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An Empirical Comparison of the
Fault-Detection Capabilities of Internal Oracles

Tingting Yu, Witawas Srisa-an, Gregg Rothermel
Department of Computer Science and Engineering

University of Nebraska - Lincoln
{tyu, witty, grother}@cse.unl.edu

Modern computer systems are prone to various classes of
runtime faults due to their reliance on features such as concur-
rency and peripheral devices such as sensors. Testing remains
a common method for uncovering faults in these systems, but
many runtime faults are difficult to detect using typical testing
oracles that monitor only program output. In this work we
empirically investigate the use of internal test oracles: oracles
that detect faults by monitoring aspects of internal program
and system states. We compare these internal oracles to each
other and to output-based oracles for relative effectiveness and
examine tradeoffs between oracles involving incorrect reports
about faults (false positives and false negatives). Our results
reveal several implications that test engineers and researchers
should consider when testing for runtime faults.

I. INTRODUCTION

Modern computer systems ranging from personal computers
to consumer electronic devices are becoming increasingly
complex. These systems are utilizing high-performance multi-
core processors to ensure adequate responsiveness and perfor-
mance. They also utilize a full array of peripheral devices and
sensors to support required features. Competition for market
share means that new features are frequently added to these
systems, making their product life-cycles last only one to two
years. Short life-cycles imply frequent updates to the various
runtime systems these systems utilize.

The foregoing characteristics can result in runtime faults
that are difficult to identify and correct. While verification
techniques such as model checking have been effective for
detecting such faults in certain contexts, it is still challenging
to use these techniques in practice. For example, model
checking can suffer from state-space explosion when used
on non-trivial programs. As such, applying it to a system
that includes hardware components, one or more operating
systems, device drivers, shared libraries, and runtime systems
(e.g., virtual machines and dynamically linked libraries) is
difficult. We believe that testing is a more practical alternative
for assessing and finding faults in these systems.

To effectively test modern systems, software engineers must
be able to observe complex interactions between applications,
low-level hardware, OS events, and runtime systems. As an
illustration, consider a data race between application code and
a device driver [1]. This class of fault may intermittently result

in observable incorrect outputs when a particular interleaving
between an application and an interrupt is executed, rendering
traditional testing approaches using oracles that examine only
execution output unreliable. To detect such a fault, engineers
must be able to observe when the interrupt handler and device
driver access a shared variable and determine whether the
access adheres to a specific correctness property. An access
that violates the property is evidence of the presence of a
fault, even if that access occurs “silently” without propagating
to output. Detecting faults in this manner involves the use
of internal test oracles: oracles that can examine aspects of
a program’s internal state either as the program runs or via
post-processing following its execution.

The notion of using internal oracles is founded in research
on fault-based testing [2], error propagation [3], and testability
analysis [4]. Using terminology from [4], suppose a fault f
exists in location l in program P . For f to be detected in
testing, three conditions must hold: (1) l must be executed by
a test, (2) f must erroneously alter (“infect”) program state,
and (3) the infected state must propagate to observable output.
Testing approaches that rely on output-based oracles (oracles
that inspect externally visible program outputs) require all
three of these conditions to occur. However, the absence of
incorrect output for a suite of test cases does not indicate that
the program does not contain faults; those test cases might
have failed to execute faults, or on executing them, failed to
cause infection and propagation.

In contrast to output-based oracles, internal oracles monitor
aspects of internal program state seeking evidence that infec-
tions have occurred, and on finding such evidence, they signal
the presence of those infections. Arguably, monitoring internal
states rather than outputs should improve fault detection;
however, internal oracles can also fail to detect the presence
of faults (producing false negatives), and signal the presence
of anomalies that are not faults (producing false positives).

Previous research has argued that internal oracles can be
effective [5], [6], [7]. There has been little work, however,
empirically investigating the relative effectiveness of different
internal oracles. For a fault involving incorrect use of synchro-
nization operations, is it more effective to observe proper usage
of synchronization operations or to observe memory accesses
to detect data races? Does one of these approaches result in
more false positives or negatives than the other? Studying the
tradeoffs between oracles can provide useful insights.
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In prior work [8], we introduced SimTester, a testing frame-
work that utilizes virtual machines to provide observability.
The framework can observe occurrences of low level events
including memory, register and hardware accesses, interrupts,
system calls, and execution of binary programs. It can also
force hardware events such as interrupts to occur at specific
times during testing. The observations gathered by the frame-
work are used by internal oracles to detect the presence of
faults that might not otherwise be easily detected.

The goal of this work is to empirically investigate the
tradeoffs between internal and output-based oracles, as well as
between different internal oracles designed to detect the same
classes of faults but utilizing different execution information.
To achieve this goal, we focus on a family of internal oracles
that target common faults in modern systems involving lock
management, resource management, interrupt management,
critical section protection, and buffer management. Such faults
can lead to well-known, but intermittent and hard-to-reproduce
failures involving data races, deadlock, livelock, critical sec-
tion violations, and buffer overflow [9], [10]. Our oracles mon-
itor subtle but relevant events (e.g., memory accesses, memory
allocations) using existing tools that have been widely used to
ease system development and improve testing and debugging
processes. By empirically comparing various oracles, our hope
is that we can ultimately help engineers make more informed
decisions as to whether a given oracle would be more effective
for detecting specific classes of faults.

In our empirical study we use the oracles under consider-
ation in the testing of five concurrent programs and a device
driver. Two of these are real-world programs that perform data
compression and file transfer (BZIP2 and AGET). We also
include a program that performs file scanning in parallel (PF-
SCAN), and commonly used concurrency benchmarks from
Inspect (Producer/Consumer) and the Oracle Thread Analyzer
(Dining Philosophers) [11], [12] that are representative of
common concurrency issues. The device driver is a real-world
UART driver from a Linux kernel. All the programs that we
use are multithreaded.

