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Overaccumulation of g-Glutamylcysteine in a
Jasmonate-Hypersensitive Arabidopsis Mutant Causes
Jasmonate-Dependent Growth Inhibition1[OPEN]

Hsin-Ho Wei, Martha Rowe, Jean-Jack M. Riethoven, Ryan Grove, Jiri Adamec,
Yusuke Jikumaru, and Paul Staswick*

Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583 (H.-H.W., M.R.,
P.S.); Center for Biotechnology (J.-J.M.R.), and Department of Biochemistry (R.G., J.A.), University of Nebraska,
Lincoln, Nebraska 68588; and Riken Plant Science Center, Yokohama 230–0045, Japan (Y.J.)

ORCID IDs: 0000-0002-2709-7880 (J.-J.M.R.); 0000-0002-8810-6509 (Y.J.); 0000-0003-2798-0275 (P.S.).

Glutathione (GSH) is essential for many aspects of plant biology and is associated with jasmonate signaling in stress responses.
We characterized an Arabidopsis (Arabidopsis thaliana) jasmonate-hypersensitive mutant (jah2) with seedling root growth 100-fold
more sensitive to inhibition by the hormone jasmonyl-isoleucine than the wild type. Genetic mapping and genome sequencing
determined that the mutation is in intron 6 of GLUTATHIONE SYNTHETASE2, encoding the enzyme that converts
g-glutamylcysteine (g-EC) to GSH. The level of GSH in jah2 was 71% of the wild type, while the phytoalexin-deficient2-1 (pad2-1)
mutant, defective in GSH1 and having only 27% of wild-type GSH level, was not jasmonate hypersensitive. Growth defects for jah2,
but not pad2, were also seen in plants grown to maturity. Surprisingly, all phenotypes in the jah2 pad2-1 double mutant were
weaker than in jah2. Quantification of g-EC indicated these defects result from hyperaccumulation of this GSH precursor by 294-
and 65-fold in jah2 and the double mutant, respectively. g-EC reportedly partially substitutes for loss of GSH, but growth inhibition
seen here was likely not due to an excess of total glutathione plus g-EC because their sum in jah2 pad2-1 was only 16% greater than
in the wild type. Further, the jah2 phenotypes were lost in a jasmonic acid biosynthesis mutant background, indicating the effect of
g-EC is mediated through jasmonate signaling and not as a direct result of perturbed redox status.

Glutathione (GSH) is an essential thiol of most higher
organisms, including plants. Primarily found in the re-
duced form, its roles in maintaining a reduced intracel-
lular state are numerous and well characterized (Foyer
andNoctor, 2011; Noctor et al., 2011). Additionally, GSH
is involved in detoxifying reactive oxygen species, heavy
metal detoxification through phytochelatins, elimination
of xenobiotics, and signaling of plant development and
stress responses (Rouhier et al., 2008).

GSH is synthesized in two steps. The first links Cys to
the g-carboxyl group of Glu through an amide bond cat-
alyzed by g-glutamylcysteine (g-EC) synthetase, encoded

by the single gene GSH1 in Arabidopsis (Arabidopsis
thaliana). Gly is then added by GSH synthetase (GSH-S),
also encoded by a single gene (GSH2). GSH is typically
present at millimolar levels in plants, and although
g-EC is normally present at only a few percent of this
amount, there is evidence that g-EC has redox activi-
ties in Arabidopsis (Pasternak et al., 2008).

Insertional knockouts ofGSH1 are embryo lethal, and
rootmeristemless1, with only 5% of wild-type GSH level,
lacks a root apical meristem due to cell cycle arrest
(Vernoux et al., 2000; Cairns et al., 2006). Other mutants
producing 25% to 50% of wild-type GSH levels grow
normally but exhibit defects under various stress con-
ditions. For example, phytoalexin-deficient2-1 (pad2-1)
and cadmium sensitive2 mutants are susceptible to path-
ogens and hypersensitive to Cd, respectively, while reg-
ulator of axillary meristems1 causes elevated expression of
ASCORBATE PEROXIDASE2 under non-photooxidative-
stress conditions (Glazebrook and Ausubel, 1994;
Cobbett et al., 1998; Ball et al., 2004).

GSH2 null alleles (gsh2-1 and gsh2-2) are also lethal,
although plants survive to the early seedling stage
(Pasternak et al., 2008). Survival past the embryo stage
was attributed to partial complementation of GSH ac-
tivity by g-EC, which accumulates to excessive levels
in gsh2-1, and the mutant is partially rescued by GSH
supplementation. Missense and nonsense GSH2 alleles
ofmembrane traffickingmutants (gsh2-3–gsh2-5) disrupt

1 This work was supported in part by the U.S. Department of Ag-
riculture National Institute of Food and Agriculture (Hatch project
no. NEB–22–357), the National Science Foundation (grant no. IOS–
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endoplasmic reticulum (ER) organization and also arrest
growth in early seedling development, while a weaker
allele (gsh2-6) reachedmaturity but was smaller than the
wild type (Au et al., 2012). A screen for reduced response
to Cd also yielded a viable missense mutant of GSH2
(nonresponse or reduced response to Cd2) with approxi-
mately 75% of the wild-type GSH level (Jobe et al., 2012).

Plant oxidative stress responses involve both redox
signaling through GSH and jasmonate hormonal sig-
naling, and gene expression studies have clearly linked
these two signaling systems. GSH biosynthesis and
metabolism genes are induced by jasmonate, while
manipulating GSH level or redox status in various
mutants alters expression of genes for jasmonate bio-
synthesis and signaling (Xiang and Oliver, 1998;
Mhamdi et al., 2010; Han et al., 2013). GSH and jasmo-
nate are also associated with protective glucosinolate
production in response to insect feeding (Noctor et al.,
2011). For example, pad2-1 is deficient in glucosinolates
and more susceptible to insects, while several studies
have shown jasmonate induces glucosinolates (Brader
et al., 2001; Mikkelsen et al., 2003; Sasaki-Sekimoto et al.,
2005; Schlaeppi et al., 2008). Liu et al. (2010) isolated
jasmonic acid hypersensitive1 (jah1), an Arabidopsis mu-
tant with greater inhibition of root growth than the wild
type in the presence of jasmonic acid (JA). The affected
gene encodes a cytochrome P450 (CYP82C3) involved in
indole glucosinolate production, and this mutant was
more susceptible to Botrytis cinerea.

