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Abstract—The performance of massively parallel program is
often impacted by the cost of communication across computing
nodes. Analysis of communication patterns is critical for under-
standing and optimizing massively parallel programs. Visualiza-
tion can help identify potential communication bottlenecks by
displaying message trace data. However, the visual clutter and
temporal incoherence problems are typically incurred in existing
visualization tools for a considerable number of processors. In
this paper, we present a new tool, named CommGram, which
supports visual analysis of communication patterns for massive
parallel MPI programs. With the benefit of MPI trace library
DUMPI of SST, our framework builds hierarchical clustering
trees for computational community domain, and takes advantage
of graphical user interface (GUI) to convey communication
patterns at different levels of detail. The effectiveness of our tool
is demonstrated using large-scale parallel applications.

I. INTRODUCTION

The advances of supercomputers enable researchers to
improve the performance of their parallel programs to an
unprecedented level. Performance analysis becomes ever more
crucial to ensure the scalability of programs and maximize
the efficiency of the machines. Due to the escalating disparity
between data movement speed and compute speed [1], com-
munication across computing nodes simply becomes a critical
factor in overall performance, and researchers have particularly
focused on collecting communication trace data to inspect
large distributed programs for optimization. Substantial efforts
have been made in the development of techniques and tools for
detection and analysis of communication patterns. However, as
the size and complexity of modern supercomputers increase,
it becomes a rapidly severe problem that researchers can
collect detailed communication trace data but lack scalable
capabilities of data analysis to gain the insights.

To address the issue, visualization has received consider-
able attention from researchers because it offers a solution to
analyzing large scale communication data. Many performance
tools have been equipped with visualization capabilities that
display and convey communication patterns by leveraging
the powerful human visual perception [2], [3]. Despite the
increasing demand for visualization, however, its usage has
been limited because, for large graph data, it is easy to generate
visual clutter and hard to perceive and track dynamic patterns.

In this work, we develop a novel tool, named CommGram,
in support of visual analytics of large-scale communication
data from massively parallel programs. We are inspired by
the visual output of ElectroCardioGram in that the electrical
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activity of the heart is represented as a curve of wave over a
period of time. Our tool can generate a similar output that uses
a simple curve to represent the dynamics of communication
patterns over time. More specifically, the amount of variance
along the curve corresponds to the degree of changes of
communication patterns: a flat section means that the commu-
nication pattern is largely constant, while a highly wavy section
indicates that communication pattern is changing dramatically.
This visual presentation provides a clear summarization of the
time-varying communication events across many processors.

In addition, once a user detects an interesting pattern from
the high-level overview, our tool allows the user to seamlessly
zoom-in on a particular time interval and examine the detailed
data exchanges across a particular set of processors. Our
tool enables an interactive exploration of large communication
data without visual clutter, and clearly shows the dynamic
communication patterns in a coherent and scalable fashion.

It is non-trivial to develop such a visual analytics tool.
We holistically address key design considerations from large
communication data, to analysis requirements, to visualization
properties. Our work makes the following contributions:

e We introduce a new visual representation that can
clearly and coherently display time-varying graph

based on the characterization of communication data.

We present a method to construct a hierarchical ab-
stract of a large communication trace data on comput-
ing nodes, mitigating the visual clutter issue.

We develop a new user interface in cooperation with
real-world trace tools, enabling an intuitive exploration
of large communication event.

We demonstrate the effectiveness of our tool using the
communication data generated from real-world large-scale
applications. We show that the resulting visualizations can
provide the informative depictions of communication and help
simple monitoring and diagnoses of specific patterns in support
of the performance characterization and optimization.

II. RELATED WORK

A substantial amount of techniques and tools have been
developed for parallel program analysis. The examples of early
work on MPI programming include ParaProf [3], Umpire [4],
and MPI-Check [5]. Recently, Hilbrich et al. [6] presented
a tool named MUST based on their graph-based deadlock
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detection approach for MPI. Llort et al. [7] presented a
framework that uses object tracking techniques for perfor-
mance analysis. In particular, they clustered the performance
information to convey evolution of a parallel application along
multiple execution scenarios.

Besides these general techniques and tools, researchers also
presented case studies to show the feasibility of performance
improvement for large applications through detailed analysis.
Sun et al. [8] used the Projections performance analysis
tool to examine and optimize fine-grained communication
in a biomolecular simulation application. They achieved a
considerable improvement on a Cray XK6 system. Bhatele et
al. [9] used a binary tree to visualize communication topology
which facilitates a diagnosis of communication and workload
distribution. They showed the performance improvement for a
large AMR application on an IBM Blue Gene/P system.