We empirically compare the tradeoffs between oracles in
terms of effectiveness, false positive rates, and false negative
rates. In the cases we study, our internal oracles are more
effective at detecting faults than output-based oracles, and
the incidence of false-positive reports associated with them is
relatively low, especially when compared to the high incidence
of false-negative reports associated with output-based oracles.
Further analysis of our data reveals several implications for
practitioners and researchers wishing to employ and study
the use of internal oracles, including specific methods for
improving on the oracles we employ.

II. INTERNAL ORACLES

In this section, we consider five classes of runtime faults that
are common in modern systems and have been the subject of
extensive research (as noted in Section V). These include faults
involving lock management, resource management, interrupt

management, critical section protection, and buffer manage-
ment; faults that can lead to well-known and common failures
involving data races, deadlock, livelock, critical section viola-
tions, and buffer overflow. For each such class of faults, we
describe internal oracles that can detect them, and explain how
we implement them.

A. Faults Involving Lock Management

Lock management faults are common in concurrent pro-
grams. This type of fault occurs due to improper use of
lock operations that synchronize concurrent access to shared
memory. One instance of such a fault occurs when shared data
is protected by a lock, but other threads that access this data do
not obtain the lock. A second instance involves other threads
obtaining some lock other than the one used to protect this
shared data. A third instance occurs when shared data is not
protected by any locks for threads that access this data. This
type of fault can lead to data races.
Data races in applications. Program A provides an example
of this type of fault occurring in an application. The lock
acquisition operation is missing (statement 1), causing variable
x to be unprotected. The fault further infects code regions
(statements 1-4 and 6-8) by leaving all shared data in the
code regions unprotected. The data state of the unprotected
data can be infected due to unsynchronized accesses (i.e., x
is incremented to 1 twice by both threads). Finally, the fault
may propagate to output.

Existing dynamic race detectors [13], [14] can detect this
type of fault once the shared data in two threads is accessed
without proper synchronization. If input is 2 and state-
ments 1 and 4 are executed, a data race cannot occur because
the fault cannot infect shared variable x in T2; thus, the race
detector fails to detect the fault. On the other hand, if input is
-1, the fault can infect x (unprotected) in both threads and the
race detector detects it. With a specific thread interleaving, i.e.,
if T1 and T2 concurrently update x, the fault further infects the
data state of x and such an infection may eventually propagate
to output.
Oracle implementation. Our internal oracle is based on an
existing hybrid race detection algorithm [14] that utilizes both
vector-clock and lock-set algorithms. Our oracle evaluates
whether the following property holds:

1) Two threads access the same memory location.
2) The two accesses do not hold a common lock.
3) One access does not happen-before the other.
4) At least one of the accesses is a write.

T1{
1 . / / l o c k ( ) ; f a u l t
2 . x ++;
3 . . . .
4 . / / u n l o c k ( ) ;
}

T2{
5 . l o c k ( ) ;
6 . i f ( i n p u t < 0){
7 . x ++;
8 .}
9 . u n l oc k ( ) ;
}

PROGRAM A. A fault involving a missing lock
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Our oracle is applied on the race detector provided by
ThreadSanitizer [15]. This tool is implemented on top of
PIN [16], a widely used binary instrumentation tool that
records runtime information (e.g., memory read, write, and
synchronization operations such as pthread mutex lock and
pthread mutex unlock) as applications execute. We refer to
our implementation of this oracle as O1.

Data races in low-level software. While race detectors can
detect the type of data race shown in Program A, they do
not work in scenarios in which races occur across different
software components such as device drivers and interrupt
service routines (ISRs). Device drivers can be a major source
of failures in OS kernels [17]. For example, a data race fault
involving interactions between the UART driver and an ISR
in Linux kernel has been reported [1]. Recent work [8] has
shown that races occur when the following property holds:

1) A device driver and an ISR access the same memory
location.

2) The associated interrupt is not disabled for the device
driver access.

3) At least one of the accesses is a write.

Oracle implementation. We created an internal oracle to detect
whether the foregoing property holds. Our oracle was imple-
mented as modules on a widely used virtual platform called
Simics [8]. Our implementation monitors shared memory ac-
cesses and access types, the interrupt bit (to determine whether
interrupts are enabled or disabled), and context information (to
determine whether the current access is in the application or
interrupt context). Because interrupt related data races are also
monitored at the point of shared data accesses, we also refer
to our implementation of this oracle as O1.

B. Faults Involving Resource Management

There are four conditions necessary for deadlock: mu-
tual exclusion, no preemption, hold-and-wait, and circular
wait [18]. In typical operating systems including various
implementations of Unix and Linux, deadlock avoidance and
prevention are not provided as OS features. As such, deadlock
can occur in these systems. When a deadlock occurs, we
consider the state of the system to be infected because the
correct locking discipline has not been exercised. As such,
it is possible to detect possible occurrences of deadlock by
observing all lock acquire and release operations even on
a successful program execution. Therefore, it is helpful to
compute potential sources of deadlock and the algorithm used
in such a computation can become a internal oracle.

Existing techniques that can identify deadlocks construct
graph representations either on-line or off-line using execution
traces. The graph is then analyzed to detect whether a certain
property holds. Program B provides an example of deadlock
and its detection. If input is greater than 1, a potential
deadlock can be detected by analyzing a successful execution
trace. With a specific interleaving such as execution sequence
1, 6, 2, 8 the fault propagates, causing the system to hang.
Unfortunately, the analysis is performed dynamically so it

T1 {
1 . l o c k 1 ( ) ;
2 . l o c k 2 ( ) ;
3 . . . .
4 . un lock2 ( ) ;
5 . un lock1 ( ) ;
}

T2 {
6 . l o c k 2 ( ) ; / / f a u l t
7 . i f ( i n p u t > 1){
8 . l o c k 1 ( ) ; / / f a u l t
9 . . . .
1 0 . un lock1 ( ) ;
1 1 . }
1 2 . un lock2 ( ) ;
}

PROGRAM B. A fault involving resource management

can miss sources of “potential deadlock” that are not in the
executed paths. For example, if input is 0, statement 6
is executed; however, because the other erroneous statement
(statement 8) is not executed, the detector cannot detect any
potential deadlock.