The basic mechanism of jasmonate signal transduc-
tion and some of the downstream responses emanating
from it are now well understood (Browse, 2009;
Wasternack and Hause, 2013). However, the mecha-
nisms by which jasmonate and GSH coordinate their
activities to mediate oxidative stress and other re-
sponses are not known. This study characterized, to our
knowledge, a new jasmonate-hypersensitive mutant
that accumulates excess g-EC due to a defect in GSH2,
but GSH is only modestly reduced. Results show that
elevated g-EC is deleterious to plant growth through a
jasmonate-dependent mechanism.

RESULTS

Characterization of a New Jasmonate-Hypersensitive
Mutant

Screening of Arabidopsis seedlings from an ethyl
methanesulfonate mutagenized population (Columbia
[Col-0] ecotype) in the presence of the auxin inhibitor
JA-Trp yielded amutant that wasmarkedly suppressed
in root growth compared with the wild type (Staswick,
2009). Further analysis showed the phenotype was not
due to JA-Trp directly but rather to small amounts of
JA, apparently either aminor contaminant in the JA-Trp
preparation or produced by conjugate hydrolysis after
JA-Trp assimilation. This mutant has been called jah2
(Wei, 2012). Figure 1A shows that 50% inhibition of root
growth for jah2 occurred at approximately 50 nM for both

the active hormone JA-Ile and jasmonic acidmethylester
(MeJA), the latter being metabolized to JA-Ile in planta.
The concentration necessary for similar inhibition of
wild-type roots was approximately 100-fold higher.
Shorter roots in the absence of jasmonate were also
consistently seen for jah2: 21.7 mm (SE = 0.8) for the wild
type and 16.4 mm (SE = 0.5) for jah2 in the experiment
described here (ANOVA, P = 1.22 3 10–6, n = 18).

To assess whether response to other hormones was
affected in jah2, root growth was determined in the
presence of inhibiting concentrations of indole-3-acetic
acid (IAA) or the ethylene precursor ACC. We found no
evidence that jah2 root growth on IAA was affected
differently than for the wild type (Fig. 1B). Growth on
aminocyclopropane-1-carboxylic acid (ACC)was actually
greater for jah2 than the wild type, although the concen-
tration for 50% inhibition was only about 2-fold higher.

To test whether the hyperresponse to jasmonate was
dependent on the CORONATINE INSENSITIVE1 (COI1)
jasmonate receptor-signaling pathway, we evaluated
jah2 root growth in a coi1 mutant background. On me-
dium lacking added MeJA, jah2 coi1 was restored to
wild-type root length (Fig. 1C). On 0.5 mM MeJA, the
double mutant jah2 coi1 was also not significantly dif-
ferent from the wild type, while jah2 seedlings hetero-
zygous for the recessive coi1mutation were only slightly
longer than jah2 (Fig. 1D). Thus, the short-root pheno-
type of jah2 is largely dependent on the jasmonate-
signaling pathway involving JA-Ile and COI1.

The jasmonate content of fully expanded jah2 leaves
was determined to assesswhether differences in synthesis
or metabolism of jasmonates might explain the hyper-
sensitivity (Suza and Staswick, 2008). The basal level of JA
was 39.8 (SE = 10.2) and 29.7 (SE = 3.7) pmol g–1 fresh
weight (FW) for the wild type and jah2, respectively, but
these were not significantly different (ANOVA, P = 0.399,
n = 3 biological replicates). The basal level of the jasmo-
nate signal, JA-Ile, was undetectable in both genotypes.
JA and JA-Ile at 0.5, 1, 2.5, and 6 h following leaf
wounding also showed essentially the same kinetics and
quantity of accumulation in the wild type and jah2 (data
not shown) as seen previously (Suza and Staswick, 2008).
These results suggest that hypersensitivity in jah2 is not
due to a differential ability to accumulate or metabolize
JA or JA-Ile compared with the wild type.

jah2 Is Defective in GLUTATHIONE SYNTHETASE2

Figure 2A summarizes results from genomic map-
ping with PCR-based markers that placed the JAH2
locus on chromosome 5 between nucleotides 9,598,367
and 9,775,141, an interval containing at least 60 putative
open reading frames. Thus, jah2 defines a different lo-
cus than jah1 (At4g31970), which is located on chro-
mosome 4. We next used whole-genome sequencing to
search for single nucleotide polymorphisms (SNPs)
compared with the wild type, possibly caused by ethyl
methanesulfonate mutagenesis. The jah2 sequence data
were aligned with the wild-type Col-0 reference genome
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(see “Materials and Methods” and Supplemental Table
S1). Within the mapped interval, only two strong can-
didates for polymorphisms were found: G-to-A transi-
tions at positions 9,669,462 and 9,747,219. The latter is in
an intergenic region, while the first is in intron 6 ofGSH2
(Fig. 2A).
The polymorphism in GSH2 creates an SspI restriction

endonuclease site that was used to develop a genomic
cleaved amplified polymorphic sequence (CAPS) marker
using the PCR primer sites shown (Fig. 2A). Analysis by
PCR confirmed the nucleotide change in jah2 (data not
shown).GSH2 intron 6 is unusual in that it containsAT-AC
ends rather than the typical GT-AG ends. These rare
introns are excised via the U12 spliceosome, rather than
the U2 complex used for most introns (Sharp and Burge,
1997; Lewandowska et al., 2004). A distinguishing fea-
ture of U12-spliced introns is a highly conserved
ATATCCT sequence at their 59 end. The polymorphism
in the jah2 allele occurs at the fifth nucleotide of this se-
quence, a C-to-T transition, suggesting it might affect
processing or stability of the GSH2 transcript. Northern-
blot hybridization was used to compare GSH2 tran-
scripts from leaves of the wild type and jah2. GSH2 is
up-regulated by jasmonate, but both the basal and in-
duced transcript levels were markedly lower in jah2
comparedwith thewild type (Fig. 2B). Further, themajor
transcript in the mutant was larger, possibly the result of
defective splicing. To test this hypothesis, we analyzed

complementary DNA (cDNA) by PCR with the primers
noted above. The expected product size for thewild type
is 297 bp, consistent with what is seen in Figure 2C. jah2
also produced a minor product of this size, but the ma-
jority of DNAwas about 100 bp larger. This is consistent
with the retention in the cDNA of intron 6, which is
108 bp. Digestion of the samples with SspI confirmed the
presence of this restriction site only in the larger frag-
ment from jah2 but not in the smaller fragment from the
wild type or jah2 (Fig. 2C). Together, this evidence sug-
gests that a substantial portion of the jah2 GSH2mRNA
retains intron 6, although a minor amount appears to be
correctly processed at this site.

