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Abstract—Scientific workflows are a useful tool for managing 
large and complex computational tasks. Due to its intensive 
resource requirements, the scientific workflows are often 
executed on distributed platforms, including campus clusters, 
grids and clouds. In this paper we build a scientific workflow 
for blast2cap3, the protein-guided assembly, using the Pegasus 
Workflow Management System (Pegasus WMS). The 
modularity of blast2cap3 allows us to decompose the existing 
serial approach on multiple tasks, some of which can be run in 
parallel. Afterwards, this workflow is deployed on two 
distributed execution platforms: Sandhills, the University of 
Nebraska Campus Cluster, and the Open Science Grid (OSG). 
We compare and evaluate the performance of the built 
workflow for the both platforms. Furthermore, we also 
investigate the influence of the number of clusters of 
transcripts in the blast2cap3 workflow over the total running 
time. The performed experiments show that the Pegasus WMS 
implementation of blast2cap3 significantly reduces the running 
time compared to the current serial implementation of 
blast2cap3 for more than 95 %. Although OSG provides more 
computational resources than Sandhills, our workflow 
experimental runs have better running time on Sandhills. 
Moreover, the selection of 300 clusters of transcripts gives the 
optimum performance with the resources allocated from 
Sandhills. 

Keywords—scientific workflow; pegasus workflow 
management system; transcriptome assembly; protein-guided 
assembly; blast2cap3; campus cluster; open science grid 

I. INTRODUCTION 
The advances in life sciences and information 

technologies have led to proliferation of scientific data that 
needs to be stored and analyzed. The analysis of this so 
called “big data” is done by using a complex set of multitude 
of software tools. A sequential series of these tools is known 
as an analysis pipeline [29]. The “big data” is too large to be 
processed by using only local computational resources. A 
possible approach to this problem is to make better use of 

multiple distributed resources including multi-core 
computers. 

Scientists use various workflow systems to conduct their 
research modularly. This indicates that the whole scientific 
workflow can be decomposed into multiple sub-workflows 
that can be executed in parallel on distributed resources. 
Each workflow is composed of computational tasks, the 
order of execution of which is determined by the 
dependencies among the tasks [1]. The advantages of 
scientific workflows include automated complex analysis, 
real-time results and improved time performance that allow 
scientists to easily design, execute, debug, modify and re-run 
their experiments [17]. 

Over the past decade, several scientific workflows have 
been created and introduced. Pegasus Workflow 
Management System (Pegasus WMS) automatically maps 
high-level scientific workflows organized as directed acyclic 
graph (DAG) onto available distributed resources [2]. 
DAGMan (Directed Acyclic Graph Manager) is a meta-
scheduler that submits jobs to Condor [4] in an order defined 
in DAG, and processes the results afterwards [3]. Taverna 
[5] is an open source workflow system that graphically 
connects bioinformatics web services together into a 
coherent flow. Kepler [6] also has a visual interface and 
separates the structure of the workflow model from its model 
of computation. The number of applications using scientific 
workflow systems has been steadily increasing [7]. 

The resources required by scientific workflows may 
exceed the capabilities of the local computational resources. 
Therefore, the scientific workflows are usually executed on 
distributed platforms, such as campus clusters or grids. Grids 
such as Open Science Grid (OSG) [8] and XSEDE [9] allow 
distributed computing where the computational resources are 
spread on a geographically remote location. Beside the 
cluster and grid execution platforms, lately the scientists are 
analyzing the benefits of using clouds for these scientific 
workflows. Cloud computing platforms like the commercial 
Amazon Elastic Compute Cloud [10] or the academic 
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FutureGrid [11] provide rentable computational and storage 
resources over the Internet. Despite the advantages and 
disadvantages of clusters, grids and clouds [30], the 
execution of scientific workflows deals with different 
challenges depending on the chosen computational platform. 