Oracle implementations. We created an internal oracle to
identify potential deadlock by detecting whether a valid cycle
can exist. Our implementation uses the improved GoodLock
algorithm [19], [20]. In this approach, a directed run-time lock
graph is constructed based on traces of application executions.
The graph is composed of run-time lock trees for all threads,
representing the nested pattern in which locks are acquired and
released by each thread. Each node in the graph represents the
thread acquiring the lock. A potential deadlock exists if a valid
cycle is detected in the run-time lock graph. We refer to our
implementation of this oracle as O2.

To detect an actual deadlock, our oracle dynamically con-
structs a wait-for graph [18] during an execution of an ap-
plication. The graph is updated each time a lock is acquired.
Our oracle reports a deadlock if a circular-wait condition is
detected. We refer to our implementation of this oracle as O3.

C. Faults Involving Interrupt Management

Because many low level software components such as
interrupt handlers and device drivers are often not preemptible,
spin-locks are often used as synchronization primitives. In
these software components, improper management of spin-
locks can cause applications or operating systems to loop
infinitely, making the system unresponsive, yet continuing to
consume CPU cycles [21]. In such a case, livelock occurs.

Reports of a fault in a Linux interrupt handler show that one
cause of livelock involves improper use of interrupt enabling
and disabling functions [22]. In Program C, a watchdog timer
application uses a spin lock that is also used by an interrupt
handler (statements 3 and 9). To correctly share this lock, the
interrupt should be disabled when the timer executes its critical
region (statements 3-5); this ensures that the timer will not be
preempted while holding the lock. However, the interrupt dis-
able statement is missing prior to the execution of statement 3,
and thus, the timer could be preempted while holding the lock.
In this case, if input is greater than 1, the interrupt handler
would attempt to access the lock (statement 9); in doing so,
it would be stuck in the spin-lock loop.

An analysis of this fault shows that the system state is
infected because the interrupt bit remains set when the ap-
plication accesses the lock. This infection can be observed
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void watchdog ( . . . )
1 : {
2 : / / c l i ( ) ; f a u l t
3 : s p i n l o c k ( o b j ) ;
4 : . . .
5 : s p i n u n l o c k ( o b j ) ;
6 . / / s t i ( ) ;
7 : }

ISR{
8 : i f ( i n p u t > 1)
9 : s p i n l o c k ( o b j ) ;
1 0 : . . .
1 1 : }

PROGRAM C. A fault involving interrupt management

after the ISR executes the lock acquisition statement. Then, a
potential livelock can be detected by checking this property:

1) The lock is executed by the ISR.
2) The associated interrupt is not disabled in the application

during any execution point within the critical section
regarding the same lock.

Under certain interrupt interleavings, an infected state can lead
to an actual livelock. An actual livelock occurs when:

1) The application is preempted by the ISR while the
application is holding a lock.

2) The ISR tries to acquire the same lock and fails.

Oracle implementations. We created internal oracles that de-
tect whether the two foregoing properties hold. The approach
is similar to that used to implement oracles O2 and O3;
that is, we created an oracle to detect potential sources for
deadlocks (we refer to this oracle as O4) and another oracle
to dynamically detect actual deadlocks (we refer to this oracle
as O5). Both of our oracles are implemented in Simics in the
same way in which we implemented oracle O2, by observing
lock operations and program context.

D. Faults Involving Critical Sections

A critical section is a code region that should be accessed
by only one thread at a time. If this constraint is violated, data
races and deadlocks can occur. This type of fault is particularly
common in device drivers and embedded software systems that
use spin locks and interrupts [23], [24].

When a critical section is not properly protected, various
types of concurrency faults such as data races, livelock, and
deadlock can ensue. Program D illustrates how a data race can
occur due to critical section violations. The critical section is
supposed to be protected by disabling interrupts. However,
function foo() incidentally enables interrupts while execut-
ing inside the critical section. The original infection occurs
after the unsafe function (statement 2) in the critical section
is executed. The fault further infects the shared variable g in
the unprotected critical section (statements 3-8), and such an
infection can be detected when it is accessed by both T1 and
ISR. If an interrupt occurs between statements 4 and 6 in this
unprotected critical section, the data state of g is infected.
Finally, this fault propagates to output by generating an error
event (statement 7).

To detect this type of fault, two different internal oracles can
be applied. The first has already been introduced as oracle O1.
The second oracle checks for proper protection of a critical
section. It detects a fault at its original infection state, i.e.,
when the fault is executed, by checking the property:

T1{
1 . l o c a l i r q d i s a b l e ( ) ;
2 . foo ( ) ; / / f a u l t
3 . i f ( i n p u t > 0)
4 . g = 0 ;
5 . . . .
6 . i f ( g != 0){
7 . e r r o r ;
8 . }
9 . l o c a l i r q e n a b l e ( ) ;
}

ISR{
1 0 . g ++;
1 1 . . . .
}

foo ( ){
1 2 . . . .
1 3 . l o c a l i r q e n a b l e ( ) ;
}

PROGRAM D. A fault involving critical section protection

1) For each critical section entry there is not a matching
critical section exit in the same thread.

2) A critical section is entered twice without being exited
in between.

3) A critical section is exited twice without being entered
in between.

Oracle implementation. We created a internal oracle to detect
whether the foregoing property holds. The oracle is imple-
mented on PIN for applications and on Simics for low-
level software. Our implementation captures critical section
protection operations used by programs; these are analyzed
dynamically for violations. We refer to this oracle as O6.

