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Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver
diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glu-
tamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions,
glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The
different isoforms of glutamine transporters play an important role in the transfer of this amino acid between
astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct
ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important
Glutamine transporters for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle
Glutamine efficacy might influence these pathways. Given this potential outcome, the aim of the present study was
GABA to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be
affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1
and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in
the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased
by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond
with the increase in gene transcription since it remained unaltered. These data indicate that the expres-
sion of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate
in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system ob-
served in this neurologic condition.

Keywords:
Chronic hepatic encephalopathy

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Acute and chronic liver failure result in hepatic encephalopa-
thy (HE), a neurological condition leading to deleterious effects in
the central nervous system (CNS), such as motor and cognitive im-
pairments, as well as psychiatric disturbances (Albrecht and Jones,
1999; Ferenci et al., 2002). Hyperammonemia, which occurs due to
the significantly reduced capacity of the liver to synthetize urea, is
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considered one, if not the main pathophysiologic mechanism re-
sulting in HE (Butterworth, 2002). In the CNS, ammonia is mainly
detoxified by the activity of glutamine synthetase (GS), an enzyme
predominantly, if not exclusively, expressed in astrocytes (Norenberg
and Martinez-Hernandez, 1979). This leads to disturbances in glu-
tamine synthesis, which is found increased in the acute form of the
disease and has been implicated in the pathophysiology of this neu-
rologic condition (Albrecht et al., 2010; Swain et al., 1992; Tofteng
et al., 2006; Zwingmann and Butterworth, 2005).

The mechanisms behind the deleterious effects of glutamine are
related to the fact that this amino acid acts as an ammonia carrier
into mitochondria where ammonia is generated by the activity of
phosphate activated glutaminase (PAG), an enzyme expressed in both
neurons and astrocytes (for review, see Schousboe et al., 2013). Con-
sequently, the ammonia concentration increases inside this organelle
leading to the production of reactive oxygen and nitrosative species,
as well as inducing the mitochondrial permeability transition (mTP),
ultimately resulting in mitochondrial dysfunction (Jayakumar et al.,
2004; Rama Rao et al., 2005). These observations have led to the
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formulation of the Trojan horse hypothesis, which explains many
of the events observed during hyperammonemia, e.g. astrocytic
swelling (Albrecht and Norenberg, 2006; Rama Rao and Norenberg,
2014; Rama Rao et al., 2012). In addition, some studies have pro-
posed that altered levels of glutamine lead to astrocytic swelling
due to the osmotic characteristics of the amino acid (Blei, 1991; Blei
et al., 1994; Brusilow and Traystman, 1986). However, the role of
glutamine as an osmolyte has been contradicted by the demon-
stration of a negative time correlation between astrocyte swelling
and the increase in glutamine concentration in astrocyte cultures
treated with ammonia, while the PAG inhibitor diazo-5-oxo-L-
norleucine (DON) led to a significant reduction of ammonia-
induced astrocyte swelling suggesting that astrocyte swelling is
related to glutamine deamidation (Jayakumar et al., 2006).

Under physiological conditions, glutamine exerts an important
role in the so-called glutamate/GABA-glutamine cycle. In this cycle,
the transfer of glutamine to the neuronal compartment gives rise
to the production of glutamate due to PAG activity, a process fun-
damental for restoring the neurotransmitter pool since neurons are
unable to perform de novo synthesis of glutamate due to the absence
of pyruvate carboxylation (Hertz et al., 1999; Schousboe et al., 1997;
Yu et al., 1983). Concerning the GABAergic synapses, the majority
of this neurotransmitter is recycled in neurons, but part of the re-
leased GABA is taken up by surrounding astrocytes and therefore
lost from the transmitter pool (Schousboe et al., 2013) . The latter
event is compensated by glutamine acting to replenish the neu-
rotransmitter pool of GABA (Liang et al., 2006; Patel et al., 2001;
Schousboe, 2003).