To examine whether a defective GSH2 is responsible
for the root phenotype of jah2, we transformed the mu-
tant with a wild-type GSH2 cDNA regulated by the
Cauliflower mosaic virus 35S promoter. Analysis of cDNA
by PCR (Fig. 2D) shows that in addition to the upper
intron-containing PCR product, two independently
transformed lines (jah2:GSH4-3 and jah2:GSH16-3) con-
tain amuch stronger band, consistent with the wild-type
PCR product, indicating the wild-type transgene is ef-
fectively expressed. Figure 3A shows that root growth of
the complemented jah2 lines onMeJAwas clearly greater
than for jah2, nearly or completely restoring it to wild-
type growth, depending on MeJA concentration.

GSH synthetase enzyme activity was also examined.
Activity in jah2was only approximately 10% of thewild

Figure 1. Characterization of jah2.A, Primary
root growth of the wild type (WT) and jah2
on agar plates in the presence of JA-Ile or
MeJA. Length was measured after 5 d of
growth, and values are means of 18 seed-
lings, expressed as percentage of length for
each genotype in the absence of jasmonate.
Error bars are 95% confidence intervals. B,
Same as A for growth on IAA or the ethylene
precursor ACC (n = 20 seedlings). C, Growth
of jah2 roots in the coi1 jasmonate core-
ceptor mutant background. Seeds from a
jah2 homozygous plant segregating for
coi1 were grown on the surface of vertical
agar plates on control medium. Five-day-old
seedlings were measured and genotyped for
COI1. jj indicates homozygous for jah2;
cc indicates homozygous for coi1 mutant;
and CC and Cc indicate the wild type and
heterozygous (wild phenotype) for COI1,
respectively. Error bars show SE, and means
significantly different are denoted with dif-
ferent letters (ANOVA, P # 0.01, n = 10
seedlings). D, As in C, except growth was
6 d on 0.5 mM MeJA (n = 15).
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type, while for the two transformants, activity was re-
stored to essentially the same as wild-type level (Fig.
3B). This evidence further suggests that the phenotype
in jah2 is due to a loss of GSH2 function. To explore
whether a GSH deficiency could be the cause of root
jasmonate hypersensitivity, we attempted to comple-
ment the phenotype with exogenous GSH. In the ab-
sence of MeJA, GSH at 0.5 mM restored jah2 mutant
roots to wild-type length (Fig. 3C). In the presence of
0.5 mM MeJA, 1 mM GSH complemented the mutant to
wild-type growth. In both cases, GSH had little or no
inhibitory effect until concentrations were above 1 mM.

The jah2 Phenotype Is Not Due to GSH Deficiency

Although complementation with exogenous GSH
suggested the defect in jah2 might be a deficiency of
GSH, the value determined by gas chromatography

(GC)/mass spectrometry (MS) for total glutathione in
jah2 was only about 30% less than in the wild type
(Table I). Accuracy of this assay was enhanced by the
synthesis of stable isotopes of GSH and g-EC for use as
internal standards. GSH was also determined by an
independent liquid chromatography (LC)/MS method
that distinguished between reduced and oxidized GSH
(GSSG). This method also found the quantity of both

Figure 2. Identification of the jah2 mutation. A, The locus mapped
between CAPS markers indicated on chromosome 2; number of re-
combinant chromosomes in 466 F2 individuals shown at top. Genome
sequence analysis found an SNP in intron 6 of GSH2 (At5G27380.1).
Reference genome sense strand forGSH2 surrounding the SNP is shown
at the bottom, with t above the sequence indicating the C-to-T transition
in jah2. Underlined nucleotides denote the SspI restriction site created
in jah2. Short arrows above exons 5 and 8 indicate primer sites for PCR
analysis. B, Northern-blot hybridization of RNA fromwild-type (W) and
jah2 (j) seedlings grown 6 d in liquid medium followed by 0-, 2-, or 6-h
incubation in 10 mM MeJA. Hybridization was with a full-length GSH2
cDNA probe. Bottom section shows total RNA from the original gel
stained with ethidium bromide. C, PCR of cDNA over the interval
flanked by primer sites in A. To the right are the same samples digested
with SspI. Molecular weight markers at the left are at 100-bp intervals,
starting with 100 bp at the bottom. D, PCR analysis of cDNA from two
transformed jah2 lines complemented with the full-length wild-type
GSH2 cDNA, jah2:GSH4-3 (4), and jah2:GSH16-3 (16). To the right are
the same cDNA samples amplified with ACTIN8 primers as a control.

Figure 3. Mutant characterization. A, Complementation of the jah2 root
phenotype with a GSH2 cDNA transgene. T4-3 and T16-3 are the
transformants described in Figure 2. Seedling roots after 5 d growth on
MeJA. Errors are 95% confidence intervals (n = 20). Asterisks indicate
significant difference from thewild type (WT)within treatments (ANOVA,
P# 0.05). B, GSH2 enzyme activity in leaves. Prot., Protein. C, Seedling
root growthwith exogenousGSH.Measurementswere after 6 d of growth
with supplementations at initial concentrations as indicated. Error bars
are SE (n=20 seedlings). Asterisks indicate jah2 significantly different from
the wild type within treatments (ANOVA, P # 0.01).
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were only modestly lower in jah2 than in the wild type
(Supplemental Fig. S1). As expected, in these unstressed
plants, the amount of GSSG was approximately 10% of
total glutathione for all genotypes (Noctor et al., 2011).
The pad2-1mutant that affectsGSH1 had only about 25%
of the wild-type level of total glutathione (Table I;
Supplemental Fig. S1), consistent with published results,
and the double mutant jah2 pad2-1 contained somewhat
less GSH than pad2-1 (Parisy et al., 2007).
The much lower levels of GSH in pad2-1 and the

double mutant than in jah2 prompted us to investigate
their root response to MeJA. Surprisingly, pad2-1 was
no more sensitive than the wild type when grown on
1 and 5 mM MeJA (Fig. 4A). Furthermore, the double
mutant was less hypersensitive than jah2, even though
it contained the least amount of GSH.
The discrepancy between phenotype and GSH levels