Visualization is commonly used in the performance anal-
ysis. The representative visual designs include Gantt chart,
Kiviat diagram, histogram, node-link diagram, and adjacency
matrix. Many tools typically incorporate multiple types of
visualizations. For example, ParaGraph [10], an early work
on performance visualization, has included most of these vi-
sualizations. In particular, the tool represents a parallel system
by a graph whose nodes represent processors, and whose arcs
represent communication between processors. An animation of
the graph shows the dynamic status of communication.

Jumpshot [11] used Gantt chart to provide an overview
of system activities. Each MPI function call is represented as
a chart segment with a different color. An arrow connecting
the chart segments indicates a communication event and its
corresponding processors. The similar Gantt chart based design
has also been used in VAMPIR [2] and TAU [12]. In addition to
Gantt chart, these two tools also employ the adjacency matrix
representation to record the complete communication between
every pair of nodes.

These conventional visualization techniques can intuitively
present a communication graph. However, they all suffer from
the scalability problem when the scale of communication
increases: severe visual clutter can be incurred if the number of
visual elements (such as nodes, arcs, and arrows) exceeds the
number of available pixels for a display. To address this issue,
Muelder et al. [13], [14] used high-precision alpha blending
and opacity scaling techniques to overplot the visual repre-
sentations of communication events and form larger patterns
with low visual clutter. However, some detailed processor
information can be lost. Sigovan et al. [15] extended the over-
plotting method and introduced a particle animation technique
that can display every event in a trace data while maintain an
overview of system activity. Sigovan et al. [16] also presented
a visual network analysis method for the trace data from large
parallel I/O systems. Landge et al. [17] introduced a method
that combines the 2D and 3D views to visualize the network
traffic of large-scale simulations on a supercomputer.

III. OUR APPROACH

Exploring new scalable approaches to large-scale commu-
nication data analysis requires a holistic study. Traditional
graph visualization techniques are not well suitable for new
requirements imposed by the properties of communication
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Fig. 1. Traditional visualization techniques. (a)-(c) show the node-link
diagrams, (d)-(f) show the adjacency matrixes, and (g)-(h) show the
Gantt charts for the same result, where (a)-(b) and (d)-(e) correspond
to two consecutive time steps, and (c), (f) and (h) display the relatively
large graphs. We can see that none of these techniques can resolve
both the visual clutter and temporal incoherence problems.

of massively parallel programs. We introduce a novel graph
transformation and utilize a corresponding hierarchical clus-
tering technique to significantly increase the visual stability
for analyzing large-scale time-varying communication graph
data.

A. Intercepting Communication Trace Data

In this work, we study the communication patterns of MPI
based parallel programs and use the DUMPI utility of the
Structural Simulation Toolkit (SST) library [18] to collect com-
munication trace data of MPI application calls. By wrapping
the MPI functions, DUMPI can intercept the detailed commu-
nication functions from applications. The output of DUMPI
can contain all the MPI function calls with the comprehensive
information, such as the sender, the receiver, the message
size, the time stamps, and so on. We can filter the DUMPI
output to capture the certain peer-to-peer (P2P) communication
functions (such as MPI_Send, MPI_Recv, MPI_ISend, and
MPI_IRecv) and the collective functions (such as MPI_Gather
and MPI_Reduce) in a simple logical order. These information
allows us to construct a time-varying communication graph.

B. Revisiting Communication Graph Visualization

It is very difficult to use traditional graph visualization
techniques to generate a visualization that can convey the
temporal communication patterns in a coherent and clutter-
free fashion. Figure 1 shows a set of examples. The node-
link diagram can only show a simple graph clearly (Figure 1
(a) and (b)), and visual clutter can be easily generated when
the number of nodes and edges increases (Figure 1 (c)). In
addition, there is no coherence between the images of two
consecutive time steps, and animating them (for example,
Figure 1 (a) and (b)) cannot clearly show the transition between
the patterns.

The adjacency matrix can avoid the visual clutter problem
even for a large graph, as shown in Figure 1 (d), (e) and



(f). However, similar to the node-link diagram, the adjacency
matrix cannot convey the change of communication patterns.
Moreover, by comparing Figure 1 (a) and (d), we can clearly
see that the communication pattern displayed by the adjacency
matrix is less intuitive due to a lack of an explicit representa-
tion of the directional information.