In this paper we build a scientific workflow for 
blast2cap3, the protein-guided assembly, using Pegasus 
WMS. We chose two execution platforms for this workflow 
that represent the campus cluster, Sandhills, and the Open 
Science Grid. Furthermore, we compare the running time 
and used resources for the both platforms when the workflow 
is executed serially and parallel with alternating number of 
tasks. 

This paper is organized as follows. In Section 2 we 
describe blast2cap3, the protein-guided assembly. Pegasus 
Workflow Management System is described briefly in 
Section 3. Section 4 includes overview of the used execution 
platforms, the campus cluster and the Open Science Grid. 
The implementation of the experiments used in this paper is 
presented in Section 5. In Section 6 we evaluate the built 
workflow and in Section 7 we draw conclusions based on 
our results and performed evaluation. 

II. BLAST2CAP3: PROTEIN-GUIDED ASSEMBLY 
Gene expression and transcriptome analysis are currently 

one of the main focuses of research for a great number of 
biologists and scientists. However, the assembly of raw 
sequence data to obtain a draft transcriptome of an organism 
is a complex multi-stage process usually composed of 
preprocessing, assembling, and post-processing. Each of 
these stages includes multiple steps such as data cleaning, 
contaminant removal, error correction, de novo assembly, 
redundancy reduction, and assembly validation. An assembly 
pipeline is used to simplify the entire assembly process by 
automating the most steps of the pipeline for producing 
correct transcripts [15]. A general transcriptome assembly 
pipeline with some common steps and the tools used for 
those steps is shown on Fig. 1. 

After the data is cleaned and filtered in the preprocessing 
stage, the next step is to generate transcriptome assembly 
from the filtered reads. Multiple approaches used for 
assembling the filtered reads [12] produce high redundancy 
of the resulting transcripts. Therefore, these transcripts need 
to be merged into larger ones in order to remove redundancy. 
Overlap-based assembly program CAP3 is used to merge 
transcripts based on the overlapping region with specified 
identity [13]. However, the number of transcripts that need to 
be merged sometimes overwhelms the memory and time 
limits of CAP3. Additionally, CAP3 merges transcripts 
based on only nucleotide similarity that can lead to incorrect 
results because most of the generated transcripts code for a 
protein. Hence, protein similarity should be considered when 
the transcripts are merged. 

Blast2cap3 [14] is a protein-guided assembly approach 
that first clusters the transcripts based on similarity to a 
common protein and then passes each cluster to CAP3. The 
recent use of blast2cap3 on the wheat transcriptome 
assembly shows that blast2cap3 generates fewer artificially 
fused sequences compared to assembling the entire dataset 

with CAP3. Moreover, it also reduces the total number of 
transcripts by 8-9% [15]. 

 

 
Figure 1. General transcriptome assembly pipeline with some common 

steps and the tools used for those steps. 
 
Before running blast2cap3, the assembled transcripts are 

aligned with protein datasets closely related to the organism 
for which the transcripts are generated. BLASTX [16] is 
used for this alignment. Afterwards, transcripts sharing a 
common protein hit are merged using CAP3. Therefore, 
blast2cap3 uses the assembled transcripts and the BLASTX 
alignments as an input files. 

III. PEGASUS WORKFLOW MANAGEMENT SYSTEM 
Pegasus Workflow Management System (Pegasus WMS) 

stands for Planning for Execution in Grids. Pegasus WMS is 
a framework that automatically maps high-level scientific 
workflows organized as directed acyclic graph (DAG) onto 
wide range of execution platforms, including clusters, grids, 
and clouds [2]. Pegasus receives an abstract workflow and 
tries to simplify it before mapping it into a concrete 
workflow. The abstract workflow of Pegasus contains 
information and description of all executable files 
(transformations) and logical names of the input files used by 
the workflow. On the other hand, the concrete workflow 
specifies the location of the data and the execution platform 
[20]. The concrete workflow is then submitted to Condor’s 
DAGMan meta-scheduler [3] for execution [18]. The high-
level of abstraction of Pegasus allows scientists to ignore 
low-level configurations required by the middleware and the 
underlying execution platform [20]. 