among these mutants showed that GSH deficiency was
not the cause of the hyperresponse in jah2. An alternate
hypothesis is that jah2 overaccumulates the biosyn-
thetic intermediate g-EC due to insufficient GSH-S en-
zyme activity. Consistent with this, jah2 accumulated
g-EC to 1,764 nmol g–1 FW, which is 294-fold higher
than in the wild type, but still only 4.5 times the level of
GSH in the wild type (Table I). Of the total g-EC in jah2,
32.9% (SE = 3.1, n = 4) was in the oxidized form (data not
shown). The double mutant had 394 nmol g–1 FW of
g-EC, approximately 66-fold higher than in the wild
type, but essentially the same level as GSH in the wild
type. In the jah2 lines complemented for GSH2 by
transformation, g-EC was reduced to near wild-type
level (Table I).
We next determined whether exogenous g-EC

inhibited seedling root growth. In the absence of MeJA,
0.2 mM g-EC resulted in 87% and 82% of the growth on
control medium for the wild type and pad2-1, respec-
tively (Fig. 4B, bar 1 for each genotype). By contrast,
growth of jah2was not significantly reduced by g-EC in
the absence of exogenousMeJA (100% of control), while
only a 5% reduction occurred in the double mutant. In

the presence of MeJA at 0.2 and 1 mM, g-EC further
inhibited growth in the wild type and pad2-1 (bars 2
versus 3 and 4 versus 5 for each genotype). By contrast,
g-EC did not further reduce growth onMeJA for jah2 or
jah2 pad2-1, possibly because endogenous g-EC levels
were already sufficiently high to have the maximum
inhibitory effect. Altogether, the results support the
hypothesis that excess accumulation of g-EC, not a
deficiency in GSH, leads to jasmonate-hypersensitive
root growth.

The role of excess g-EC in hypersensitivity is at odds
with the fact that exogenous GSH complements the
root phenotype of jah2 (Fig. 3C). One possible expla-
nation is that GSH reduces g-EC accumulation by
feedback inhibition of GSH-S enzyme activity (Hell
and Bergmann, 1990). The level of g-EC in jah2 seed-
ling roots was more than twice that determined for
aerial tissue (Table I). Growth for 6 d on agar plates
containing 1 mM GSH reduced this level by nearly
75%. However, g-EC was still greatly above that in the
wild-type control, suggesting that feedback inhibition
may not be the only mechanism by which GSH re-
stores root growth in jah2.

jah2 Plants Are Compromised in Growth in Soil

Growth of jah2 plants in soil consistently resulted in
smaller rosettes, fewer leaves, and earlier flowering
than the wild type. Representative plants at 16 d after
seed sowing are shown in Figure 5A. Pasteurized soil
and a clean growth incubator were used to limit pos-
sible effects of pests or pathogens. jah2 plants exhibited
a stunted growth phenotype with shorter leaf blades
and petioles. As seen for root sensitivity to MeJA, the
double mutant was intermediate in phenotype between
the single mutant and the wild type. Mean diameter of
rosettes, measured as the greatest distance between two
leaf tips at 20 d after planting, were 22.7 (SE = 1.3 mm),
31.7 (SE = 0.9 mm), and 45.6 mm (SE = 1.1 mm) for jah2,
jah2 pad2-1, and the wild type, respectively. Each mean
was significantly different from the other two
(ANOVA, P # 0.1, n = 19 plants each). The growth of
pad2-1 was not different from the wild type, consistent
with observations of others (Parisy et al., 2007). Similar
results were found in three independent experiments.
Leaf numbers on days 19, 23, and 28 followed the same
trend, with significantly fewer leaves than thewild type
for jah2 and jah2 pad2-1 on all days, except the difference
was not significant on day 28 for the double mutant
(Fig. 5B). The double mutant also had significantly
more leaves than jah2 on all days examined. Despite
their delayed vegetative development, jah2 plants
flowered earlier than the wild type, reaching approxi-
mately 50%onday30,while thewild type and pad2-1were
approximately 6 d later for 50% flowering (Fig. 5C).
Again, the double mutant was intermediate in flow-
ering time. Transgenically complemented jah2 was
phenotypically the same as the wild type for all mea-
surements shown here (data not shown).

Table I. Quantitation of thiols by GC/MS

Values are means of three replicates (SE). Values with same letter for
each thiol for aerial tissue are not significantly different (ANOVA,
P , 0.05). nd, Not determined.

Sample GSH g-EC

nmol 3 g–1 FW
Aerial tissue

Wild type 395.6 (14.2)a 6.0 (0.5)a

jah2 281.1 (15.0)b 1,764.0 (172.2)b

pad2 109.2 (7.0)c 3.3 (0.1)c

jah2 pad2 72.2 (6.8)c 393.5 (44.8)d

jah2:GSH4-3 278.9 (38.2)b 15.0 (1.4)e

jah2:GSH16-3 348.9 (35.5)a,b 9.8 (0.7)a,e

dde2 jah2 238.8 (31.8)b 1,209.0 (60.8)f

Seedling roots
Wild-type control nd 6.9 (0.8)
jah2 control nd 4,118.7 (210.9)
jah2 plus GSH nd 1,180.4 (157.5)
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Growth Inhibition Is Jasmonate Dependent

To assess whether these growth defects are jasmonate
dependent, we combined jah2 with the delayed dehis-
cence2-2 (dde2-2) allele, which is a mutation in the
ALLENE OXIDE SYNTHASE gene, leading to essen-
tially no JA accumulation (von Malek et al., 2002).
Growth of this double mutant was restored to essen-
tially the same as the wild type and the dde2-2 mutant
alone (Fig. 5D). Leaf number for the double mutant was
also not different from the wild type, and flowering
time was only slightly earlier than the wild type, but
clearly later than jah2 (Fig. 5, E and F). As expected,
seedling root growth in the double mutant exhibited
the same sensitivity to jasmonate as for jah2, when
MeJA was supplied exogenously (Fig. 5G). We also
examined whether the g-EC content of jah2 dde2-2 was
altered compared with jah2. g-EC in jah2 dde2-1 was
reduced by approximately 30% compared with jah2,
while GSH was not significantly different from jah2.
Therefore, restored growth in the double mutant was
not due to a marked decline in g-EC, confirming that
endogenous jasmonate is the primary factor inhibiting
growth in jah2.