The Gantt Chart can intuitively display the communication
events using the arrows between the chart segments with re-
spect to the processors. In addition, because the chart segments
are sorted by time, different communication patterns can be
distinguished over time, as shown in Figure 1 (g). However,
with the increasing number of events, it is hard to avoid severe
visual clutter from the Gantt chart, as shown in Figure 1 (h).

Researchers routinely perceive the visual clutter and/or
temporal incoherence problems when they use visualization
to analyze communication data collected from a large number
of processors. To address these problems, we advocate that an
appropriate design should be tailored to the characteristics of
communication graph data, rather than directly adopt visual-
ization techniques for general graph data.

C. Characterizing Communication Graph

Without loss of generality, in a communication graph, each
node represents a processor and each directed edge represents a
message sent from one processor (sender) to another processor
(receiver). Compared to general graph data, a communication
graph exhibits a set of unique characteristics.

First, because it is possible for a processor to be a sender
and a receiver simultaneously during communication events, a
communication graph can visually appear as a directed cyclic
graph. However, the messages sent and received by a processor
at a certain time are typically independent of each other,
and thus the circles formed by the graph topology does not
correspond to the flow path of data exchanged among the
processors; that is, there is by no means a path along which
a message sent by a processor will return to the processor
again. Hence, a communication graph is typically modeled
as directed acyclic graph (DAG) [19], or more specifically,
communication directed acyclic graph (cDAG) [20]. This
standard model, however, has been relatively overlooked in
visualization studies: for example, with the popular node-link
diagram method, a visualization may show the artifacts of
circles in the communication graph and lead to a possible
misunderstanding.

Second, a communication graph is not directly related to
the network flow problem [21], in that the amount of messages
received by a processor has no necessary relationship to the
amount of messages sent by the processor. However, most
advanced graph visualization techniques are developed based
on network flows (e.g. [22], [23]), and thus are not suitable
for communication graphs.

Our design foci has been accentuated to address the key us-
ages of communication graphs. We note that a viable solution
should facilitate an effective exploration of complex patterns,
and enable a quick identification of potential communication
bottlenecks, which is imperative for program optimization and
performance improvement.

30

{000000C0
0000000

i ri +1

(b)

Fig. 2. (a) shows the bipartite graph equivalent to the communication
graph in Figure 1 (a). We can concatenate the bipartite graphs over
the time steps to represent the time-varying communication graph.
(b) shows the result corresponding to the combination of Figure 1 (a)
and (b).

D. Communication Graph Transformation

We propose a solution based on an equivalent transfor-
mation in that we use a sequence of bipartite graphs to
represent a time-varying communication graph. Assume that
we generate a time-varying communication graph G over a
total of T time steps with n processors. We represent the
processors as a set P of nodes, and their communications as
the edges. We use C;, (u,v) to represent an edge corresponding
to a communication that a message is sent from a processor u
to a processor v at the time step #;:

Cy(uv)={uv | ueP, veP, €T} 1)

The set of senders at #; is represented as:
S;={u | ueP, €T} 2)

The set of receivers at #; is represented as:
R,={v | veP, €T} (3)

Given each directed edge G, (u,v), we have the set of commu-
nications in f;:

M, ={C,(u,v) | ueP, veP €T} 4)
Therefore, the communication graph at ¢; is
Gl,' = ( 7Mf,')' (5)

We then construct a new graph G;’, to represent the original
graph G;,. We first let X =P and Y = P, that is X and Y are
the copies of the node set of G. For each edge C;,(u,v) in
G;;, we construct a corresponding edge C7(«/,v') in the new
graph, where u’ is the copy of u in X, and V' is the copy of v
in Y. We denote the union of Cy (u',v') as M}.. Thus, we obtain
a new graph Gj:

G, =(x{Jv.M}). (6)

Lemma. G;I_ is a bipartite graph that represents the com-
munication information in G;,.