Next, we provide an example of a critical section violation
that can lead to livelock. If interrupts are incidentally enabled
while the application is still holding a lock, it is possible for
an interrupt to occur before the lock is released. At that time,
if the ISR tries to acquire the same lock, livelock can occur.

Program E illustrates a scenario in which this can happen.
The original infection occurs after the unsafe operation in
the critical section is executed. The infection (the interrupt
bit is set in foo()) occurs when statement 11 is executed.
This infection can be detected by oracle O6. The fault further
propagates to the code region between the unsafe operation
and the exit of the critical section. Once the lock acquisition
statement (statement 8) is executed by the ISR with input
greater than zero, this infection can be detected by oracle O4,
which can identify potential deadlocks. The actual deadlock
will not occur until this interrupt preempts T1 at some point
within the unprotected code region. If actual deadlocks occur,
oracle O5 can be used to detect such occurrences.

E. Faults Involving Buffer Management

Weak string functions (e.g., strcpy, fprintf, strcat, memcpy,
etc.) in the C library do not automatically perform bounds

T1{
1 . s p i n l o c k i r q ( ) ;
2 . . . .
3 . foo ( ) ; / / f a u l t
4 . . . .
5 . s p i n u n l o c k i r q ( ) ;
6 . . . .
}

ISR{
7 . i f ( i n p u t > 0)
8 . s p i n l o c k ( ) ;
9 . . . .
}

foo ( ){
1 0 . . . .
1 1 . l o c a l i r q e n a b l e ( ) ;
}

PROGRAM E. A second fault involving critical section protection
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i n t main ( i n t argc , char ∗ a rgv [ ] ) {
1 . long d i s t a n c e ;
2 . char ∗buf1 = ( char ∗ ) m a l lo c ( 1 6 ) ;
3 . char ∗buf2 = ( char ∗ ) m a l lo c ( 1 6 ) ;
4 . d i s t a n c e = 5 ;
5 . memset ( buf2 + d i s t a n c e , ’A’ , 1 0 ) ;
6 . s p r i n t f ( buf1 , a rgv [ 1 ] ) ; / / f a u l t
7 . p r i n t f ( ” buf1=\%s ” , buf1 ) ;
8 . p r i n t f ( ” buf2=\%s ” , buf2 + d i s t a n c e ) ;
9 . f r e e ( buf1 ) ;
1 0 . f r e e ( buf2 ) ;
1 1 . re turn 0 ;
}

PROGRAM F. A heap buffer overflow fault

checks; as such they are vulnerable to buffer overflow. When
a statement that causes a buffer to overflow is executed, the
system state is infected, because data is written to memory
outside of the allocated buffer, causing the content of this
memory cell to be incorrect. The fault can further infect the
data state of another variable if it writes the overflowed data
into the memory that is allocated for that variable. Finally, this
infection may propagate to output.

Program F illustrates an example of buffer overflow, that oc-
curs when statement 6 is executed with an input string longer
than 16 characters. Statement 6 writes beyond the boundary
of buf1, causing system state to be infected. This type of
buffer overflow can be detected by memory safety detection
tools such as Valgrind at the infection point. However, this
infection does not propagate to output (statement 8) unless
the length of the input is greater than or equal to 21, such that
the input data overwrites the content in the memory allocated
for buf1. As such, we can detect buffer overflows when a
thread attempts to write to a memory cell (e.g., a variable or
a field of a data structure) and the write operation overflows
the size of the targeted cell.
Oracle implementation. We use a memory safety tool, Val-
grind, to detect heap buffer overflow. Valgrind intercepts mal-
loc calls during application execution to put memory guards
around allocated blocks. A buffer overflow occurs when a
program reads or writes outside an allocated block. We refer
to this oracle as O7.

III. EMPIRICAL STUDY

Our goal is to evaluate the foregoing internal oracles,
comparing them to one another and to output-based oracles.
We consider the following research questions:
RQ1: How do internal oracles compare, in terms of abilities
to detect faults, to output-based oracles and each other?
RQ2: How do internal oracles compare, in terms of tendencies
to produce false-positive or false-negative fault indications, to
output-based oracles and each other?

A. Objects of Analysis

As objects of analysis we chose five concurrent programs
and one device driver. Table I lists these programs and the
numbers of lines of non-comment code they contain (other
columns are described later). Three of the concurrent programs
are from the Inspect benchmark suite [11]: BBUF is an

TABLE I. OBJECT PROGRAM CHARACTERISTICS

Program NLOC Fault Class
I II III IV V

BBUF 256 4(1) 0 0 4 0
DIN.PHIL. 104 3 2(1) 0 1 0
AGET 846 4(1) 0 0 4 6(3)
PFSCAN 752 6 0 0 6 0
BZIP2SMP 4232 11 0 0 6 0
UART 1654 4(1) 0 6 12 0

implementation of a producer and consumer problem, AGET
is a multithreaded FTP client, and PFSCAN is a parallel file
scanner. The fourth program, BZIP2SMP, is a multithreaded
compression program. The fifth program, DININGPHILOSO-
PHER, is an example from the Oracle Thread Analyzer [12].
The sixth program, UART, is a UART device driver from the
Linux kernel. We selected these programs for two reasons:
(1) they are each applicable to one or more of the classes
of faults described in Section II; (2) they include real-world
applications from a widely used benchmark suite, commercial
tools, and a Linux device driver.