DAG-based workflows use nodes to define the tasks and 
use edges to denote the task dependencies. In DAG-based 
workflows, the structure can be characterized as sequence 
and parallel [17]. The sequence structure is defined as an 
ordered series of tasks, where one task starts after the 
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previous task is completed. The parallel structure allows 
concurrently execution of tasks. Pegasus also allows 
clustering of small tasks into larger clusters that are 
scheduled and executed to the same remote site. This setting 
allows improvement of the performance and reducing the 
remote execution overheads [19]. 

Pegasus uses DAX (directed acyclic graph in XML) files 
to specify an abstract workflow. The DAX file contains 
syntax for defining jobs, arguments, input and output files, 
and dependencies between the various tasks. This format is 
shared by many workflow tools. The DAX file can be 
created manually, or by using the Pegasus API. Pegasus uses 
Java, Perl, or Python libraries for writing DAX generators 
[19]. The abstract DAX is then mapped to one or more 
execution sites. This step is known as the planning stage. 

Pegasus comes with a set of useful command-line tools 
that help users to submit and analyze the workflows, and 
generate useful statistics and plots about the workflow 
performance, running time, execution results, machines used, 
as well as for succeeded and failed tasks [19]. Pegasus-plan 
is used to plan the workflow, while pegasus-run is used to 
submit the workflow to DAGMan. After the workflow is 
submitted, it can be monitored using the pegasus-status 
command that shows information about the running jobs and 
the percentage of finished jobs. The whole workflow and the 
failed jobs can be debugged using the pegasus-analyzer tool. 
After the workflow execution ends, the resulting data can be 
summarized using pegasus-statistics and pegasus-plots. 

Pegasus is used in a number of large scientific 
applications built for physics, astronomy, biology, 
earthquake sciences, ocean sciences, limnology and many 
other domains [20][21][22][23]. Pegasus can use both single 
systems and heterogeneous set of resources for executing the 
scientific workflows. The used resources can be distributed 
across laptops, campus clusters, grids and cloud platforms. 
Furthermore, Pegasus can support workflows ranging from a 
few computational tasks to a few millions. 

Scalability and handling large sets of data and 
computations, portability and ease of use are just part of the 
advantages that Pegasus has. In case of a job or data transfer 
failure, Pegasus can retry the job or the entire workflow 
given number of times. If the job fails again, then Pegasus 
generates a rescue workflow that contains information of the 
work that remains to be done such that it can be modified 
and resubmitted later. Therefore, Pegasus has capabilities for 
provenance tracking, execution monitoring and management, 
and error recovery. 

IV. EXECUTION PLATFORMS 
The resources that these scientific workflows require can 

exceed the capabilities of the local computational resources. 
Therefore, the scientific workflows are usually executed on 
distributed platforms, such as campus clusters, grids or 
clouds. These platforms are usually a set of heterogeneous 
hosts that are connected via a network. The host that is able 
to schedule remote jobs and has the appropriate software for 
execution of these jobs is known as a submit host. The 
submit host also maintains an information about the remote 

hosts and the software installed there, and serves for 
debugging purposes. 

A. University of Nebraska Campus Cluster 
A campus cluster is a campus wide resource in a 

university that allows faculty and students to use the 
resources of the cluster for their computational needs. 

Campus clusters may not be highly I/O friendly. 
Moreover, campus clusters are not instantly available, and 
thus there is a long waiting time to access nodes with 
required memory and time resources. 

Sandhills is one of the High Performance Computing 
(HPC) Clusters at the University of Nebraska-Lincoln 
Holland Computing Center (HCC) [24]. Sandhills was 
acquired by combining grants from various research groups 
at University of Nebraska. It is used by faculty and students 
in disciplines like bioinformatics, nanoscale chemistry, 
subatomic physics, meteorology, genomics, crashworthiness 
and artificial intelligence. Sandhills was constructed in 2011 
and it has 1,440 AMD cores housed in a total of 44 nodes. 
Each node has storage of approximately 1.5 TB. Sandhills is 
a heterogeneous cluster in terms of individual node 
resources. 