Proof: There is a one-to-one mapping between C;, (u,v)
and C, (u',v'). Thus, Cf(u',v') corresponds to the communica-
tion represented by C,(u,v) in Gy,. In Gy, all the senders are
in X, and all the receivers are in Y, thatis S, CX and R; CY.
This means every edge of G;I_ connects a node in X to one in



Y, and X and Y are two disjoint node sets, which satisfies the
definition of bipartite graph. |

Figure 2 (a) shows the bipartite graph constructed from
the graph in Figure 1 (a). For a time-varying communication
graph, it is possible to construct a bipartite graph for each time
step. Alternatively, because X and Y essentially represent the
same set of nodes, we can concatenate the bipartite graphs
of the consecutive time steps by reusing Y at one time step
as X at the next time step. Figure 2 (b) shows an example
of the combination of the bipartite graphs at the time steps #;
and t;4 corresponding to Figure 1 (a) and (b). Therefore, we
transform a time-varying communication graph into a sequence
of bipartite graphs.

E. Visualization Strategies

The new transformation can facilitate our visualization
designs to significantly reduce visual clutter and coherently
show dynamic communication patterns.

In the original node-link diagram, the directions of edges
are rather arbitrary, which may cause a considerable number of
crossings between the edges and show the inconsistent direc-
tional information. In our new bipartite graph representation,
we explicitly duplicate the node set into two disjoint sets,
which can force each edge pointing from a set to another set
in a roughly consistent direction. Based on this property, we
can reinforce the edge directions and make them more visually
coherent using the B-Spline technique [24]. The basic idea is
to render each edge as a B-spline curve rather than a straight
line segment, and the B-spline curves can have a relatively
identical orientation.

We can add other visual properties to encode more in-
formation. In our design, we first use a bar to represent
each node. We then construct the polygons along a B-spline
curve, where the width of the polygons is proportional to the
message size between the processors. Moreover, we apply a
color map and alpha value to different message size. For a
processor having multiple simultaneous communications, there
are multiple polygons overlapping at the corresponding node.
With a naturally alpha blending of polygons, the vicinity of the
node will be conveyed with a darker color that is an indicator
of a potential communication contention.

Figure 3 shows a butterfly communication pattern that is
widely used in many parallel programs [25]. A representative
example is the binary-swap image compositing algorithm for
parallel rendering [26]. Figure 3 (a) shows the bipartite graph
representation of the communication graph on 8 processors,
where we can clearly see that each processor exchanges the
message exactly with another processor at each step in a
binary tree manner. The dynamic communication patterns are
displayed concisely over time steps. Figure 3 (b) shows our
visualization result. The edges are rendered using the B-
spline curve based polygons with the coherent orientations.
In this visualization, apart from the communication pattern,
we can also observe that the message size exchanged by a
processor is reduced by half over every step. This is a key
property of binary swap, which is not displayed in Figure 3
(a). Therefore, our visualization can provide an informative
and precise description of the communication.
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Fig. 3. (a) shows the bipartite graph representation of the communi-
cation of the binary swap algorithm on 8 processors. (b) shows the
result using our visualization strategies.

FE. Temporal Clustering

A real-world communication trace dataset typically con-
tains a large time interval where visual clutter can be generated
if we want to show all communication information within
a limited display. To address this issue, we propose a new
approach to condense communication over time steps.

The key idea is to cluster communication events according
to a similarity evaluation. We note that each communication
event is represented as an edge e; which has a pair of sending
time and receiving time. We then compute the representative
time m; of the edge ¢; using the mean of its sending time and
receiving time. Then the similarity between two edges e; and
ej is defined as

)

To cluster the edges, we use an agglomerative hierarchical
clustering. This is a bottom-up method that begins with each
edge in a distinct cluster, and successively merges the two
most similar clusters together until only one cluster is left.
When we merge two clusters, the representative time of the
new cluster is the average of the times of two clusters. During
the clustering process, we generate a binary tree to indicate
which two clusters are merged at each iteration.

d(ei,ej) :|mi—mj ‘ .

The clustering tree enables a natural definition of levels of
detail (LODs) for the communication patterns over time. We
can explore communication patterns at various LODs. With
the LODs enabled by the clustering tree, we can begin with a
few number of cluster at a coarse LOD, which provides us an
overview of the communication. If we find some interesting
region in the visualization, we can select a finer LOD to
generate a zoom-in view to examine the details. For example,
Figure 4 shows the communication of binary swap on 16
processors. We can select the number of clusters and conduct a
continuous zoom-in of the communication patterns along time.

G. Processor Clustering

The complexity of communication also escalates with the
increasing number of processors that participate in message
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Fig. 4. Temporal clustering for binary swap on 16 processors. We
conduct a continuous zoom-into examine the detailed order of the
communication events using 1 to 4 time intervals.

exchanges. Visual clutter cannot be avoided with a direct
visualization, and we need to reduce the visual complexity to
explore the patterns inherent in a large mount of processors.

