform under challenging mobile and wireless
conditions. MobilityFirst, a clean slate architecture proposal,
embraces several key concepts centered around secure identifiers
that inherently support mobility and trustworthiness as key
requirements of the network architecture. This includes a hop-
by-hop segmented data transport that allows late and dynamic
rebinding of endpoint addresses to support mobility.

While this provides critical gains in wireless segments, some
overheads are incurred even in stable segments such as in the
core. Bypassing layer 3 decisions in these cases, with lower layer
cut through forwarding, can improve said gains. In this work, we
introduce a general bypass capability within the MobilityFirst
architecture that could provide both better performance and
enable both individual and aggregate flow-level traffic control.
Furthermore, we present a detailed OpenFlow-based design to
bypass layer 3 routing in MobilityFirst, using layer 2 VLAN
tagging. Finally, we present a prototype that shows that it is
possible to use OpenFlow to create the bypass.

I. INTRODUCTION

Mobile devices are becoming dominant in current networks

and significant core architecture changes have been proposed

to support them. Current protocols such as TCP/IP were not

designed with mobility as a key design requirement. The infe-

rior performance of these protocols in highly mobile networks

and the increasing number of mobile devices has motivated

the research community to design Future Internet architectures

that consider mobility as a key design requirement [1], [2], [3].

MobilityFirst [1], [4] is a project funded by the NSF

FIA program that designs a mobility-centric architecture for

the future internet. MobilityFirst supports secure identifiers

that inherently support mobility and trustworthiness. These

mechanisms greatly enhance the support of mobile devices

in the network. In the MobilityFirst architecture, data is

transmitted between adjacent routers in a hop-by-hop manner.

Entire chunks of data are received at the next hop before being

forwarded again. Also, routing decisions are performed at

each hop to ensure proper delivery if a node has disconnected

and connected to another point of the network. However, this

process also increases the delay needed to send data in a hop

by hop manner [1].

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1040765.

Aravind Krishnamoorthy is currently working at Amazon. This work was
done when he was a graduate student at Rutgers University.

Certain segments of the network are stable and allow

exceptions to the storage and routing delays. If we know that

a node will remain connected to the same access point for

a period of time, we do not need to make routing decisions

at every hop between the source and the destination. Also,

segments within the core of the network are exempt of mobility

requirements. In scenarios like this, it is possible to bypass the

routing layer of MobilityFirst.

Bypassing MobilityFirst routers can improve the perfor-

mance of the network, because the delay of forwarding data

at a lower layer is smaller. Another advantage is that it

enables flow aggregation. Multiple data transmissions can be

encapsulated in the same flow. To illustrate the advantage

of flow aggregation, imagine a football stadium with 80,000

users accessing resources on the Internet. Without any bypass,

routing decisions will be made at each hop of the way between

the source and the destination for each of the 80,000 users.

If we assume that the users will remain in the stadium for a

period of time, we can bypass the routing layer. It is very likely

that the routes between the sources on the Internet and the

destinations in the stadium share more than one MobilityFirst

router. For those sections of the network that are shared, we

can forward all the data using the same rule (informally, we

can think of it as “Tag all traffic going to the stadium with

VLAN 1”. Once the data reaches the last hop of the bypass,

each packet is routed to its specific destination accordingly.

Therefore, using a small number of rules, we can forward the

traffic intended for all the users in the stadium.

There are several ways of achieving this bypass. It could

be done at layer 2 using VLAN tagging, or it could be done

at layer 1 using either OTN tagging or WDM tagging. For

any of the techniques used, there are challenges that have to

be considered. Mobility, scalability, efficiency and reliability

are four challenges that must be addressed by any bypassing

technique.

In this paper, we propose using OpenFlow [5] to bypass

the routing layer using VLAN tagging. OpenFlow is the most

commonly deployed Software Defined Networking technology

today. SDN decouples the data plane from the control plane in

a network switch, by migrating the latter to a software based

component. In an OpenFlow-based network, the controller can

dynamically update the forwarding rules of a network device.

The controller also has a centralized view of the network.

Because of these capabilities, an OpenFlow-based network

can be used to create, modify and delete layer 2 circuits to

IEEE ANTS 2013 1569805661

1

kasyma
Typewritten Text
Advanced Networks and Telecommuncations Systems (ANTS), 2013 IEEE International Conference onYear: 2013Pages: 1 - 6, DOI: 10.1109/ANTS.2013.6802877



bypass the routing layer. We have deployed MobilityFirst in

an OpenFlow-based network using the ORBIT testbed [6] to

experiment using OpenFlow in MobilityFirst.