Every new user account of HCC is required to be 
associated with a faculty or research group. The allocation of 
computing resources at HCC is done on group basis where 
the group owner has ownership of all files in the group 
account. 

B. Open Science Grid (OSG) 
The Open Science Grid (OSG) is a national consortium 

of geographically distributed academic institutions and 
laboratories that provide hundreds computing and storage 
resources to the OSG users.  

The OSG is organized into Virtual Organizations (VO’s) 
which include not only the people from an academic 
community, but also their services, software and policies 
[25]. OSG does not own any computing or storage resources, 
but allows users to use the resources contributed by the other 
members of the OSG and VO’s.  

Every new user of OSG first needs to apply for an OSG 
certificate. This step helps sites identify users and their 
VO’s. Once the certificate is verified and approved, the user 
can import it in the Web Browser. Furthermore, the user 
requests membership in the community group in which the 
user belongs by using VOMS (Virtual Organization 
Membership Service). After this request for registration is 
approved by one of the community VOMS admins, the user 
can use the OSG resources. 

V. EXPERIMENTS  
In this paper, our objective is to evaluate the performance 

of a built scientific workflow for protein-guided assembly 
on a campus cluster and OSG. 

The experiment for this paper includes creating and 
running a scientific workflow for blast2cap3, the protein-
guided assembly. The workflow is run on two different 
execution platforms: Sandhills, the campus cluster, and the 
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OSG. Furthermore, the influence of the number of clusters 
of transcripts in blast2cap3 over the execution time is also 
investigated and compared. 

A. Experimental Data 
For this experiment, we created an assembly pipeline 

with the steps shown on Fig. 1 using diploid wheat Triticum 
urartu dataset. The NCBI BioProject PRJNA191053 [26] 
contains all the sequence libraries submitted by UCD group. 

The description given on NCBI for this library 
construction and sequencing is as follows: “The sequencing 
libraries were prepared from shoot and root tissues 
harvested from 2-3 week old seedlings. All sequencing was 
carried out on the Illumina HiSeq platform. All libraries 
were sequenced using the 100 bp paired-end protocol on 
four lanes of Illumina HiSeq2000 machines at the University 
of California Davis (UCD) Genome Center. Base quality 
calls and demultiplexing was done with the CASAVA 1.8.0 
pipeline (Illumina).” [26]. 

The generated assembly after transcripts merging and 
redundancy removal, “transcripts.fasta”, is 404 MB big and 
contains 236,529 transcripts. In order to use blast2cap3, the 
protein-guided assembly, the next step is to align the 
transcripts with protein datasets closely related to the wheat 
[15] using BLASTX. The BLASTX tabular output, 
“alignments.out”, is 155 MB big and contains 1,717,454 
protein hits. 

B. Current Implementation of blast2cap3 
Blast2cap3, the protein-guided assembly, is a Python 

script written by Vince Buffalo [14]. Beside Python’s 
modules [27], blast2cap3 also uses Biopython, a set of 
available tools for biological computation written in Python 
[28], and CAP3 [13].  

The current implementation of blast2cap3 supports only 
serial execution. This means that first one cluster of similar 
transcripts is created and then is sent to CAP3. After the 
CAP3 program terminates, this process is repeated 
consecutively for all possible clusters of transcripts. 

When the existing implementation of blast2cap3 was run 
on Sandhills for the given input files “transcripts.fasta” and 
“alignments.out” with size of 404 MB and 155 MB 
respectively, the running time was 100 hours. Considering 
larger input files and datasets, the time requirements and 
complexity of running the protein-guided assembly grow.  

Each cluster of transcripts that is generated from 
blast2cap3 and uses CAP3 is an individual process. This 
means that as long as the final results from CAP3 for each 
cluster are concatenated at the end, the transcripts within the 
cluster can be generated and merged independently. 