Several Jasmonate-Responsive Genes Are Not
Hypersensitive to Jasmonate in jah2

To assess whether jasmonate-dependent gene ex-
pression is also hypersensitive in jah2, we examined
induction of several genes byMeJA in 7-d-old seedlings
grown in sterile liquid culture. A relatively low con-
centration of MeJA (2 mM) and early induction time
points were examined to maximize the opportunity to
detect a hyperresponse. Well-characterized representa-
tive genes for JA biosynthesis (OXOPHYTODIENOATE
REDUCTASE3 and LIPOXYGENASE2), jasmonate sig-
naling (JASMONATE ZIMDOMAIN1 [JAZ1], JAZ9, and
JAZ10), and defense response (PLANT DEFENSIN1.2
[PDF1.2] and THIONIN2.1 [THI2.1]) and VEGETATIVE
STORAGE PROTEIN1 (VSP1) and VSP2 were analyzed
by semiquantitative PCR or northern-blot hybridization.
For these experiments, seedlings for each time point and
genotype originated from separate cultures. Figure 6
shows that all gene transcripts were elevated in response
to MeJA, but there was no evidence for a hyperresponse
in jah2 relative to thewild type, either in degree or timing
of induction. In fact, PDF1.2 transcript was lower in the
mutant after 12 and 24 h, although not different from the
wild type up to 6 h. Transcripts forVSP2 and JAZ10were
also modestly lower in jah2 at several time points.
Whatever the mechanism of root hypersensitivity to
exogenous MeJA, it does not extend generally to hy-
persensitive induction of the genes examined here.

DISCUSSION

A major advance in this study is that we have clearly
separated effects of excess g-EC from those of GSH
deficiency in relation to plant growth and jasmonate
response. The leaky mutation in jah2 permits hyper-
accumulation of g-EC, with minimal effect on the
amount of GSH. Null GSH2 alleles vastly overaccumu-
late g-EC but are lethal. Previously described leaky al-
leles accumulating several times more g-EC than jah2
(e.g. gsh2-1–gsh2-6) also are more deficient in GSH,
making interpretation of their phenotypes less clear. In
fact, growth deficiency in these mutants has previously
been attributed to insufficient GSH, which the excess
g-EC incompletely compensates for (Pasternak et al.,
2008; Au et al., 2012). By contrast, our results indicate
that an excess of g-EC with near normal levels of GSH
inhibits growth, while similar defects were not found in
pad2-1, which has much less GSH and near normal g-EC
level. Further, phenotypes were less severe in the double
mutant jah2 pad2-1, apparently due to its decreased g-EC
accumulation compared with jah2. The sum of GSH and
g-EC was only slightly higher in the symptomatic dou-
ble mutant than in the wild type, suggesting it is not an
excess of total thiols that is detrimental.

The level of g-EC in wild-type plants is typically only
a few percent of the GSH (Cairns et al., 2006; Pasternak
et al., 2008; Au et al., 2012). Our results clearly dem-
onstrate that g-EC has unique activities compared with

Figure 4. Mutant primary root growth. A, Growth onMeJA as described
in Figure 3A. B, Root growth on MeJA and g-EC at indicated initial
concentrations. Values are percentages of growth for 6 d on control
medium for each genotype, with 95% confidence intervals shown (n =
25 seedlings). Within genotypes, means with same letter are not signifi-
cantly different (ANOVA, P # 0.01). WT, Wild type.
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GSH, requiring its tight control in plants. This is ac-
complished primarily by conversion of g-EC to GSH.
Although jah2 has only 4.5 times more g-EC than the
normal amount of GSH, and g-EC level in jah2 pad2-1 is
equal to that of GSH in the wild type, both are com-
promised in growth. By contrast, GSH up to 20-fold
higher than normal in transgenic tobacco (Nicotiana
tabacum) plants expressing a bifunctional g-EC-ligase/
GSH-S had no phenotypic effect (Liedschulte et al.,
2010). On the other hand, overexpression of a g-EC-
ligase in tobacco resulting in up to 25-fold elevated g-EC
yielded plants displaying pathogenesis-related necrotic
lesions, although these plants also had 3 to 5 times the
normal GSH level (Creissen et al., 1999). We saw no
evidence of lesions in jah2 despite having far more g-EC

than the tobacco lines, suggesting that the consequence
of excess g-EC may vary with plant species.

Supplementation of medium with GSH restored
normal jasmonate sensitivity in jah2. Although inter-
pretation of these results is complicated by the fact that
GSH in growth medium is unstable, the nearly 4-fold
decrease in root g-EC under this condition is consistent
with negative feedback inhibition on g-EC synthetase
enzyme activity (Hell and Bergmann, 1990). However,
g-EC was still almost 170-fold higher than in control
wild-type roots, suggesting othermechanismsmay also
be involved. Exogenous GSH might provide a higher
ratio of GSH to g-EC, possibly ameliorating some of the
negative effects of excess g-EC. Seedling lethality in
gsh2 null alleles, which are devoid of GSH, is also

Figure 5. Growth of mutants in soil. A,
Image at 16 d after planting, 11-h-light/
13-h-dark photoperiod. B, Number of
leaves in A at least 1 mm across on days
indicated. Values are means with SE (n =
23 plants). Means with same letter are
not significantly different between geno-
types on the indicated day after planting
(ANOVA, P# 0.01). C, Mean number of
days to flower for plants in A and in a
second independent experiment. Bars
show SE (n = 23 plants). D, Growth of
jah2 in the dde2 JA-deficient back-
ground at 20 d of growth, 12-h/12-h
photoperiod. E, Same measurement as
for B for plants described in D. Asterisks
indicate significant difference from the
wild type (WT) on indicatedday (ANOVA,
P # 0.01). F, Number of days to flower
(n = 20 plants). G,Mean root length (7 d)
with SE (n = 17). Means with same letter
are not significantly different within treat-
ments (ANOVA, P# 0.01).
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partially rescued by exogenous GSH. In addition to
supplying necessary GSH, it is possible that the excess
GSH in this case helps compensate for the high level of
g-EC as well (Pasternak et al., 2008). Au et al. (2012)
characterized several secretory membrane-trafficking
mutants that are viable gsh2 alleles but more severe
than jah2. Similar to what we found, GSH at 1 mM re-
stored seedling root growth of gsh2-5 to normal. This
mutant accumulates about 30% of normal GSH and a
little more than twice the g-EC compared with our
mutant. In addition to ER defects, growth of gsh2-5was
strongly inhibited at the seedling stage. Partial comple-
mentation of this phenotype with GSH led the authors
to conclude that a deficiency in GSH was responsible
for the inhibited growth, although disruption of ER

formation was attributed to the excess g-EC (Au et al.,
2012). However, the fact that pad2-1 has similarly low
GSH levels as gsh2-5, yet shows no seedling abnormali-
ties, suggests that the vast excess of g-EC is primarily
responsible for the growth defects in the gsh2-5 allele.