In this manuscript, we begin by providing background in-

formation on MobilityFirst and an SDN-based implementation

of MobilityFirst in section 2. In section 3, we describe how

to bypass the L3 routing in MobilityFirst using L2 VLAN

switching. In section 4 we explain how OpenFlow can be used

to achieve the bypass using VLAN switching. In section 5, we

show early results and in section 6 we discuss the conclusions

and future work.

II. BACKGROUND

A. Overview of MobilityFirst

The MobilityFirst project proposes a clean slate redesign of

the Internet architecture [1]. This design aims at supporting

mobile devices and applications as the main elements of the

network. Cisco has predicted that by 2014, wireless devices

will account for more than 60% of IP traffic. The current IP

protocol was not designed for mobile applications and the

emergence of such traffic offers an opportunity to evaluate

what should be the purpose of functionality of the network

[1].

Figure 1 shows the main building blocks of the MobilityFirst

architecture. MobilityFirst provides three meta-level services:

the global name resolution service (GNRS), the name-based

services and the optional compute layer plug-ins. Mobility-

First also provides three core transport services: the hybrid

GUID/NA global routing service, the storage aware routing

(GSTAR) and the hop-by-hop transport [1]. In this background

section we focus on explaining how routing is performed in

MobilityFirst.

Fig. 1. Basic Protocol Building Blocks in MobilityFirst. Source: Raychaud-
huri et al. [1]

1) Storage-assisted segmented data transport: Mobility-

First uses generalized storage-aware routing (GSTAR) [7]. In

Fig. 1, suppose that a host wishes to send data to John’s laptop.

First the host should acquire Johns GUID. Then a packet is

sent with the GUID as the destination. A MobilityFirst node

resolves the GUID using the GNRS and obtains a list of

NAs where the destination is connected to the network. The

router sends a packet containing a destination GUID, a service

identifier and a list of NAs. At each hop, a router will decide

if the NA is within its reach or if the data must be forwarded

to another router.

Fig. 2. Hybrid GUID/NA packet headers in MobilityFirst. Source: Ray-
chaudhuri et al. [1]

MobilityFirst uses a hybrid name/address based routing to

achieve scalability. The number of GUID objects is expected to

be in the order of billions, but network addresses are expected

in the order of millions. By mapping GUIDs to NAs, routing

is greatly simplified [1]. Figure 2 shows how GUIDs and NAs

are used during the routing process.

Another important feature of MobilityFirst is that the trans-

mission of data in a hop-by-hop manner to support mobility.

In this architecture, the entire file is received at each hop

before transmitting it to the next one. Using this approach,

it is possible to do storage-aware routing and late binding [1].

B. Software defined networking implementation of Mobility-
First

Software Defined Networking consists of decoupling the

control and data plane of a network device. A software-

based entity is responsible for the control plane. OpenFlow

[8] is an SDN protocol that allows software applications to

manipulate the flow table of a network switch. In this section,

we briefly describe an SDN implementation of MobilityFirst

using OpenFlow.

In a MobilityFirst network, data is split into entities called

“chunks” before being transmitted. The size of a chunk can be

anything ranging from MTU size of the link to large values like

64 MB or 128 MB. Each chunk is then made up of several

packets (each packet being of the MTU size, 1500 bytes in

case of Ethernet link). Suppose host1 wants to send a 5 MB

2



Fig. 3. MobilityFirst SDN architecture showing forwarding functions and
in-network storage and compute service components.

file to host2. First, it splits the file into chunks (let’s assume

each chunk is 1 MB). So host1 now has 5 chunks, and each

of those chunks has approximately 700 packets (of 1500 bytes

each). When host1 transmits each chunk to MFRouter1, only

the first packet of each chunk has the routing header (as in

the destination GUID, service ID, etc.).

In our SDN implementation of MobilityFirst, the network

controller is responsible for finding a path to transmit all the

chunks from the source to the destination. When the first

packet of each hop arrives to a switch, there is no forwarding

rule for it. Therefore, the controller must perform several tasks.