Therefore, an additional approach to blast2cap3 
execution should be considered that requires not just a single 
computer, but multiple computational nodes that will use the 
modularity of blast2cap3 execution.  

C. Pegasus Workflow Management System Implementation 
of blast2cap3 for Sandhills 
The modularity of blast2cap3 allows us to decompose 

the existing approach on multiple tasks, some of which can 

be run in parallel. Therefore, this protein-guided assembly 
can be structured into a scientific workflow using the 
Pegasus Workflow Management System. The main 
reduction in the running time of the current implementation 
of blast2cap3 is expected to be reached when the merging of 
transcripts belonging in a cluster is done in parallel for all 
clusters. 

The Pegasus WMS implementation of blast2cap3 for 
Sandhills is shown on Fig. 2. 

For this workflow, we first create lists of both input files, 
“transcripts.fasta” and “alignments.out”, respectively. These 
two tasks are independent of each other, and can be run at 
the same time. Furthermore, in order to create multiple 
clusters of transcripts, the split() task is used to divide the big 
“alignments.out” file on “n” smaller files. For the purpose of 
this paper, we use different values of “n”, such as 10, 100, 
300, and 500. 

The number of tasks that merge the transcripts within a 
cluster depends on “n”, the number of clusters. From the 
workflow shown on Fig. 2, we can notice that this task, 
run_cap3(), uses two input files, “transcripts_dict.txt” and 
“protein_n.txt”. 

After “n” output files are generated from run_cap3(), the 
next step is to merge all these joined transcripts into one file. 
Knowing the transcripts that are joined helps us to combine 
all transcripts that are not joined into a new file. 

The DAG structure of the workflow is helpful to define 
dependencies, and execute a task if and only if its 
predecessor tasks have finished. 

D. Pegasus Workflow Management System Implementation 
of blast2cap3 for OSG 

The Pegasus WMS implementation of blast2cap3 for 
OSG is shown on Fig. 3. The workflow and the logic behind 
both execution platforms differ only in the way how certain 
tasks are defined. The resources provided by Sandhills, the 
campus cluster, contain the most frequently used libraries, 
modules and software tools. This means that the Python and 
Biopython libraries and the CAP3 executable required by 
blast2cap3 are already set and maintained on the campus 
cluster. On the other hand, the resources provided by OSG 
are more heterogeneous and most of the time belong to 
other academic institutions and laboratories that may 
provide different software and system configurations.  

When the required libraries and executables like Python, 
Biopython and CAP3 are not installed on the remote node, 
the workflow execution fails. In order to avoid workflow 
failures, additional tasks that download and install the 
necessary software are executed before the main tasks in the 
workflow. These modified tasks are represented with red 
rectangles on Fig. 3.  

Therefore, we can say that the Pegasus WMS 
implementation of blast2cap3 for OSG is a slightly 
modified version of the implementation of blast2cap3 for 
Sandhills. 
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Figure 2. Pegasus WMS implementation of blast2cap3 for Sandhills, where the squares represent the input and output files, the ovals represent the tasks, 

and the arrows represent the dependencies between the tasks. 
 

VI. PERFORMANCE EVALUATION 
After the scientific workflow was created using Pegasus 

WMS, it was run on each platform multiple times with 
different values for “n”. As mentioned previously, “n” 
determines the number of clusters of transcripts on which the 
input data, “alignments.out”, is divided. For the purpose of 
this paper, we used “n” with values of 10, 100, 300, and 500. 

A. Comparing Running Time on Sandhills and OSG for 
Different Values of “n” 
In order to compare the running time of the Pegasus 

WMS implementation of blast2cap3, we run the workflows 
when “n” is 10, 100, 300, and 500 respectively. After the 
workflow terminates, pegasus-statistics is used to generate 
general statistics for the workflow execution. We use these 
statistics to compare the running time when blast2cap3 is 
run serially and when is run as a scientific workflow with 
different values of “n”. 

The “Workflow Wall Time” statistic defines the total 
running time of the workflow from the start to its end. The 

comparison of this variable’s value for the different 
workflows executed on the different platforms is shown on 
Fig. 4. 