In the context of glutamine transfer between neurons and as-
trocytes, the small neutral amino acid transporters play an important
role in the communication between these cells and thus, they are
fundamental for the maintenance of the glutamate/GABA-glutamine
cycle (Nissen-Meyer and Chaudhry, 2013). The SN1 and SN2 isoforms,
also known as SNAT3 and SNATS5, are electroneutral transporters
functioning as a Na*-glutamine symporter and H* anti-porter related
to glutamine efflux from astrocytes (Chaudhry et al., 1999). SN1 was
the first isoform characterized and it has been described as the
primary transporter responsible for the release of glutamine from
astrocytes. It preferentially transports glutamine, promoting its efflux
under physiological concentrations of this amino acid (~400 uM)
(Boulland et al., 2002; Chaudhry et al., 1999). One important prop-
erty of this amino acid transporter is its capacity of flux reversal,
which is dependent on pH and also on the extracellular Na* con-
centration, i.e. a scenario in which the flux direction will depend
on the microenvironment surrounding the cells (Chaudhry et al.,
1999). The importance of this transporter in relation to the
glutamate/GABA-glutamine cycle is highlighted by the observa-
tion that exogenous glutamate mediates a decrease in the Ky, for
SN1 in astrocyte cultures (Broer et al., 2004). Similarly, the SN2
isoform is also functionally related to glutamine efflux from astro-
cytes, although it also releases glycine serving as a co-transmitter
at NMDA receptors (Cubelos et al.,, 2005; Hamdani et al., 2012).With
respect to the CNS localization of these transporters, SN1 has been
shown to be confined to astroglial processes ensheathing
glutamatergic and GABAergic synapses in different brain struc-
tures (Boulland et al., 2002; Chaudhry et al., 1999), while SN2 has
also been found in astrocytes predominantly close to glutamatergic
synapses (Cubelos et al., 2005).

The transporters responsible for glutamine uptake in the neu-
ronal compartment are known as system A, which is comprised of
the SAT1 and SAT2 transporter isoforms, also named SNAT1/SA2 and
SNAT2/SA1. These transporters are Na*-glutamine symporters, i.e.
electrogenic in nature constituting the driving force for the amino
acid uptake (Chaudhry et al., 2002). SAT1 is expressed in the
somatodendrites of neurons in brain regions enriched in GABAergic
neurons, and its proximity to VGAT, the vesicular GABA transporter

indicates that it might be related to glutamine uptake as a prereq-
uisite to replenish the GABA neurotransmitter pool (Solbu et al., 2010;
Varoqui et al., 2000). SAT2 is more ubiquitously expressed,
being found localized mainly in somatodendrites and axons of
glutamatergic neurons (Gonzalez-Gonzalez et al., 2005; Jenstad et al.,
2009). The importance of this transporter has been demonstrated
by employing MeAIB (methylamino-iso-butyric acid), an inhibitor
of system A, able to reduce glutamine uptake, which consequently
diminishes the intracellular concentration of glutamate (Jenstad et al.,
2009).

The role of neural glutamine transporters during HE has been
investigated in different experimental conditions and it remains con-
troversial whether their expression is altered in this neurologic
disorder (Desjardins et al., 2012; Rama Rao and Norenberg, 2014).
Moreover, most studies have investigated their expression during
acute hyperammonemia and HE and it remains unknown whether
glutamine transporters are also involved in the pathologic mech-
anism of chronic HE. In this context it is of interest that using bile-
duct ligated rats (BDL), an experimental model of chronic HE, it has
been demonstrated that the biosynthetic pathway for GABA was
altered to occur preferentially via the tricarboxylic acid (TCA) cycle
relative to the direct decarboxylation of glutamate not involving the
TCA cycle (Leke et al., 2011a). However, no differences in the gene
expression were found for the glutamate decarboxylase (GAD)
enzyme isoforms GAD65 and GADG67 (Leke et al., 2014), which have
different roles in the two GABA biosynthetic pathways mentioned
earlier (Waagepetersen et al., 1999, 2001; Walls et al., 2011). There-
fore, it can be hypothesized that glutamine transfer between
astrocytes and neurons may be altered leading to changes in the
biosynthesis of neurotransmitter GABA. Hence, the aim of the present
study was to examine the expression of the different glutamine trans-
porter isoforms in the CNS of rats with bile duct ligation.