Our object programs were not equipped with test cases. For
these programs, a test case must include three components:
(1) test input data and other relevant parameters, (2) specified
thread interleavings [25], and (3) execution locations at which
to invoke interrupts [8], [26]. To create a large number of
test cases representative of those that might be created in
practice, for each program, we first generated descriptions of
valid user input values and command options. We used these
to generate 1000 unique test inputs. (e.g., numbers of threads
ranging from 2 to 100, a file, or strings sent via a UART
console). For each of these test inputs, we assigned a thread
interleaving by randomly selecting a set of program locations
at the granularity of instructions. To run the first five user
applications with the specified interleavings, we added yield
points at the selected locations; this has a high probability
of achieving determinism [25]. To run the OS level program
(UART) with the specified interleavings, we forced interrupts
to occur at particular execution locations that contain data
shared between applications and interrupt handlers by raising
the associated interrupt pins. By generating large numbers of
potential test inputs, this approach lets us compare different
oracles across a large range of such inputs.

To address our research questions we also required faulty
versions of our object programs. Since the programs could
have contained faults initially, we first ran all of the test cases
we had created on each original program using all of our
internal and output-based oracles. These oracles did detect
seven potential faults in the programs, two of which, we
discovered, were false positives. We corrected these faults in
the source code, but saved them for later use in the study.

Five faults are not enough to let us address our research
questions, so we next created additional seeded faults of the
classes described in Section II. To perform this task, we asked
a staff programmer with experience developing embedded sys-
tems, but no knowledge of this study, to create faults from the
fault classes of interest, relying on his own practical experience
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with such faults. For each program, our staff programmer
first identified the statements for which a given fault class is
applicable, and then created potential seeded faults related to
that fault class in those statements. (At this stage, we cannot
assert that the faults being injected can actually be revealed by
some input to the given program; thus, we refer to the faults
as “potential faults”.)1

Given our test cases and sets of potential faults, we elim-
inated any faults that were never executed by any test cases.
These faults cannot be detected by any oracle in the context
of this study, and thus provide no insights into our research
questions. This process left us with the numbers of faults
reported in Table I. The numbers in parentheses denote faults
found in the original programs prior to fault injection.

B. Variables and Measures

Independent Variable. Our independent variable is the oracle
approach used. We consider output-based and internal oracles.
Internal oracles were implemented based on those described in
Section II. To provide output-based oracles, we implemented
output checkers appropriate to the various programs. On BBUF,
we utilized automatable checks of expected output; namely,
(1) “the number of items must be increased by one for
the producer;” (2) “the number of items must be decreased
by one for the consumer;” (3) “the number of items must
be greater or equal than 1 but less than or equal to the
size of buffer;” (4) “deterministic portions of output strings
must match expected contents.” On AGET, if the test case
is a valid website, we checked whether the file has been
successfully downloaded; otherwise we used a differencing
tool on the outputs of the initial and faulty versions of the
program to determine, for each test case t and fault f , whether
t revealed f . The same differencing approach applied on
PFSCAN, UART, and BZIP2SMP. On BZIP2SMP, if the test input
is a valid command, we checked whether the compressed zip
file is valid by decompressing it and comparing it with the
original unzipped file. Finally, for DININGPHILOSOPHER we
checked the following: (1) “program terminates properly (i.e.,
no deadlock)”; (2) “two adjacent philosophers were not in the
eating state simultaneously”; and (3) “deterministic portions
of output strings must match expected contents”.

Dependent Variables. As dependent variables we measure
oracle effectiveness, false positives, and false negatives. We
gathered and we report these metrics for each oracle class
independently in order to assess the classes independently.

To measure oracle effectiveness for a given oracle O,
program P , and fault f of the fault class targeted by O,
we count the number of test cases in the set of test cases
T for P that caused O to report the presence of f . Based
on these observations we calculate the effectiveness of O
in terms of the percentage of the 1000 test cases in T that
cause O to report faults. Reporting percentages across the
large sets of test cases provides a finer-grained assessment of

1Due to space limitations we cannot provide details on all of the fault types
seeded; however, interested readers can obtain all of the programs, faults, test
cases, and oracles by contacting the first author.

oracle performance than, say, simply reporting whether or not
the entire sets revealed faults. Note that, while we calculate
effectiveness measures for all faults, when reporting the overall
effectiveness of specific oracles we do so relative only to
“actual faults”; that is, faults that are not false-positives.

To measure false positives and false negatives, we first
needed to determine which of our seeded potential faults were
in fact actual faults. This required us to determine whether, for
program P and potential fault f , there exists an input to P in
the domain D for P that can reveal f . If one of the test inputs
t in the set of test cases T for P revealed f according to the
output oracle for P , we verified by inspection that the fault
was in fact an actual fault. For any faults not thus revealed, we
inspected P and f to determine whether some fault-revealing
input not in T exists. If we could find such an input, we know
that f is an actual fault. If we could not, f is a non-fault.

Given this fault classification, we say that oracle O for
program P reports a false positive result for potential fault
f if f is a non-fault, and if there exists one or more test cases
t in T for which O reports the existence of f . Further, we say
that O reports a false negative result for potential fault f if f
is an actual fault, and if there exists no test case t in T for
which O reports the existence of f .

C. Study Operation

We executed our test cases on all of the faulty versions
of each object program, with one fault activated on each
execution (to avoid fault-interactions and masking effects, and
to allow us to accurately determine whether each fault was
indeed detected) with all oracles that pertain to that fault class
and that monitor behavior at run-time active in the program.
We then applied oracle O4, which does not monitor behavior
at run-time, to the test execution log for each execution.

D. Threats to Validity

The primary threat to external validity for this study involves
the representativeness of our programs, faults, and test cases
(including inputs and thread interleavings). Other systems
may exhibit different behaviors and cost-benefit tradeoffs,
as may other forms of test cases. Furthermore, our study
considers only a specific set of internal oracles, and specific
instantiations of output-based oracles.

The primary threat to internal validity for this study is
possible faults in the implementation of our approach and in
the tools that we use to perform evaluation. We controlled for
this threat by extensively testing our tools and verifying their
results against a smaller program for which we can determine
correct results. We also chose to use some commonly used
tools (e.g., Valgrind and Simics).