As already noted, the mechanism for g-EC activity in
jah2 does not appear to result from an excess of total
glutathione plus g-EC, althoughwe have not quantified
other thiols (e.g. Cys). It is possible that g-EC, with an
active sulfhydryl, interferes with GSH by interacting
with components normally targeted byGSH, but it then
cannot carry out the necessary functions of GSH. Al-
ternatively, rather than simply being an intermediate in
GSH synthesis, g-EC might have unrecognized and
unique roles in redox or signaling responses that, nev-
ertheless, require it to be in limited quantity or in the
proper balancewithGSH. Redox activities for g-EC that
are somewhat different, yet partially compensate for
loss of GSH, have been noted in yeast (Saccharomyces
cerevisiae) and animal cells (Grant et al., 1997; Ristoff
et al., 2002; Quintana-Cabrera and Bolaños, 2013).

Only about 10% of normal GSH-S activity was de-
tected in jah2, consistent with the fact that the GSH2 tran-
script lacking intron 6 is only a minor fraction of the total.
Despite this low enzyme level, GSH was only reduced
by 30%. It seems likely that, under stress conditions that
necessitate higher GSH synthesis, the deficiency in jah2
would be greater. Pasternak et al. (2008) complemented
a gsh2 null mutant with a truncated GSH cDNA lacking
the chloroplast transit peptide coding sequence and
obtained lines having 40% to 50% of normal GSH-S ac-
tivity. Their lines only modestly overaccumulated g-EC
(4- to 8-fold), consistent with the higher enzyme activity
than we observed in jah2, and they saw no phenotypic
difference from wild-type plants.

An important discovery from this study is that the
jah2 phenotype is jasmonate dependent and apparently
not a direct consequence of insufficient redox activity.
The essentially complete absence of jasmonate in jah2
dde2-2 restored growth towild-type levels, even though
this mutant also had a large excess of g-EC. This sug-
gests that jah2 is hypersensitive not only to exogenous
jasmonate, but also to endogenous jasmonate, which
was not elevated in the mutant. The phenotypes in soil
were not likely due to enhanced pathogen sensitivity, as
we saw no symptoms in pathogen-susceptible pad2-1 or
dde2-2, and again, the phenotype in jah2 pad2-1was less
severe than in jah2 (Glazebrook and Ausubel, 1994).

The function of jasmonate in defense responses is
2-fold: defense pathway activation and plant growth
suppression. Repeated wounding of Arabidopsis leaves
raises endogenous jasmonates and reduces leaf and plant
size by a jasmonate-dependent mechanism (Yan et al.,
2007; Zhang and Turner, 2008). The JAZ10/Jasmonate
associated1 and COI1 coreceptors are involved, and
COI1 activity requires a reducing environment and may
be redox regulated in plants (Acosta and Farmer, 2010).
The downstream mechanism for jasmonate-mediated
growth inhibition is not entirely clear, but interaction
between JAZ proteins and DELLA inhibitors of the

Figure 6. Induction of jasmonate response genes. Seven-day-old wild-
type (w) and jah2 (j) seedlings grown in liquid culture were treated with
2 mM MeJA and harvested for RNA extraction at the times indicated. Each
time point/genotype is an independent culture. A, Semiquantitative PCR
for the transcripts indicated. Primers used are shown in Supplemental
Table S2. B, Northern-blot analysis with the cDNA probes indicated. The
same blot was washed and reused for successive probes. ACTIN8 (ACT8)
and JASMONATE RESISTANT1 (JAR1) are noninducible controls for A
and B, respectively. OPR, OXOPHYTODIENOATE REDUCTASE; LOX,
LIPOXYGENASE.
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GA-mediated growth regulation pathway is involved
(Yang et al., 2012). It is possible that excess g-EC hyper-
activates this growth repression pathway in jah2, even
though it does not appear to involve a generalized
hyperactivation of JAZ10 or several other jasmonate-
responsive genes nor an elevation of endogenous jasmo-
nates. Our results, together with previous evidence that
GSH regulates jasmonate-responsive genes, suggests that
excess g-EC is acting in a different way to affect growth
than GSH does to modulate gene expression (Han et al.,
2013). Allocation of resources to the competing ends of
plant growth and stress response must be coordinated,
and cross communication between the ascorbate-GSH
cycle and jasmonate signaling appears to have an im-
portant role in optimizing this balance (Foyer and
Noctor, 2011; Huot et al., 2014).
Mutants with reduced sensitivity to jasmonate have

been vital to identifying jasmonate-signaling compo-
nents, but few hypersensitive mutants have been de-
scribed. Previously, jah1was shown to be hypersensitive
in root inhibition, although less so than jah2. Induction of
PDF1.2 and THI2.1 by MeJA was weaker in jah1 than in
the wild type (Liu et al., 2010). We also saw a reduced
response for PDF1.2 in jah2. We are currently examining
jah2 for pathogen and herbivore susceptibility, as well as
developing a complete gene expression profile, to fur-
ther explore the relationships between jasmonate and
redox signaling.
In summary, we established that g-EC is necessarily

kept at much lower levels than GSH in Arabidopsis to
avoid jasmonate-mediated growth suppression. The
jah2mutant, having only a minor reduction in GSH and
g-EC levels that are only 4.5 times higher than the
normal amount of GSH, offers a tool to further aid our
understanding of the activity of g-EC in plants and the
close connection between jasmonate signaling and re-
dox biology.