2. Materials and methods
2.1. Experimental model of HE

Adult male Wistar rats (n =20, weight 361.21 +28.19 g, 70-80
days old) were obtained from the Experimental Animal Unit of Re-
search Center of Hospital de Clinicas de Porto Alegre, maintained
in a controlled environment (20 °C + 2 °C, 12 h light/dark cycle) with
standard food and water ad libitum. The surgical procedure of bile
duct-ligation, serving as a model of chronic HE, was performed as
previously described (Bak et al., 2009). Rats were anaesthetized
(ketamine 90 mg/kg, xylazine 12 mg/kg, i.p.); a middle abdominal
incision was performed; the hepatic ligament exposed and the
common bile duct was double ligated and resected in between the
ligatures. The control group rats underwent the same surgical pro-
cedure, with exception that the bile duct was not ligated. All animals
were maintained in the animal colony room for 6 weeks post-
surgery. The handling and care of the animals were conducted
according to the National Guidelines on Animal Care, and all ex-
periments were approved by the Ethics Committee of the Hospital
de Clinicas de Porto Alegre.

2.2. Sample collection

Rats were anesthetized as previously described and transcardially
perfused with 50 mL of cold phosphate buffer (0.1 M phosphate
buffer containing 23 mM Na;HPO, and 77 mM NaH,PO,, pH 7.4) to
remove residual blood cells in brain. Thereafter, rats were decapi-
tated and brains were dissected in order to isolate cortices. This tissue
was immediately frozen in liquid nitrogen and stored at —80 °C. Liver
samples were also dissected to document the presence of the chronic
liver disease, as previously described (Leke et al., 2014).
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2.3. Gene expression assays

Total mRNA was isolated from the cerebral cortices of control
and BDL rats employing the Trizol reagent (Ambion®, Life
Technologies™, Carlsbad, CA, USA). Thereafter, 1.25 ug of total RNA
was treated with deoxyribonuclease I (Invitrogen) and cDNA was
synthesized by RT-PCR (High Capacity cDNA reverse Transcription
Kit, Invitrogen) according to the manufacturer’s protocols. Rela-
tive quantitation of mRNA expression was performed employing
Tagman MGB Probes (Invitrogen) for SAT1 (Slc38al,
Rn00593696_m1), SAT2 (Slc38a2, Rn00710421_m1), SN1 (Slc38a3,
Rn01447660_m1), SN2 (Slc38a5, Rn00684896_m1) and GAPDH
(Rn01775763_g1) as an endogenous control by real-time PCR (qPCR)
as a multiplex assay in 48 well StepOne™ system (Applied
Biosystems®, Life Technologies™, Carlsbad, CA, USA). Each reac-
tion contained 5 pL of TagMan® Gene Expression Master Mix (Life
Technologies™, CA, USA), 0.5 uL of Tagman probe for each target
gene and for the endogenous control and 2 pL of cDNA which was
previously diluted 2 times, for a total reaction volume of 10 pL. All
samples were run in triplicate and the results were calculated by
the equation 2%, which gives the fold change of the target gene
expression, normalized by an endogenous control and relative to
a calibrator. The calibrator in this study was the control group (Livak
and Schmittgen, 2001).