Where construct validity is concerned, our measurements of
false positives and negatives necessarily involve the test cases
being utilized, and thus, our results are relative to those test
cases. Further, while fault detection, false positives, and false
negatives are important metrics, they are not the only possible
ones. Metrics such as the costs of applying techniques and the
human costs of investigating oracle outputs are also of interest.
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FIGURE 1. Oracle effectiveness per oracle

TABLE II. FAULT CLASS I (LOCK MANAGEMENT)

Prog. Fault O1 O
eff. FP FN eff. FP FN

B.B 1(a) 97.8 T 0.0
2 80.9 0.0 T
3 44.4 0.0 T
4 100.0 0.0 T

D.P 1 100.0 0.0 T
2 100.0 0.0 T
3 100.0 0.0 T

AGET 1 78.8 76.7
2 79.8 0.0 T
3 78.9 73.7
4 80.0 31.5

PFSCAN 1 40.0 T 0.0
2 100.0 0.0 T
3 98.6 0.0 T
4 100.0 T 0.0
5 100.0 40.0
6 100.0 100.0

B.S 1 100.0 19.8
2 100.0 20.6
3 100.0 100.0
4 100.0 100.0
5 100.0 62.2
6 100.0 72.8
7 100.0 0.0 T
8 100.0 0.0 T
9 100.0 0.0 T

10 100.0 0.0 T
11(c) 0.0 T 0.2

UART 1 24.0 9.8
4(d) 87.1 T 0.0
5(d) 80.2 T 0.0
7(c) 0.0 T 22.9

E. Results and Analysis

Figure 1 presents oracle oracle effectiveness data. Labels on
the horizontal axis are of the form FaultClass-OracleName,
where FaultClass is one of “I”, “II”, “III”, “IV”, and “V”
and OracleName is “O” for the output-based oracle and “Oi”
(1 ≤ i ≥ 7) indicating an internal oracle applicable to the
given fault class. Fault class IV has two types of faults, IV.a
and IV.b, because each instance of a critical section violation
can lead to either a race (IV.a) or a deadlock (IV.b). Each box
reflects the effectiveness scores measured across all programs
and faults of the given fault class. (The effectiveness scores
reported correspond only to actual faults, not faults signaled
erroneously by an oracle — i.e., false-positives.) Asterisks
reflect means and dark horizontal lines reflect medians.

Tables II – VII list all actual data points measured. To clarify
how to read the tables we refer to Table II as an example. This

TABLE III. FAULT CLASS II (RESOURCE MANAGEMENT)

Prog. Fault O2 O3 O
eff. FP FN eff. FP FN eff. FP FN

D.P 1(b) 1.8 T 0 0
2 66.6 48.6 48.6

TABLE IV. FAULT CLASS III (INTERRUPT MANAGEMENT)

Prog. Fault O4 O5 O
eff. FP FN eff. FP FN eff. FP FN

UART 1 77.1 30.6 30.6
2 77.1 3.5 3.5
3(d) 87.1 T 0.0 0.0
4 74.6 29.4 29.4
5 80.0 12.2 12.2
6(d) 87.1 T 0.0 0.0

table contains results pertinent to Fault Class I. Results are
partitioned per program by horizontal lines, with the program
name given (in some cases abbreviated) in Column 1. For
each program, the faults of Fault Class I that were present in
the program are noted in Column 2; numbers shown in bold
represent the seven faults reported in the original programs,
while others are seeded faults. Lowercase letters appearing in
parentheses following some numbers provide a mechanism for
referencing those later in order to explain specific results.

For each fault listed in the table, columns to the right
provide data on each oracle applied. For each oracle there
are three columns, reflecting the effectiveness score for that
oracle on each fault (.eff), whether the oracle produced a false
positive (FP), and whether the oracle produced a false negative
(FN). Table II reports results for a case in which only one
internal oracle was applied, but several other tables report
results for more than one internal oracle.

1) RQ1: Relative Effectiveness of Oracles: Inspection of
Figure 1 and the data provided in the tables suggests that
in all but three cases (Fault Class II with oracle O3, Fault
Class III with oracle O5 and Fault Class IV.b with oracle O5),
internal oracles had higher effectiveness scores than output-
based oracles. In fact, for each fault class, there exists at
least one internal oracle that outperformed the corresponding
output-based oracle. In two cases (Fault Classes IV.a and IV.b),
there are multiple internal oracles that outperformed the corre-
sponding output-based oracle, with the internal oracles placed
at potential infection points close to the point at which the
fault exists exhibiting greater effectiveness than those placed
at infection points farther away.

To assess whether these observed differences were statisti-
cally significant, we applied Wilcoxon tests to the data sets,
comparing each pair of oracles within each fault class, except
for Fault Class 2 whose data set is too small. Table VIII pro-
vides p-values from each comparison. In all but three cases, the
oracles were statistically significantly different for α = 0.05.
Two of these cases (marked “NA”) were cases mentioned
above in which effectiveness scores were equivalent.