MATERIALS AND METHODS

Plant Material and Growth Conditions

All Arabidopsis (Arabidopsis thaliana) plants were of the Col-0 ecotype.
The jah2 mutant originated from a population of ethyl methanesulfonate-
mutagenized M2 seeds purchased from Lehle Seeds. This mutant was re-
cessive, based on analysis of F1 and F2 generations from a cross to the wild
type (data not shown), and all experiments were done using jah2 seed
obtained after three backcrosses to Col-0. The CAPS marker primers used to
identify the jah2 allele were JAH2LP-GGGGATCAGATTGGCATAGAC and
JAH2RP-GAAATAAACCACTGCGACTGC and cut with SspI. All other
mutants were obtained from the Arabidopsis Biological Resource Center.
Primers for genotyping pad2-1 were PAD2LP-TCAGGAAGTTTCGTGCTGG
and PAD2RP-AAACCAACCAATGTAATGTAATTG and cut with DdeI.
Homozygous dde2 plants were identified as male steriles and rescued by
MeJA treatment. The coi1 mutant was a male sterile transfer DNA insertion
from the Salk collection (035548). PCR primers for genotyping this mutation
were Coi1035548LP-TGGACCATATAAATTCATGCAGTC, Coi1035548RP-
CTGCAGTGTGTAACGATGCTC, and Lba1-TGGTTCACGTAGTGGGCCATCG.

Seedling growth on Murashige and Skoog agar medium was as previously
described (Staswick and Tiryaki, 2004) in an incubator at 22°C, 12-h day/night
cycles, and 150 to 200 mmol s–1 m–2. Supplementation with hormones or other
compounds are as indicated in the figures. Seedling growth in sterile liquid
culturewas under similar conditions in 40-mL one-half-strengthMurashige and

Skoog medium under continuous agitation in 125-mL flasks. Plants grown in
soil were in a Percival growth chamber at 22°C and 12-h day/night cycles
unless otherwise noted, with fluorescent lighting at 150 to 200 mmol s–1 m–2

.
Nutrients were supplied weekly using Miracle Grow complete fertilizer in
water, as recommended. Tissue for thiol determination was from rosettes of
soil-grown plants (5 weeks old, not bolting) frozen in liquid nitrogen and then
ground to a fine powder. All experiments measuring growth were done at least
three times independently, with similar results.

Synthesis of Stable Isotope g-EC and GSH

g-EC was synthesized from N-Boc-L-Glu 1-tert-butyl ester (Alfa Aesar) and
13C3

15N1-L-Cys (99% [w/w]; Cambridge Isotope Laboratories) by a mixed an-
hydride condensation reaction previously used for hormone-amino acid con-
jugate synthesis (Staswick and Tiryaki, 2004). The sulfhydryl of Cys was first
reversibly protected by reaction with S-methyl methanethiosulfonate (Sigma-
Aldrich; Smith et al., 1975). Products were fractionated by silica gel chroma-
tography (Staswick and Tiryaki, 2004). Deprotection was accomplished in 1 mL
of water in a glass tube placed in a heating block set at 110°C for 30 min (Wang
et al., 2009). Reduction of the sulfhydryl was with an excess of dithiothreitol
(DTT), and product was then desalted on a LH20 Sephadex column (0.5 3 30
cm) run in 75% (v/v) methanol (MeOH). Reaction products were monitored by
silica thin-layer chromatography and staining with ninhydrin reagent. GSH
was synthesized from fully protected g-EC and Gly tert-butyl ester (Alfa Aesar)
with dicyclohexylcarbodiimide (Sigma-Aldrich) as described (Cohen, 1981).

Thiol Quantification

Extraction and derivatization methods for determining g-EC and GSH by
GC/MS were developed from protocols by Roessner et al. (2006) and Humbert
et al. (2001). Up to 60 mg of frozen powdered tissue was added to 400 mL of
MeOH containing stable isotope internal standards added at roughly the
amount recovered for the respective endogenous compounds. The mixture was
homogenized 30 s with a probe homogenizer and then incubated at 70°C for
15 min, followed by addition of 400 mL of 0.2 M NaPO4 (pH 6.5). Chloroform
(350 mL) was added, and the mixture was vortexed, followed by brief centrif-
ugation. The aqueous/MeOH layer (600 mL) containing polar molecules was
transferred to a 1.5-mL microfuge tube with a screw cap lid. Ten microliters of
freshly prepared DTT (15 mg/0.25 mL NaPO4 buffer, pH 6.5) was added,
mixed, and incubated 20 min at room temperature. Derivatization of SH and
NH2 groups was done by adding 100mL of ethylchloroformate (Sigma-Aldrich)
and mixing continuously on a vortex mixer as the two phases are not miscible.
After 10 min, acidic residues were protonated by adding 15 mL of concentrated
HCl, and then 600mL of ethyl acetate was added, the mixture was vortexed and
centrifuged, and the top ethyl acetate layer was transferred to a small glass tube
for solvent evaporation under nitrogen in a 45°C water bath. The residue was
dissolved in 100 mL of MeOH, and carboxyl groups were derivatized by slowly
adding up to 50 mL of trimethylsilyldiazomethane (Sigma-Aldrich). Solvents
were again evaporated at 45°C, and the residuewas dissolved in 120mL of ethyl
acetate and transferred to a glass microvial for GC/MS.

The fraction of oxidized thiols was determined by dividing equal portions of
the water/MeOH phase from the chloroform extraction into two tubes, reacting
one with 15 mL of 2-vinylpyridine in the dark for 1 h, drying under N2, and then
restoring it to the original volume with 50% (v/v) MeOH. The paired samples
were reduced with DTT, and the remaining steps were performed as outlined
above, the difference between the two fractions being the amount of oxidized
thiol in the original sample.

GC/MS used electron ionization in SIM mode. For g-EC, the major frag-
mentation ions usedweremass-to-charge ratios 349 and 353 for the endogenous
and standard, respectively, and 363 and 366 for GSH and standard, respectively
(the GSH fragment ion loses one isotope-labeled C). Themolecular ions for each
compound were used for validation. Quantitative data were obtained by iso-
tope dilution from the integrated peak areas for each compound (Cohen et al.,
1986). Instrumentation was a Finnigan Trace gas chromatograph with an Rtx
5MS column (15 m 3 0.25 mm, 0.1 mm; Restek) coupled to a DSQ mass spec-
trometer. Carrier gas was helium, and the injector port was at 270°C. The oven
start temperature was 120°C raised to 270°C over 15 min and held for 3 min.
Transfer line and source temperatures were 280°C and 200°C, respectively.
Retention time for g-EC and GSH were 10.39 and 12.56 min, respectively.