2.4. Western blot assays

Cortices were homogenized in lysis buffer containing: 5 mM Tris
base, 1 mM EDTA, 1 mM EGTA, 1% SDS, 1% Triton x-100, protease
inhibitor cocktail (Roche Molecular Systems Inc, Branchburg, NJ),
pH 7.4, and subsequently centrifuged at 10,000 x g for 10 min at 4 °C
and the supernatant was collected. Protein concentration was de-
termined by the Bradford method (Bio-Rad, Hercules, CA) and sample
concentrations were adjusted and diluted 1:1 proportion with
Laemmli Buffer (0.01 g % Bromophenol Blue, 60 mM Tris base, 20%
glycerol, SDS 2% and 2-b-mercaptoethanol 5%; pH 6.8) to reach a
final concentration of 2 mg/mL. Equal amounts of protein (40 ug
protein per lane) were employed for the determination of SN2
protein. Cortical lysates were subjected to SDS-PAGE using 12% gels
and electrophoretically transferred to PVDF membranes (EMD
Millipore Inc, Temecula, CA). Blots were blocked with 5% non-fat
dry milk in TBS-T (TBS; 20 mM Tris-HCl, 150 mM NacCl, pH 7.4, and
0.05% Tween 20) for 1.5 h at room temperature and then incu-
bated with goat anti-SN2 (1:1000, Santa Cruz, Biotechnology Inc,
CA), over-night at 4 °C. Subsequently, membranes were washed with
TBS-T and incubated with HRP-conjugated secondary antibody
(1:1000, bovine anti-goat HRP, Santa Cruz, Biotechnology Inc, CA)
for 1 h at room temperature. The proteins were visualized using en-
hanced chemiluminescence (ECL, GE Healthcare, USA), densities of
the bands were detected by autoradiography and the results were
quantified with the Sigma Scan Pro program. Samples were run in
duplicate and were calculated as intensity of protein expression, nor-
malized by endogenous control (1:1000 mouse anti-o-tubulin, Santa
Cruz, Biotechnology Inc, CA) as percentage of the control group.

2.5. Statistical analysis

Since all data exhibited normal distribution, as verified by
Shapiro-Wilk test (data not shown), the results are expressed as
mean + standard error of the mean (SEM) and were analyzed by un-
paired two-tailed Student’s t-test. For all parameters a p < 0.05 was
considered statistically significant. Data analysis was performed using
Microsoft Excel 2010 and GraphPad Prism 5.0 softwares and figures
were created using the image manipulation program Gimp 2.8.

3. Results
3.1. Experimental model of chronic liver disease

From an initial 10 BDL rats, three rats died prior to sample col-
lection and one rat had the extrahepatic bile duct regenerated and
was therefore excluded from the study. As described previously (Leke
et al., 2013, 2014), BDL rats exhibited the manifestations of chronic
liver disease and HE, including hepatomegaly and ascites and short
term memory deficits. Histological examination of the livers showed
disturbed cytoarchitecture with pronounced bile duct prolifera-
tion and fibrosis, while control rats exhibited normal liver
parenchyma. A three-fold increase in ammonia levels was also found
in the BDL rats.

3.2. Glutamine transporter mRNA expression

No differences in mRNA expression for the neuronal glutamine
transporters SAT1 (1.002 + 0.0205 control, 0.9405 + 0.02783 BDL,
Fig. 1a) and SAT2 (1.007 £ 0.04161 control, 0.9380 + 0.1244 BDL,
Fig. 1b) were observed between control and BDL rats in the cere-
bral cortex samples. Likewise, gene expression for the astrocytic
transporter SN1 was found unchanged between control and BDL rats
(1.008 + 0.04476 control, 1.064 + 0.07210 BDL, Fig. 1c), However, SN2
mRNA expression was found significantly increased in cortex of BDL
rats, when compared to the control group (1.0201 £ 0.0721 control;
2.3267 +0.3204 BDL, p < 0.001, Fig. 1d).