2) RQ2: False Positives and False Negatives: As we an-
ticipated, internal oracles produced more false-positives than
output-based oracles. For the faults our study considered, our
output-based oracles produced no false positives. In contrast,
considering just the most effective internal oracle utilized for
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TABLE V. FAULT CLASS IV.A (CRITICAL SECTIONS)

Prog. Fault O6 O1 O
eff. FP FN eff. FP FN eff. FP FN

B.B 1 28.1 8.5 1.0
2 29.3 10.2 0.9
3 98.1 2.5 21.8
4 100.0 T 0.0 0.0

D.P 1 97.7 T 0.0 0.0
AGET 1 98.3 25.5 24.0

2 96.4 76.6 54.5
3 97.6 78.0 64.1
4 97.8 T 0.0 0.0

PFSCAN 1 100.0 100.0 6.6
2 58.9 0.0 T 0.0 T
4 67.2 T 40.0 T 0.0
5 18.6 0.0 T 0.0 T
6 19.2 T 0.0 0.0
7 19.2 T 0.0 0.0

B.S 1 100.0 100.0 0.0
2 88.8 80.6 10.6
3 100.0 28.3 20.6
4 100.0 100.0 0.0 T
6 98.9 T 0.0 0.0
7 98.3 T 0.0 0.0

UART 1(c) 100.0 0.0 T 22.9
2(c) 100.0 0.0 T 10.8
3 70.8 19.1 3.6
4 77.1 23.2 8.9
5 92.3 T 0.0 0.0
6(d) 100.0 T 80.2 T 0.0

TABLE VI. FAULT CLASS IV.B (CRITICAL SECTIONS)

Prog. Fault O6 O4
eff. FP FN eff. FP FN

UART 1 100.0 77.1
2 100.0 77.1
3 70.8 47.9
4 72.9 44.0
5 92.3 63.4
6 100.0 77.1

Prog. Fault O5 O
eff. FP FN eff. FP FN

UART 1 69.4 69.4
2 29.6 29.6
3 0.0 T 0.0 T
4 0.0 T 0.0 T
5 0.0 T 0.0 T

each fault class, relative to reported faults, we see that:
• Fault Class I: 5 of 32 faults were false positives;
• Fault Class II: 1 of 2 faults were false positives;
• Fault Class III: 2 of 6 faults were false positives;
• Fault Class IV.a, 10 of 27 faults were false positives;
• Fault Class IV.b, no false positives among 6 faults;
• Fault Class V, no false positives among 6 faults;
As an additional observation, on Fault Class IV.a, internal

oracle O1 (a less effective oracle than oracle O6 for that fault
class) produced just two rather than ten false positives.

Turning our attention to false-negatives we see different
results. Internal oracles failed to report actual faults in only
six cases overall (four of these involving the weaker of two
internal oracles on Fault Class IV.a, oracle O1). Output-based
oracles, in contrast, failed to report 25 of the 60 actual faults
present in the programs. All 25 of these faults were reported
by at least one internal oracle.

IV. DISCUSSION AND IMPLICATIONS

We now discuss the results of our study further, focusing
on implications for practitioners and researchers, and specific
instructive instances observed in the study.

TABLE VII. FAULT CLASS V (BUFFER MANAGEMENT)

Prog. Fault O7 O
eff. FP FN eff. FP FN

AGET 1 99.2 0.0 T
2 99.2 0.0 T
3 98.3 0.0 T
4 99.2 99.2
6 99.2 0.0 T
8 98.3 0.0 T

TABLE VIII. P-VALUES FROM COMPARISONS OF EFFECTIVENESS

Class I Class III Class IV.a
O1-O O2-O3 O2-O O3-O O6-O1 O6-O O1-O

3.702e-05 0.0041 0.0041 NA 0.0011 0.0003 0.0500
Class IV.b Class V

O6-O4 O4-O5 O6-O5 O6-O O4-O O5-O O7-O
0.0340 0.0360 0.0360 0.0360 0.0360 NA 0.0533

A. Implications for Practitioners

Our results show that internal oracles can be effective.
Moreover, on every fault class considered, one or more internal
oracle was more effective than output-based oracles.

Where false-positives are concerned, our internal oracles
reported 18, whereas output-based oracles reported none. This
is a potential cause for concern, because engineers forced
to consider fault reports that are false positives may waste
time, and may lose confidence in the oracles. Further explo-
ration of our data revealed, however, that six of the false-
positives flagged by internal oracles involved potential faults
which, though not capable of propagating to output in the
given program, could propagate if the program were used in
conjunction with different interrupt handlers. Arguably, these
potential faults should be corrected.

Conversely, the relative ineffectiveness of output-based or-
acles resulted in 25 false-negatives – cases in which output-
based oracles missed faults, all of which were reported by
internal oracles. For example, in one case, a data race was
detected by an internal oracle, and one thread won the race
and overwrote the data written by another thread, but with
the same value. This is not a benign race because a different
input could cause the output to be affected. In a second case,
a potential deadlock was detected by an internal oracle but
not exposed given the thread interleavings utilized by our
test cases; however, different interleavings could cause the
program to fail. In cases such as these, internal oracles are
better able to detect faults that might otherwise remain hidden.

Finally, further inspection of our results reveals that oracle
performance can differ across classes of systems. For example,
consider two of the internal oracles that did not increase fault
detection effectiveness compared to output-based oracles: the
thread based deadlock (Table III) and interrupt related live lock
(Table IV) oracles. When using these oracles when deadlock
occurred, none of the threads proceeded further. However,
for infinite spin-lock loops occurring in embedded software
with preemptive scheduling or running on multiprocessors, it
is possible for some threads in an application to be “stuck”
while other threads continue to execute, making the application
appear to be responsive, so the actual deadlock and livelock
oracles should still be useful in this case.
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B. Implications for Researchers

Our results show that internal oracles located close to the
points at which errors occur are, in general, more successful at
detecting faults than oracles located at points later in program
execution. The former oracles are also, in general, more likely
than the latter to produce false positives. Our results also
show, however, that the differences between oracles are more
complex than one might imagine.

For example, algorithms for detecting potential deadlock
that operate earlier in program execution do not automatically
identify user-defined synchronization primitives and thus may
miss faults, whereas algorithms for detecting actual deadlock
that operate later in execution can detect them. One method
for mitigating this effect may be to annotate primitives for
potential deadlock detection so that engineers can more easily
determine whether false positives have occurred.