Relative and absolute GSH/GSSG levels were also determined by a stable
isotope labeling strategy using LC/MS. Briefly, in a 1.5-mL microcentrifuge
tube, 50 mg of frozen powdered tissue along with 750 mL of MeOH/10 mM
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phosphate (pH 7.0; 4:1, v/v) were combined. The tissue was further disrupted
with a probe homogenizer. Samples were spun at 13,000g for 2 min, and the
supernatant was collected in a new tube. Fifty microliters of the supernatant
was combined with 75 mL of MeOH/10 mM phosphate (pH 7.0; 4:1, v/v) and
10 mL of isotopically labeled 1.0 M 2-vinylpyridine-d7. The reaction was mixed
and left in the dark at room temperature for 2 h. Following incubation, 50 mL of
unlabeled 10 M 2-vinylpyridine was added to the reaction. After mixing, 10 mL
of 0.5 M tris(2-carboxyethyl)phosphine and 5 mL of 1 mM

13C2
15N1-GSH were

mixed into the reaction, and the tube was left in the dark for 2 h. After 2 h, the
samples were dried under vacuum and reconstituted in 20 mL of 5% (v/v)
MeOH. Mass spectra in positive mode were collected by a Bruker Solarix FT-
ICR mass spectrometer. LC separation was performed on an ACE C18 column
with a flow rate of 0.1 mL min–1 starting at 100% mobile phase A (0.1% [v/v]
formic acid) for the first minute. Mobile phase B (acetonitrile, 0.1% formic acid)
was then increased to 70% over 9 min, raised to 100% in 1 min, and then held at
100% for 1 min. The systemwas then returned to initial conditions and held for
7 min. Relative levels of GSH/GSSG were determined as the ratio of heavy/
light vinylpyridine-labeled GSH, and absolute levels were determined by
comparison with the light-labeled heavy GSH spike.

Enzyme Assay

GSH-S assays were done essentially as described (Arisi et al., 1997;
Pasternak et al., 2008). The GSH product was quantified by GC/MS as de-
scribed earlier, except that immediately following derivatization with ethyl-
chloroformate, the reaction pH was neutralized with NaOH, and GSH was
purified by DEAE Sephadex column chromatography, scaled down 4-fold from
what was previously described (Staswick, 2009).

DNA Extraction and Genetic Mapping

Genomic DNA for mapping and genotyping of mutants was prepared as
previously described (Staswick et al., 2002). F2 seeds from the cross of jah2 to
Landsberg erectawere plated on 1 mM MeJA agar medium, and 5-d-old seedlings
were selected for short roots to identify JA-hypersensitive mutants. After growth
in soil, leaf tissue was collected for DNA extraction. Known CAPS and simple
sequence length repeat markers were identified through The Arabidopsis Informa-
tion Resource portal (http://www.arabidopsis.org/portals/mutants/mapping.
jsp). Additional markers were developed from published sequence polymor-
phisms between ecotypes. CAPS and simple sequence length repeat markers
flanking the JAH2 locus were CER444333, LP-CGTGAGGAATGATGATGAGG
and RP-CTGGATCAGGCAAATCCTCT-39, cut with AluI; CER428256, LP-
TCATGTTCCTGAGGTTGAGC and RP-CCTTGCCTCCACATTTATGA, cut with
BfaI; and CER449302, which has a 41-bp deletion on Landsberg erecta, LP-
AAGATGCTTGATTGGTTGTGC and RP-CAAATTGAATTATGCACATCTAGG.
Full details for the mapping strategy can be found in the thesis by Wei (2012).

Genome Sequencing and Bioinformatics

Whole-genome Illumina sequencing of jah2DNAwas done by theGenomics
Core Research Facility at the University of Nebraska. The analysis yielded a raw
read count of 72.5 million reads, summed over two biological replicates
(Supplemental Table S1). The Arabidopsis reference genome was downloaded
from The Arabidopsis Information Resource (release TAIR10; Lamesch et al.,
2012), and the replicates were individually mapped against it via the Bowtie1
(version 0.12.7; Langmead et al., 2009) short-read aligner. We used default
settings, with the exception of a 32-base seed length (-l 32), threemismatches per
seed (-n 3), amaximum sumofmismatch qualities across seed alignments of 180
(-e 180), and reporting of the best alignment only (–best –tryhard –k 1). The
average alignment percentage of the two replicates is 95.2%. The resulting SAM
output files were reformatted into a chromosome- and position-based sorted
BAM file via the SAMtools software (version 0.1.16; Li et al., 2009). Subse-
quently, summary and likelihood data were collected for each locus by the
SAMtools mpileup command utilizing the two replicates, with default pa-
rameters. The resulting VCF file was processed by the BCFtools view command
(version 0.1.16; Li et al., 2009), followed by the vcfutils.pl script to filter out any
SNP locus with a read depth of more than 100 (-D 100).

Complementation by Plant Transformation

Previously described methods for transformation of the wild-type
GSH2 cDNA to jah2 were used (Staswick and Tiryaki, 2004). Gene

expression was driven by the Cauliflower mosaic virus 35S promoter,
and primers used to synthesize cDNA from RNA by reverse transcription-
PCR were: GSH2cDNALP-CCTAGGATGGAATCACAGAAACCC and
GSH2cDNARP-GGATCCTCAAATCAGATATATGCTGTCCAAG. These
produced the truncated transcript lacking chloroplast-targeting signal in-
formation, hence the protein localizes to the cytosol (Pasternak et al., 2008).
Seeds from primary transformants were screened for the selectable marker
(kanamycin). Four initial transformants segregated 3:1 for KanR:KanS, sug-
gesting a single transgene. These also segregated 3:1 for the wild-type root
phenotype on MeJA. From two of these, homozygous transgenic lines (jah2:
GSH4-3 and jah2:GSH16-3) were developed and used for the analysis.

Publicly Available Data Sets

The raw genome sequence files for jah2 have been uploaded to National
Center for Biotechnology Information’s Sequence Read Archive under
BioProject identification number PRJNA263382 and sample identifier
SAMN03100019.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Reduced and oxidized GSH.

Supplemental Table S1. Raw sequence read counts.

Supplemental Table S2. Primer sequences for semiquantitative RT-PCR.
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