3.3. Glutamine transporter protein expression

Since the mRNA expression for SN2 was found to be altered in
the BDL rats, the protein expression for this transporter was inves-
tigated by Western blot analysis. As shown in Fig. 2 no difference
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- =
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Fig. 1. Glutamine transporter isoform gene expression in cerebral cortex. Total RNA
was isolated from cortices from control and BDL rats, and the RNA subsequently un-
derwent reverse transcription for the synthesis of cDNA. Gene expression for SAT1(1A),
SAT2 (1B), SN1 (1C), SN2 (1D) was performed by a qPCR multiplex assay and ana-
lyzed by the comparative method employing GAPDH as endogenous control and in
relation to the control group (for more details see Section 2.3). White bars repre-
sent the control group (n=9) and gray bars the BDL group (n = 6). Results are presented
as mean + SEM. Asterisk indicate a statistically significant difference between control
and BDL groups for SN2 mRNA expression by Student’s t-test (p < 0.0001).
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Fig. 2. Glutamine SN2 protein content in cerebral cortex. Protein from cortices from
control and BDL rats were subjected to SDS-PAGE, electrophoretically transferred
to PVDF membranes, blocked and incubated with goat anti-SN2 (1:1000). Subse-
quently, blots were incubated with HRP-conjugated secondary antibody (1:1000,
bovine anti-goat HRP). The proteins were visualized using ECL and densities of the
bands were detected by autoradiography. Results were quantified as a proportion
of the signal of a-tubulin (1:1000) (for more details see Section 2.4). A. Quantifi-
cation of SN2 protein densities presented as mean + SEM, white bars represent the
control group (n=29) and gray bars the BDL group (n =6). B. Representative
immunoblot of SN2 and o-tubulin protein densities.

in cerebral cortex SN2 protein expression was observed between
control and BDL rats (100.00% + 5.81% control, 110.90% + 10.18% BDL).

4. Discussion

The pathophysiology of HE, the hallmark of which is a rise in
the CNS ammonia concentration, has repeatedly been associated with
disturbances in brain energy metabolism and in various neurotrans-
mitter systems, particularly those using GABA and glutamate as
transmitters (Albrecht and Jones, 1999; Butterworth, 2002;
Schousboe et al., 2014). In line with these findings, we have pre-
viously reported that the synthesis of neurotransmitter GABA is
altered during chronic HE (Leke et al., 2011a), albeit no change was
observed in the expression of GAD65, which is the GAD isoform
closely associated with the biosynthesis of GABA in the vesicular
neurotransmitter pool (Leke et al., 2014; Waagepetersen et al., 1999,
2001; Walls et al., 2011). Considering that glutamine is important
in the restoration of GABA pools and that synthesis of this amino
acid is disturbed during HE, it is possible that during this neuro-
logic disorder the expression of the glutamine transporter isoforms
might be altered which would consequently affect the function of
the glutamate/GABA-glutamine cycle and thus likely contribute to
the observed disturbance of GABA neurotransmitter synthesis (for
further discussion, see Walls et al., 2015).

Here we demonstrate that the gene expression for the neuro-
nal SAT1 and SAT2 transporter isoforms was unchanged in cerebral
cortex of BDL rats. Likewise, a study employing the rat model of
hepatic devascularization for the investigation of acute HE dem-
onstrated unaltered cerebral mRNA levels for SAT1 (Desjardins et al.,
2012). In accordance with this finding, a study of the effect of
ammonia on GABA biosynthesis in co-cultures of cortical neurons
and astrocytes showed that the average incorporation of *C from
labeled glutamine into glutamate and GABA was dependent on the
exogenous glutamine concentration. Exposure to ammonia, however,
decreased the '3C incorporation in both amino acids, which could
be due to increased synthesis of unlabeled glutamine, as previ-
ously verified by increased pyruvate carboxylation (Leke et al.,
2011b). These results from metabolic studies, together with the
reports of no changes in gene expression, indicate that the expres-
sion of neuronal glutamine transporters is likely to be unaltered in
HE. Since astrocytes are the major target in HE (Norenberg, 1998),
it is possible that an altered glutamine transporter expression is to
be found in these cells.