On Fig. 4 we can notice that the Pegasus WMS 
implementation of blast2cap3 significantly reduces the time 
execution for approximately more than 95%. If the current 
sequential implementation of blast2cap3 for the given input 
files runs for 100 hours, the Pegasus WMS implementation 
runs for 3 hours in average. 

Beside the difference between the serial and inherently 
parallel execution of blast2cap3, on Fig. 4 we can also 
observe the difference in the running time on Sandhills and 
OSG platforms. 

Although OSG provides bigger variety of computational 
resources than Sandhills, for the experimental runs of our 
workflows, Sandhills resulted in better running time. This 
difference is especially noticeable when “n”, the number of 
clusters used, is 10, 100, and 300. 

Some possible reasons for this occurrence are the 
additional tasks required for setting the proper software 
configuration on the OSG resources, as well as the common  
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Figure 3. Pegasus WMS implementation of blast2cap3 for OSG, where the squares represent the input and output files, the ovals represent the tasks, the 
rectangles represent the tasks that has an additional step of downloading and installing the required libraries, and the arrows represent the dependencies 

between the tasks. 
 

failures and workflow retries that happen when OSG is 
used as a platform. The OSG users use the resources that 
belong to other VO groups, and if the members of that group 
submit jobs in meanwhile, the OSG user job may be 
cancelled or held. On the other hand, we encountered no 
failures when the workflow was executed on Sandhills. The 
campus cluster may need a long waiting time to access nodes 
with required memory and time resources, but after these 
resources are allocated, they are utilized until the tasks 
terminate. 

The running time on Sandhills when “n” is 10 is 41,593 
seconds. On the other hand, when “n” has value of 100, 300, 
and 500, the running time on Sandhills is around 10,000 
seconds. The usage of 100 or more clusters of transcripts 
improves the running time on Sandhills for approximately 
80% compared to the running time of 10 clusters. Although 
the usage of more than 100 clusters doesn’t decrease this 
running time significantly, the selection of 300 clusters gives 
the optimum performance with the resources allocated from 
Sandhills for this experiment. We must emphasize that the 
running time for the both platforms and the optimal number 

of used clusters of transcripts may vary for every new run 
due to the availability of the current resources. 

 

 
Figure 4. Comparing workflow running time on Sandhills and OSG when 
blast2cap3 is executed serially and as a scientific workflow with “n” is 10, 

100, 300, and 500 respectively. 
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B. Comparing Running Time Per Task on Sandhills and 
OSG for Different Values of “n” 
The running time of the submitted tasks and jobs varies 

among the two execution platforms and “n”, the number of 
clusters of transcripts. In addition of this Section, we will 
analyze the running time of the individual tasks from the 
workflow, both for Sandhills and OSG when “n” is 10, 100, 
300, and 500. 

In order to achieve this, we use “Kickstart Time”, 
“Waiting Time” and “Download/Install Time” statistics. 
The “Kickstart Time” statistic defines the actual duration 
and running time of a job on the remote node. 
The “Waiting Time” statistic is a sum of the time spent 
waiting on the submit host and the time spent waiting on the 
remote host before the actual execution starts. 
The “Download/Install Time” statistic refers to the Pegasus 
WMS implementation of blast2cap3 for OSG and indicates 
the time spent for downloading and installing the Python 
and Biopython libraries and CAP3 executable required for 
this experiment. 
    On Fig. 5 the running times per tasks are shown for both 
Sandhills and OSG execution platforms when “n” is 10, 
100, 300, and 500 respectively. 

 

While the tasks for creating lists of the input files and for 
merging the final results have running time of few minutes, 
the higher consumption of time occurs when CAP3 is used 
for merging the transcripts within the clusters. 