Furthermore, oracles located closer to faults are not always
more effective than those located further from faults in terms
of the fault types they can detect. For example, data race
detection can be applied to both “mismatched lock pairs” and
“missing lock pairs”, while critical section violation detection
can be applied only to “mismatched lock pairs”. While data
race detection may discover a larger number of faults than
critical section violation detection, critical section violation
detection can still cause deadlocks that can be detected by
data race detection oracles. It may be useful to run critical
section violation detection first to correct faults that can be
discovered earlier, and then run data race detection to find
faults involving “missing lock pairs”.

The primary implication of these observations is that re-
searchers should continue to study and compare various in-
ternal oracles to identify those that are more effective, to
determine conditions under which effectiveness may vary, and
to discover mechanisms for improving effectiveness.

C. Key Points in Utilizing Internal Oracles

As we have seen, internal oracles can report more false
positives and negatives than output-based oracles. However,
such incorrect reporting information can still be useful in
helping developers identify intentional data races, limitations
in oracle implementations, or faults that may exist under
different system configurations. Next, we describe some key
points that developers can use to leverage the seemingly wrong
reporting information to identify more faults.

1) Internal oracles are fault-type specific: An internal
oracle can detect only those faults that it has been designed
to detect. Consider the faults labeled “(c)” (four in Tables II
and V); in these cases, output-based oracles detected failures
while at least one internal oracle did not. Because our oracles
were designed to detect only low level data races, they failed
to detect these atomicity violations – a different class of
concurrency faults with characteristics similar to low-level data
races at program output. One solution is to strengthen our
oracles to allow them to detect atomicity violations.

2) Internal oracles are implementation specific: An internal
oracle can detect only those faults that it has been implemented
to detect. Consider the fault labeled “(b)” in Table III. This
fault, a potential deadlock in the DiningPhilosopher program,
was reported by oracle O2 in the original program. On inspec-
tion, we discovered that O2 was implemented to recognize
only synchronization primitives provided by the kernel, not
user-defined synchronization primitives that the program uses.
As such, this fault can also be considered a false positive. To
further enhance the effectiveness of our oracle, we can extend
it to recognize these user-defined primitives.

3) Internal oracles can be predictive: An internal oracle
may report faults that cannot occur in the current configuration
of the system but can occur in different system configurations.
This is true of the faults labeled “(d)” (several occurrences
across several tables). Consider Fault 6 in UART (Table IV)
in particular. In this case, the interrupt handler under test
never interleaves code within the different regions in which
the potential fault exists. This means that within this program,
with this interrupt handler, the potential fault cannot propagate
to output. However, this does not imply that the potential
fault should be ignored, because there could be other interrupt
handlers which, in other environments, might interact with the
fault differently. Arguably, pointing out the presence of such
faults to developers, even when they represent false-positives,
may be useful.

4) Detected violations may be intentional: An internal
oracle may detect a violation that does not lead to failure.
Consider the fault labeled “(a)” in Table II. This fault, a
potential data race fault in BoundedBuffer, was reported by
oracle O1 in the original program. The fault occurs on an
unsynchronized counter used for profiling. On inspection, we
discovered that the developers intentionally left the variable
unprotected to achieve better performance [27]. As such, each
instance of this intentional fault, while being classified by
oracle O1 as a race, can be considered a false positive because
the developers were aware of its existence and the fault is not
harmful to the system.

V. RELATED WORK

One common approach used to verify programs is to apply
static analysis techniques to discover paths and regions in code
that might be susceptible to certain types of property violations
(e.g., [23], [28]) including memory safety and interrupt us-
age [29], [24]. Drawbacks of static analysis involve scalability
problems and the difficulties of annotating all operations on
manipulated hardware bits. Testing, which is the focus of this
work, can be a less expensive, effective way to find faults.

There has been a great deal of research on basic techniques
for testing concurrent programs for data races [14], actual
deadlock [19], [30], and potential deadlock [20], [31]. Some
techniques have been applied to large systems (e.g., Apache,
Mozilla) [32], [33], [34]. These techniques use algorithms to
analyze synchronization operations (e.g., lock acquire/release)
among multiple threads in the execution traces of successful
program executions. Researchers have also extended these
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algorithms to test for concurrency faults that are related
to interrupts [8], [26], [35]. To increase the possibility of
exposing faults, techniques such as “active testing” [25] have
also been proposed to permute thread interleaving orders (we
use this approach to control thread interleavings in test cases.)

There has been work on test case generation using internal
test oracles to increase the chance of exposing faults [36],
[37]. Godefroid et al. [36] use dynamic symbolic execution
to generate test cases that can trigger property violations by
following the same paths executed by prior test cases that do
not exhibit such violations. Our internal oracles are instances
of such oracles. However, our work does not aim to develop
new techniques for detecting violations of specific properties;
instead, we use these properties in internal oracles and apply
these oracles to different fault types with the goal of increasing
the effectiveness of testing.

There has been some research on how internal test oracles
affect testing effectiveness. Memon et al. [5] show that internal
oracles can reveal faults more effectively than output oracles
when applied to GUIs. Staats et al. [6] provide a theoretical
foundation describing the importance of oracles in software
testing. Our own previous work [7] has also shown that internal
oracles can detect faults beyond those detectable by simple
output-based oracles. None of this work considers factors such
as false positives and negatives, or the effectiveness of different
oracles for certain types of faults.

VI. CONCLUSION

We have presented an empirical study of a set of internal
oracles that monitor internal program state rather than output
to detect runtime faults common to modern software systems.
Our results show that these oracles can be significantly more
effective than output-based oracles at detecting faults of the
classes considered.

In future work, we intend to extend our study of internal
oracles to consider other runtime errors such as atomicity
violations and memory leaks. We also intend to investigate
how the depth of monitoring affects oracle performance.
Finally, we intend to perform more extensive empirical studies,
including studies in which we examine the ability of engineers
to make use of our oracles.
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