In line with this possibility, the mRNA expression for the astro-
cytic glutamine transporter SN2 exhibited an increased level in
cerebral cortex of BDL rats with chronic HE, while that of SN1 was
unaltered. Considering that SN2 was the only transporter isoform
that exhibited changes in mRNA levels, indicating that it might also
exhibit increased protein translation, we further investigated the
protein content of this specific isoform. Surprisingly, no changes in
the immuno-reactivity for this transporter were found in the ce-
rebral cortex of BDL rats. Desjardins et al. (2012) also studied the
effect of acute HE on SN2 gene expression and described dimin-
ished mRNA levels of this transporter. Based on mRNA data, these
authors speculated that reduced expression of SN2 would lead to
glutamine accumulation in astrocytes and consequently cellular
osmotic swelling (Desjardins et al., 2012). On the contrary, Rama
Rao and Norenberg (2014) demonstrated that the protein levels of
SN2 were unchanged in the cerebral cortex of mice with acute HE
induced by the hepatotoxin thioacetamide (TAA). This finding was
confirmed in cultures of astrocytes acutely exposed to 5 mM
ammonia, which exhibited no changes in SN2 protein levels (Rama
Rao and Norenberg, 2014). Similar results were observed by Zielifiska
et al. (2014), who described decreased gene expression but no
changes at the protein level for SN2 in cerebral cortices of rats with
acute HE induced with TAA, as well as unchanged gene and protein
expression in hyperammonemic rats. As discussed by Rama Rao and
Norenberg (2014) a decrease in SN2 expression is not in agree-
ment with the fact that acute HE is characterized by increased
extracellular concentrations of glutamine in the brain. With respect
to SN1 expression, Zielinska et al. (2014) described both de-
creased gene expression and protein levels in TAA-induced HE in
rats, whereas no differences in mRNA and protein levels were ob-
served in hyperammonemic rats. It should be taken into account
that the contradictory results regarding SN1 and SN2 expression
might be due to the fact that different experimental models were
used for studying HE. In this regard, it is important to emphasize
that the present study aimed at verifying the expression of gluta-
mine transporters during chronic HE, and although acute and chronic
HE share common pathologic mechanisms, e.g., hyperammonemia,
it is well recognized that these conditions exhibit different fea-
tures due to the rate and extent of the metabolic liver dysfunction
(Weissenborn et al., 2005).

Of note, ammonia levels reached in chronic HE are much lower
than those observed in the acute form of the disease (Felipo and
Butterworth, 2002). As a consequence, the literature is conflicting
regarding the glutamine concentration in the CNS during chronic
HE, with no changes observed in BDL rats and increased levels ob-
served in rats that underwent portacaval anastomosis (PCA) to induce
HE (Cordoba et al., 1996; Fries et al., 2014; Jover et al., 2006; Wright
et al., 2007). However, analyzing the glutamine concentration in
whole cerebral cortex tissue or CSF does not accurately predict the
alterations that might occur during the ammonia detoxification
process, and thus it is necessary to consider that the levels of amino
acids vary in cellular and subcellular compartments and micro
domains. It is also possible that during chronic HE, glutamine levels
are unchanged due to an adaptive process, e.g., increase in clear-
ance from the brain. Nonetheless, altered glutamine transport might
be independent of glutamine concentrations, which would inter-
fere with the operation of the glutamate/GABA-glutamine cycle, as
well as the synthesis and replenishment of neurotransmitter glu-
tamate and GABA.