To solve this problem, we use a graph clustering algo-
rithm [27]. We observe that within a time step the processors
can be grouped based on their connections in communica-
tion. This problem is similar to the well-known community
detection problem in networks [28]. The form of network
communities is the gathering of vertices into groups such
that there is a higher density of edges within groups than
between them. This concept can be applicable to our problem:
if we can detect such communities that the processors have
a higher amount of messages exchanged within communities
than between them, we can place the processors of the same
community closer in the visualization, and thus distinguish
different communities. In this way, we can minimize the
crossings of edges between the communities, and thus reduce
visual clutter.

Clustering can be used to detect communities [29]. We
use an agglomerative hierarchical clustering algorithm which is
proved to work based on modularity [28]. We treat processors
as graph nodes and measure modularity gain [27], when
the modularity achieves its maximum value, we can build
a bottom-up fashion hierarchical tree. Once the clustering
is completed, we can use the clustering tree to select the
number of clusters. The processors within a cluster form more
communication than between clusters, which can provide us a
more coherent and appropriate view of communication pattern.

The clustering result helps us address the problem of large
processors with a control of LOD. With the cluster tree, we can
begin with a few number of clusters to perceive an overview as
the color and size of polygons can provide a high-level visual
description of communication among the communities. Once
we perceive an interesting community, we can select a finer
LOD to further partition it into a set of smaller communities
and see the detailed communication.

Figure 5 demonstrates our clustering result for binary
swap on 16 processors. The results are generated using our
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Fig. 5. Processor clustering for binary swap on 16 processors. (a),
(b), (d), and (d) show the LOD results with 1, 4, 8, and 16 clusters,
respectively, after the bottom-up clustering process. Our method can
automatically group the processors into the communication commu-
nities, and show the coherent patterns without visual clutter. Our

method can achieve the ideal results matching the ground truth of
communication pattern without any prior knowledge.

clustering-based community detection method without any
prior knowledge of the underneath algorithm. It clearly shows
that using hierarchy clustering can not only identify the com-
munication pattern matching the ground truth but also mitigate
the visual clutter issue. In addition, even with a smaller number
of processors, the communication pattern can be abstracted
in a coherent fashion to facilitate our understanding. This
mechanism is very useful when the number of processors is
large with respect to the available display space.

H. CommGram Curve

With our temporal clustering and processor clustering, our
method can generate a visualization with the LOD control
according to the time and the number of processors, corre-
sponding to the horizontal and vertical axes in our display
space, respectively.

To further enhance our visualization to monitor and di-
agnose the communication of a very large parallel program,
we are inspired by electrocardiograph and construct a curve
to generate an even more abstract description of the overall
activities of processors. The intuition is that the curve section
is rather flat if the communication pattern has not changed
over time, while the curve section becomes highly wavy if
the communication pattern has changed dramatically. Given
this representation, a user can obtain a concise and intuitive
description of the variation of communication in a highly
complex system, and make timely response if some abnor-
mality has been detected. Then our LOD based visualization
(Sections III-F and III-G) can give the user more detailed
information for diagnosis. This manner is similar to a doctor
keeps watching the patient through the output of an electro-
cardiogram.

We name our tool as CommGram. The curve of Comm-
Gram is constructed in a phase wise fashion. We first use
the temporal clustering to generate a number of phases, and
then apply the processor clustering to detect communities from
the communication graph within each phase. It is possible
that the processor clustering results can be different between
two consecutive phases. Recall that we represent each com-
munication graph as a bipartite graph (Section III-D), we
adjust the relative hight of two consecutive bipartite graphs
according to the difference between their processor clustering
results: the relative hight is zero for two identical clustering
results, and a higher value corresponds to two more distinct
results. We use the Hungarian algorithm [30] to measure the



Fig. 6. The CommGram curve (in orange) highlights the variation of
communication patterns over time.

difference between two clusters. Figure 6 shows an example
of CommGram curve to show the varying communication
patterns in a real-world application.

IV. CASE STUDIES

We apply our CommGram tool to analyze the communi-
cation data generated from a program that integrates combus-
tion simulation and in-situ visualization [31]. The combustion
simulation, S3D [32], has been developed at Sandia National
Laboratories to solve the governing equations of direct numer-
ical simulation. During the iteration of simulation, the main
communication involves the boundary data exchange among
the neighboring processors. In-situ visualization is called at
each simulation time step to generate the image of a selected
variable. The main communication of visualization is occurred
for parallel image compositing, where we use the 2-3 swap
algorithm [33]. This algorithm exchanges the messages among
the processors in a 2-3 tree manner, and the message number
is bounded by O(NlogN) for N processors.