First, it must use the destination GUID of the packet to find

the destination in the network. Second, it must compute which

switch is the next hop of the path. Third, it must push a rule

into the switch so that all the data of that chunk is forwarded

to the next hop. This process is repeated for each chunk of

data.

III. BYPASSING L3 ROUTING

In this section we discuss how to bypass layer 3 routing in

MobilityFirst. First we describe the challenges of a bypassing

technique. Next, we explain how to bypass the routing layer

using layer 2 VLAN switching.

A. Challenges and design goals of a bypassing technique

Several challenges must be considered to bypass the routing

layer in MobilityFirst: when to setup circuits and for how long;

how many circuits are needed and their granularities and how

to implement automated circuit creation in the MobilityFirst

context.

• Mobility: It is important to keep in mind that nodes

are assumed to be mobile. A circuit reservation solution

cannot assume that a node will remain at the same

location.

• Efficiency: The overhead of setting up circuits should

be low and the circuits should significantly improve the

performance of end-to-end deliveries.

• Scalability: The MobilityFirst architecture should be able

to support a large number of users. The delay of setting

up circuits must remain low for a large number of users

and the number of circuits reserved should be able to

scale as well.

• Reliability: A successful delivery must be ensured, even

if a circuit exists and the node location changes or the

link fails.

Fig. 4. Example of a bypass in MobilityFirst.

B. Bypassing L3 using Layer 2 VLAN switching

One way to bypass Layer 3 routing is to create Layer 2

circuits using VLAN tags. Recall that MobilityFirst works on a

hop-by-hop basis. A MobilityFirst router sends the data to the

next router and this is repeated until the destination is reached.

Using this bypassing technique, a circuit can be created at L2

between the host and the destination. In order to do this, a path

must first be found at the first hop to the destination. Next, a

forwarding rule must be added in all forwarding elements so

that the traffic is automatically forwarded to the next hop. To

identify each flow, a VLAN tag can be used.

Figure 4 shows an example of a bypass. One source is

attached to the MobilityFirst router 1 and another one is

attached to the router 2. Since all destinations are attached

to router 5, then a bypass between routers 3 and 5 can be

created. Once the bypass is pushed, no routing operation is

performed at router 4. The way to create this bypass is to

add a forwarding rule to router 4 that forwards all traffic with

a given VLAN from router 3 to router 5. In router 3, when

we forward packets belonging to the bypassed flow (source

is S1 or S2 and destination is D1 or D2), we tag them with

the same VLAN number. When the data reaches router 5,

routing decisions are taken based on the destination GUID of

each packet. This ensures that different routes are chosen for

destinations D1 and D2.

This design enables flow aggregation. In Fig. 4, a single rule

in router 4 can be used to send data to multiple destinations.

In any scenario where many destination nodes are connected

to the same router, this feature is key to ensure the scalability

of the system. In a more realistic topology, it is likely that

end users are connected to edge routers and these devices are

3



interconnected through other devices across the network. Flow

aggregation enables connecting multiple users connected to the

same edge routers using a small number of rules. By reducing

the number of rules needed at each hop, we significantly

increase the scalability of the network.

As discussed earlier, this solution should also take mobility

into consideration. If a circuit exists and a node changes the

location, the delivery must still be guaranteed. If a bypass is

in place and a node disconnects from the network, we must

ensure that the current chunk of data is delivered to a Mo-

bilityFirst router that will find a new route. Also, subsequent

chunks of data should not be sent through the bypass. In the

example shown in Fig. 4, suppose the destination node D2

disconnects from router 5 and reconnects to router 4. When

the data reaches router 5, it is still possible to locate node D2.

By querying the GNRS about the location of the GUID of D2,

we can learn that the location of the node has changed. Next,

we can forward the packets to the next hop and we can also

remove node D2 from the bypass.

This solution should be efficient as well. There is a trade-

off between the time and resources that it takes to create a

circuit to bypass L3 and the delay required at L3 routing. If

a circuit is to be created, the time it takes to set it up should

be significantly shorter than the time saved by bypassing L3.

Also, the controller should require an acceptable amount of

resources to detect when and how to create circuits. If the

controller’s performance is significantly decreased because of

this, then the solution is not acceptable.

Finally, reliability must be taken into consideration. As

we mentioned above, the delivery of the message must be

guaranteed. If one of the links that are part of the bypass path

fails, the data must be forwarded to a MobilityFirst router and

the bypass must be deleted.

Another way to implement this traffic engineering technique

would be to use multi protocol label switching (MPLS) [9].