It is interesting, however, that the transcription for SN2 was found
increased at the same time frame that the protein translation re-
mained unaltered, indicating that during chronic HE there might
be post transcriptional events influencing mRNA stability. In line
with this possibility, it has been demonstrated that RNA is a target
for oxidation during acute HE (Gorg et al., 2008). These authors ob-
served that 7% of total RNA was oxidized in cultures of astrocytes
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exposed to 1 mM ammonia, while 6% of total RNA was found oxi-
dized in cerebral cortex of hyperammonemic rats (Gorg et al., 2008).
Oxidized mRNA has been related to abnormal protein level and
function (Nunomura et al., 2006). In agreement with that, oxi-
dized mRNA and decreased ribosomal rRNA and tRNA levels due
to oxidation have been related to abnormal protein synthesis in post
mortem cerebral tissue samples of patients with Alzheimer
disease (Ding et al., 2005; Shan et al., 2003). Considering that in-
creased oxidative stress is also a feature of chronic HE
(Carbonero-Aguilar et al., 2011; Seyan et al., 2010), it is possible that
part of the mRNA pool is oxidized in the cerebral cortex of BDL rats.
It should also be considered that the protein levels of the astro-
cytic glutamine transporter might change depending on the cellular
and cerebral structures. Therefore, although our data provide im-
portant evidence regarding the total expression profile of the
transporters, it would be of interest studying them by immuno-
histochemistry assays, which could provide additional information
to the results described.

Although gene and protein expression for SN1 and SN2 re-
mained the same during chronic HE, respectively, it is possible that
these transporters undergo other regulatory modifications. For that
reason it should be considered that these transporters may be subject
to post translational regulation, a mechanism that has been broadly
described for SN1 (Karinch et al., 2002; Nissen-Meyer and Chaudhry,
2013). Accordingly, different studies observed that SN1 is directly
phosphorylated by the enzymes PKCo., PKCy, and PKCS (Nissen-Meyer
et al., 2011; Sidoryk-Wegrzynowicz et al., 2011). More specifical-
ly, PKC phosphorylates SN1 in astrocytes at one single serine residue
at the N-terminal of the transporter, which consequently targets the
transporter for intracellular reservoirs and therefore regulates the
transporter activity (Nissen-Meyer et al., 2011). Also, the pro-
longed activation of PKC results in the degradation of SN1 transporter.
Concerning the SN2 isoform, it is still unknown if post transla-
tional mechanisms modulate this transporter but they might undergo
similar processes mediated by PKC, since they possess 50% homol-
ogy (Reimer et al., 2000). Additionally, SN2 activity is regulated by
pH, having its activity decreased with lower pH, partially due to an
action at the histidine residues found in the transporter (Baird et al.,
2006). During HE, it has been described that ammonia leads to in-
tracellular astrocytic alkalinization, as demonstrated in both cell
cultures and astrocytes from portacaval-shunted rats (Rose et al.,
2005; Swain et al., 1991). Therefore, an increase in pH might in-
terfere with glutamine transporter activity in the astrocytic
compartment.

The neuronal transporters also undergo translational regula-
tion, as it has been demonstrated that leucine enhanced System A
activity by activation of phosphatidylinositol 3-kinase (PI3K) in L6
muscle cells (Peyrollier et al., 2000). In addition, SAT2 is pH sensi-
tive by the same mechanisms as those observed for SN2 as previously
mentioned (Baird et al., 2006). Whether these mechanisms are oc-
curring in neurons remains to be determined.

5. Conclusion

The astrocytic SN1 and the neuronal SAT1 and SAT2 isoforms were
expressed at unaltered mRNA levels in chronic HE, while SN2 mRNA
was found to be increased. However, its protein immunoreactivity
was found unchanged. These results indicate that the glutamine
transporter isoforms studied here possibly do not participate in the
pathological mechanisms related to the imbalance in the GABAergic
neurotransmitter system observed in chronic HE. However, post-
translational protein modifications might alter the activity of these
transporters in this neurological condition and additional investi-
gations are necessary to better understand the involvement of such
regulatory mechanisms.
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