We run the integrated program on Hopper, a Cray XE6
supercomputer at the Lawrence Berkeley National Laboratory.
The system contains 53,216 compute cores, 217 Terabytes of
memory, and 2 Petabytes of disk. The nodes interconnected
by the Cray Gemini Network. We use DUMPI to collect MPI
communication trace data from 4320 compute cores. The size
of trace data is 216 gigabytes for one iteration of simulation
and visualization. The data contains detailed information about
communication events, such as senders, receivers, message
sizes, communication categories, walltimes and CPU times that
a processor starts and finishes a communication event.

We employ our CommGram tool for analysis of such large
communication trace data. Figure 7 (a) shows the CommGram
curve that provides an overview of communication captured
within 3 iterations of simulation and visualization. Repeti-
tive patterns can be clearly perceived from the curve: There
are 3 long flat sections and 3 short flat sections, and each
section corresponds to a constant communication pattern. A
considerable jump between these two types of section means a
dramatic change of communication pattern. This curve provide
a clear summarization that allows us to effectively monitor the
program behavior.

To further examine the details, we use our polygon-based
visualization overlaid on the curve, as shown in Figure 7
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(b). Initially, we group computing nodes into 18 communities
within 27 phases using our temporal and processor clustering.
Within each of these phases, the polygons represent the con-
current communication events. Blue color implies a relatively
smaller message size while green color indicates a larger one.
We can see the pattern within the time intervals #y to fg
is repetitive. This implies that the program is looping for a
communication routine. Specifically, the intervals of fy to #;
reveal a similar communication routine which matches the long
flat section of the curve in Figure 7 (a). We can clearly see
the a big change of communication pattern between f7 and
tg, which matches the jump in Figure 7 (a) as well. From
the visual attributes, it can be perceived that the communities
should have more intensive message exchanges in g, which
can be attributed to three main possibilities:

e A community could have more message exchanges in
this phase.

e A community could have larger data to send and
receive in this phase.

e A community could have both of the above.

We can testify the possibilities using the zoom-in capability
of our tool. Figure 8 shows the detail communications in fg that
is unfolded into 12 phases with all computing nodes are also
grouped into 18 clusters. From this observation, the overall
message size is decreasing approximately by half over phases.
Note that the data transmitted in each phase are approximately
halved in 2-3 swap and it will take |logaN | stages to complete
the image compositing, where N = 4320. Therefor, Figure 8
matches our prior knowledge on the communication of 2-3
swap. We continue our investigation by choosing fg o and
increasing the cluster number. Figure 9 shows the result of
4320 clusters. The pattern is an analogy to the first stage in
Figure 3 (b). This verifies the correctness of our visualization
to 2-3 swap.

We also investigate the long flat section by exploring the
detailed patterns in fy, t7, and t9. Figure 10 (a) and (b) show
the zoom-in views of 7o with 24 and 61 clusters, respectively.
These patterns are completely different from the result of #g.
Figure 10 (c) and (d) show the communication of a cluster
and a node respectively. We can see that each cluster or node
sends message to 6 to 9 targets. With prior knowledge, the
pattern matches the characteristics of the simulation stage of
the source program, where the simulation code uses neighbor
exchange among processors. #7 and #9 reveal similar patterns
as 9. Hence, in Figure 7 (a), the curve is flat in the first 7
phases, drops down between #; and tg, and rise back before #9.
We justify the result of our visualization with prior knowledge.

V. CONCLUSIONS

The performance of parallel programs is heavily affected
by communication cost, where each involved processor may
exchange and fetch data from the remote memory. Given these
behaviors, it is critical for developers to learn the abstract
communication pattern from the application. Our CommGram
tool, in cooperation with the DUMPI utility of SST, deliveries
advanced visual analytics capabilities tailored to the large-scale
communication data. Our design fundamentally addresses the
scalability problem by carefully characterizing communication
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Fig. 7. (a) shows the CommGram curve of the integrated program on 4,320 cores. (b) shows our polygon based visualization.
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movement pattern within CPU cores or GPU is critical for
performance optimization on large heterogeneous systems. We
will continue studying techniques to investigate data access
at fine-grained thread levels and understand their impact on
parallel work processes.
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