Using MPLS, the ingress edge router computes the route from

source to destination, communicates this route to all the routers

involved and inserts a label into each packet. Successive hops

can then forward packets based on the label. Note that this

technique does not completely bypass the routing layer, as

packets must still be processed by routers. In our approach,

there is no need for the packets to be processed at the routing

layer and all packets can be forwarded by simple L2 switches.

C. Deciding when to create a bypass

One of the major challenges of this implementation is

deciding when to create a bypass. We envision two alter-

natives: proactive and reactive bypass creation. A proactive

implementation is easier, but it requires that the nodes provide

previous information. A MobilityFirst node could notify that

a given number of bytes will be transferred to a destination. If

this information is known, the controller can create a Layer 2

circuit between the sender and the receiver to ensure a faster

communication. The advantage of a proactive approach is that

the rules can be pushed in advance and the network controller

does not need to make dynamic changes once the data starts

flowing. However, a proactive solution only works when the

information of the data transfer is known in advance, which

is not always the case.

When no previous information is available, the bypass must

be created in a reactive manner. In this case, the controller

must dynamically identify for which flows to create a bypass.

One possible approach is for the controller to store information

about the location of devices. If multiple flows for a single

destination are repeatedly forwarded to the same hop, the

controller can assume that the node will not change the

location for a period of time. Then, a bypass can be created

for data sent to that device. The advantage of this approach

is that it is completely dynamic and no previous information

is required about the characteristics of the communication.

On the other hand, the controller has to do more processing

and this increases the delay. Also, the controller must store

additional information and this can compromise the scalability

of the solution.

D. Deciding when to remove a bypass

We also address how to remove a bypass. Once again,

this can be done proactively or reactively. If a bypass was

proactively created and we have information regarding when

the data transfer will end, then the controller can automatically

remove the bypass at a given time. However, a reactive solution

must exist at any time, in case a disconnection happens. The

controller can monitor which nodes get disconnected from

the network. For each disconnected device, a clean way to

remove the bypass is to maintain the flow rules for the current

chunk, so that all the data of that chunk reaches the destination

network device. However, for the next chunk, the standard data

processing is applied and a hop-by-hop route is used.

IV. IMPLEMENTATION USING OPENFLOW

In this section we show how OpenFlow can be used to

bypass L3 routing using L2 VLAN switching. We discuss how

to push a circuit using OpenFlow and we discuss how we

address the challenges mentioned in the previous section.

A. Mapping chunks to VLANs

We first describe some technical details of our OpenFlow-

based implementation of MobilityFirst. In MobilityFirst, data

is split in chunks and packets include information to know

which chunk they belong to. For each chunk, the first packet is

forwarded to the controller and a flow is pushed into the switch

so that all the remaining packets of that chunk are forwarded

to the next hop. To make this compatible with OpenFlow, the

routing header is introduced in the L3 Source IP Address field.

The controller can then parse the data of the first packet and

use the routing information to compute where to forward all

the packets of this chunk. When the next destination has been

decided, a new flow rule is pushed to forward all the packets

in this chunk to the next hop. To match all packets to the

inserted rule, the hop ID is used as a VLAN tag. This hop ID

identifies all packets belonging to one chunk across the link.

Coming back to the example, for each of the five chunks, all

4



the 700 packets will have the same hop ID and this hop ID

is also inserted as a VLAN tag in all the packets. If we use

incremental hop IDs, then in the above scenario, all packets in

chunk 1 will have hop ID 1, those in chunk 2 will have hop

ID 2 and so on. This helps us identify which chunk a specific

packet belongs to (since the packets themselves do not have

any such information, except for the first packet of the chunk).

The key to achieve the bypass is to push a flow rule into all

the switches between the source and the destination instead

of only for one hop. In an OpenFlow-based network, the

controller is aware of the topology. Thus, an end-to-end path

can be found and all forwarding devices can be reached from

the controller to push a new flow rule. To find a path between

the host and the destination, we need to know the Layer 2

MAC address and the input and output ports at each hop.

Next, specific flow entry rules can be pushed at each switch.

The VLAN tag is the same for all the switches, but the source

and destination MAC addresses and ports are different.