The “Waiting Time” value for the tasks ran on Sandhills 
is small and negligible. On the other hand, this value 
unevenly changes, increases and decreases, for the tasks ran 
on OSG. This observation once again shows that the 
resources available on OSG are opportunistic, and the OSG 
user can not control the availability or the lack of resources 
over time. Unlike Sandhills, failures and retries of the 
workflow were observed on OSG. This occurrence that is 
generally common and frequent on grids also increases the 
value of the “Waiting Time” statistic. 

The “Kickstart Time” value per task on Sandhills slowly 
decreases when “n” increases. Higher values of “n” induce 
even more significantly greater reduction of the running 
time of the tasks ran on OSG. 

However, the “Download/Install Time” value influences 
over the total running time of the tasks ran on OSG. 
Although some tasks on OSG have smaller running time 
than the tasks ran on Sandhills for the same value of “n”, 
they still exceed the running time of the tasks on Sandhills.  
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            Figure 5. Comparing blast2cap3 workflow running time per task on Sandhills and OSG when “n” is 10, 100, 300, and 500 respectively. 
 

 

This happens because an additional time is required for 
the tasks on OSG to download and install the necessary 
libraries and executables on the OSG resources. 

VII. CONCLUSION 
The expansion of scientific data leads to research that 

requires complex and data-intensive analyses and 
simulations. Therefore, many scientists use workflows over 
distributed resources to manage these large and complex 
computational tasks. Workflow applications can be used in 
different scientific fields, such as biology, physics, 
astronomy, and many others. 

In this paper we build a scientific workflow for 
blast2cap3, the protein-guided assembly, using the Pegasus 
Workflow Management System (Pegasus WMS). 
Furthermore, we describe our experience deploying this 
workflow on two different distributed execution platforms: 
Sandhills, the University of Nebraska Campus Cluster, and 
the Open Science Grid (OSG). Our objective was to compare 
and evaluate the performance of the built scientific workflow 
for both platforms used. Furthermore, we wanted to show the 
importance of using scientific workflows for executing 
computationally demanding granular tasks and pipelines. 

The performed experiments for this paper show that the 
Pegasus WMS implementation of blast2cap3 ran on both 
platforms significantly reduces the running time of the 
current serial implementation of blast2cap3 for more than 95 
%. This high percentage shows the importance and the 
efficiency of using scientific workflows. 

Beside the difference between the serial and parallel 
execution of blast2cap3, we also observed the difference in 
the running times on both Sandhills and OSG execution 
platforms. Although OSG provides bigger variety of 
computational resources than Sandhills, for our experiments, 
the workflows ran on the campus cluster resulted in better 
running time. Moreover, the selection of 300 clusters of 
transcripts gives the optimum performance with the 
resources allocated from Sandhills for the completed 
experiment. 

While the Sandhills resources contain the most frequently 
used software tools, the OSG resources may have different 
software configuration. Therefore, the tasks on OSG used 
more running time than the tasks running on Sandhills 
because of downloading and installing the required libraries 
and tools for blast2cap3. In addition, the availability of 
resources on OSG is highly variable and opportunistic, and 
therefore the performance and the running time of the tasks 
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vary significantly. Workflows running on OSG may result 
with excellent or very poor results depending whether there 
are plenty or few available resources. In addition, workflow 
failures and retries were observed on OSG that also increase 
the running time. 

However, if comparing only the actual duration and 
running time of tasks on both platforms, ignoring the 
“Waiting Time” and the “Download/Install Time”, OSG 
gives significantly better results. Hence, setting the proper 
software configuration on the OSG resources for less time 
will be considered as part of the future work.  

Despite campus clusters and grids, recently the scientists 
are investigating the use of clouds for deploying scientific 
workflows. Using academic and commercial clouds as an 
execution platform for the blast2cap3 workflow built in this 
paper will be challenging, but important and useful further 
step of this research. 

Developing scientific workflows for applications from 
different scientific fields is a valuable and crucial step that 
connects complex and large granular tasks with thousands 
available powerful computational and distributed resources. 
The outcome of this process are automated complex analysis, 
real-time results and improved time performance that allow 
scientists to easily design, execute, modify and re-run their 
experiments. 
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