B. Floodlight controller

In the current OpenFlow-based deployment of Mobility-

First, the entire route between the host and the destination

is computed using the service provided by Floodlight. We

also implemented a mapper between GUID numbers and mac

addresses. Given a GUID, the controller can find the MAC

address associated to that node. Therefore, the information on

the entire path is available. To achieve a bypass, we collect

for each hop the following information: VLAN id, destination

GUID, in-port and out-port. We push a flow rule into each

switch using the proper port values and keeping the same

VLAN id and destination GUID. As a result, all the packets

of the current chunk are forwarded at layer 2 until they reach

the final hop.

C. Discussion: Challenges addressed

We mentioned four key challenges for the bypassing tech-

nique: mobility, efficiency, scalability, reliability. Next we

discuss how our solution addresses those points and what are

the challenges that must still be overcome.

Our solution addresses mobility by routing packets at the

end of the bypass. If a bypass goes from router 3 to router 5,

then the data will be received at router 5 and a route will be

computed for the GUID or NA. If a node has connected to

a different location of the network, the controller can query

the GNRS for the new NA and find a new route. We do not

expect this scenario to occur on a regular basis, because a

bypass should be pushed only when a node is not expected

to move. However, if the device does move, a new route can

always be found. One challenge that remains is to actually be

able to push bypasses only when the nodes will remain in the

same location. Otherwise, the delay introduced can become

significant.

In terms of efficiency, OpenFlow is a convenient approach

to dynamically manipulate forwarding rules. The application

running on the controller can proactively or reactively modify

the flow table of one or more switches. Therefore, creating

or deleting a bypass can be done efficiently. If a bypass is

created proactively, the controller only needs to act at a specific

time. If the bypass is to be created reactively, the controller

must incur a delay to process the first packet of each chunk

to decide if a bypass is needed or not. We expect this delay

to be acceptable, as only the first packet of a chunk must be

processed. However, an interesting scenario occurs when there

is a failure during the transmission and the distance between

the start and end of the bypass is far. In this case, the time

to send the contents again can introduce an important delay.

This raises the question of whether to bypass a large number

of hops or if it is more convenient to keep the number of hops

small.

Regarding scalability, we discussed earlier how flow aggre-

gation can help the network scale. Using OpenFlow, we can

easily update any flow entry of a device. If a bypass already

exists, the controller can easily modify the rule so that the

bypass includes a new source or a new destination. If a bypass

must be created, it can be done efficiently too. Finally, the fact

that the controller has a centralized view of the network allows

the application to be aware of changes in the topology fairly

quickly. This simplifies updating a bypass when necessary.

On the other hand, the limited number of VLANs and the

size of the flow table are known limitations in an OpenFlow-

based network. It is important to evaluate if these limitations

significantly impact the scalability of this deployment.

Finally, our solution also addresses reliability because the

architecture is still storage-aware. In MobilityFirst, the data is

stored at each hop before being transmitted. If the controller

detects that the data is not properly delivered to the destination

router at the end of the bypass, it can use a hop-by-hop

delivery. It is important to evaluate how often does this occur

in real-life scenarios, in order to measure the impact on the

performance of the network.

D. Discussion: Centralized control plane

One key feature of OpenFlow-based networks is that the

control plane is centralized. The advantage of a centralized

control plane is that the controller has a network-wide knowl-

edge of the network. This simplifies reacting to failures and

creating new paths when necessary. The OpenFlow protocol

includes features that allow a controller to listen to switch

events and thus learning about broken links and connected

devices. The main drawback of a centralized control plane is

the scalability challenge, as well as becoming a single point

of failure. To overcome this, distributed control plane archi-

tectures such as HyperFlow [10] and ONOS (Open Network

Operating System) [11] have been proposed.

V. EXPERIMENTAL RESULTS

In this section, we experiment with a proactive bypass

creation and removal, and we present our results.

A. Experimental setup

In order to demonstrate the feasibility of the bypass, we

simulate a MobilityFirst network using Mininet [12]. We

5



TABLE I
ROUND TRIP TIME IN MILLISECONDS WITH AND WITHOUT A BYPASS.

First packet Rest of the packets (average)
With bypass 0.091 0.09

Without bypass 58.4 0.15

Fig. 5. Topology of the experiment.

deploy a linear topology with four switches. We measure the

rountrip time between hosts 1 and 2 when a bypass exists and

when it does not. To do this, we use the ping tool provided by

Mininet. For all our experiments, we use one single chunk of

data (to avoid sending VLAN tagged packets from Mininet).

We send 30 ICMP requests from host 1 to host 2.

In the first experiment, we measure the round trip time of

a ping request between host 1 and host 2 when no bypass is

pushed. In this scenario, all the data is sent to each hop. At

each hop, no rule exists in the switch and the first packet is

sent to the controller. The controller performs layer 3 routing

and pushes a rule into the flow table. The rest of the packets

are matched to this rule and are forwarded at layer 2.

In the second experiment, we measure the round trip time of

a ping request between host 1 and host 2 when two bypasses

are proactively pushed. One bypass is from host 1 to host 2 and

the second one is from host 2 to host 1. In this scenario, the

controller does not receive any packet in, because all packets

are matched to rules that were proactively pushed.

B. Results

Table I shows the results with and without a bypass. As

expected, when a bypass does not exist, the first ping request

encounters a significant delay (58 ms) during the round trip

time from host 1 to host 2. In average, the rest of packets are

forwarded in under 1ms. The goal of these experiments is to

demonstrate how the bypass if feasible and how it significantly

reduces the forwarding time of the first packet. More complete

experiments in the ORBIT testbed to evaluate the performance

and scalability of the solution are left as future work.

Notice that this experiment is only for one chunk of data.

If multiple chunks were sent, the first packet of each chunk

would face a similar delay. This shows that creating a bypass

significantly reduces the transmission time of the first packet of

a chunk. The results also show that, for the remaining packets

of a chunk, the round trip times are similar with or without a

bypass.

VI. CONCLUSION AND FUTURE WORK

This paper discusses how to bypass layer 3 routing in

MobilityFirst. The advantage of such a bypass is to eliminate

the delay introduced at that layer. We discussed how to use

OpenFlow to bypass layer 3 routing in MobilityFirst using

layer 2 VLAN tagging. Instead of pushing a flow rule to one

switch only (as it would be done to ensure a hop-by-hop

communication), we push rules into all the switches of the

path between the source and the destination. By doing this, we

ensure that all data is forwarded at layer 2. We also discussed

how this technique enables flow aggregation. By managing

several data transfers using a small number of forwarding

rules, we increase the scalability of the network.

Our experimental results, obtained using Mininet, show

that the first packet of a chunk encounters significant delays

when there is no bypass. When a bypass exists, all packets

are transmitted in a much smaller time. These results are a

proof-of-concept that show that OpenFlow can be used to

bypass the routing layer using VLAN tagging. Future work

includes experimenting on the OpenFlow-based version of

MobilityFirst available on ORBIT. These experiments will

allow us to test the performance issues and to evaluate the

scalability of the network. We identified a series of challenges

that must still be considered, such as the impact of mobility

or the devices and failures during the transmission when a

bypass exists. We intend to work on these evaluations for more

realistic scenarios.

REFERENCES

[1] D. Raychaudhuri, K. Nagaraja, A. Venkataramani, “MobilityFirst: A
Robust and Trustworthy Mobility-Centric Architecture for the Future
Internet,” in IEEE Computer Communications Workshop, October 2010.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” in Proc. ACM
SIGCOMM, August 2008.

[4] “MobilityFirst,” http://mobilityfirst.winlab.rutgers.edu/.
[5] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using

openflow: A survey,” Communications Surveys Tutorials, IEEE, vol. PP,
no. 99, pp. 1–20, 2013.

[6] OpenFlow Experimentation in ORBIT. [Online]. Available: http:
//www.orbit-lab.org/wiki/Documentation/OpenFlow

[7] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: Generalized
storage-aware routing for mobilityfirst in the future mobile internet,” in
Proc. of MobiArch. ACM, 2011, pp. 19–24.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[9] Umesh Lakshman and Lancy Lobo, “MPLS Traffic Engineering,” http:
//www.ciscopress.com/articles/article.asp?p=426640.

[10] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed control
plane for OpenFlow,” in Proceedings of the 2010 Internet Network
Management Conference on Research on Enterprise Networking, August
2010.

[11] On.Lab, “OpenSource SDN Stack,” http://onlab.us/tools.html.
[12] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the Ninth
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

6


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2013

	Cut-Through Switching Options in a MobilityFirst Network with OpenFlow
	Adrian Lara
	Byrav Ramamurthy
	Kiran Nagaraja
	Aravind Krishnamoorthy
	Dipankar Raychaudhuri

	untitled

