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Flash initiations within a supercell cluster during 10–11 May 2010 in Oklahoma were investigated based on ob-
servations from the Oklahoma LightningMapping Array and theNorman, Oklahoma, polarimetric radar (KOUN).
The flash initiations at positions dominated by graupel, dry snow, small hail and crystals accounted for 44.3%,
44.1%, 8.0% and 3.0% of the total flashes, respectively. During the tornadic stage of the southern supercell in the
cluster, flash initiations associated with graupel occupied the main body, the right flank and the forward flank
of the supercell, while those associated with dry snow dominated the outskirts of the adjacent forward anvil,
right anvil and rear anvil. The flash initiations associatedwith small hail were concentrated around themain up-
draft, particularly toward its front side. Highly dense flash initiations were located in the regions overlying the
differential reflectivity (ZDR) arc and right anvil. The average initial height of the flashes decreased gradually
from the rear to the front and from the right to the left flanks, while the height range over which initiations oc-
curred reached amaximum at the front of the updraft. The flashes thatwere initiated in the adjacent forward an-
vilswere largest on average, followed by those in the regions ahead of the updraft and near the ZDR arc. This study
supports the concept of charge pockets and further deduces that the pockets in the right anvil are themost abun-
dant and compact due to the frequent flash initiations, small-sized flashes and thin layers including flash
initiations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Flash initiation is a basic scientific issue in the field of atmospheric
electricity (Dwyer and Uman, 2014). One flash is thought to initiate at
a point with a large electric-field magnitude (which usually lies be-
tween positive and negative charges) and propagates with two
opposite-polarity leaders: the negative leader enters the positive charge
and the positive leader enters the negative charge (Mazur, 1989a,
1989b; Shao and Krehbiel, 1996; Coleman et al., 2003). The charge
structure, which greatly impacts flash initiation, is related to the micro-
physics and kinematic structure of the storm. Storms with strong up-
drafts, which may transport water vapor into higher regions in clouds
(in favor of ice-phase processes), experience more frequent collisions
among ice particles and charge transfers (Takahashi, 1978; Saunders
and Peck, 1998; Berdeklis and List, 2001; Saunders et al., 2006) and
bring adjacent charge regions closer together (MacGorman et al.,
1989) to produce higher density of flash initiations (i.e., flash rates)
than normal storms (e.g., Wiens et al., 2005; Tessendorf et al., 2007;
Calhoun et al., 2013).

Someprevious studies reporteddistributions offlash initiationswith
altitude. For example, Proctor (1991) found that the distribution of the

origin heights of 773 flashes within 13 thunderstorms was bimodal,
with peaks at 5.3 km and 9.2 km above mean sea level. Lund et al.
(2009) reported that flashes were mainly initiated within two altitude
ranges (3–6 and 7–10 kmMSL) in a small mesoscale convective system
(MCS) with a normal tripolar charge structure. Payne et al. (2010) sug-
gested that flash initiations were more frequent at 7 km than at lower
levels in their analysis of a supercell storm. In a high-precipitation
supercell storm, Calhoun et al. (2013) observed that flash initiations
reached a maximum near 10–11 km during the early–middle stage
and bi-level maxima during the middle-posterior stage of a storm's
life. The observed single-level or double-level distributions of flash initi-
ations should be connectedwith the dipolar or tripolar dominant charge
structures in thunderstorms.

The studies also related the initial positions of flashes to the struc-
tures of thunderstorms. Proctor (1991) documented that 66% of 658
flashes began within approximately 270 m of the 20-dBZ contours;
27% of flashes were initiated inside these contours (most of these
began at the edges of high-reflectivity cores); and the remaining 7%
began outside the 20-dBZ contour. Similar results (73%, 19% and 8%)
were obtained for 276 high-level flashes that began above 7.4 km, but
195 CG flashes scored 54%, 36% and 9% and showed a greater tendency
to begin inside the 20-dBZ contours. In an investigation of two cells in a
small MCS, Lund et al. (2009) revealed that most flashes were initiated
within the 35 dBZ contours of convective cells embedded within a
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convective line. Payne et al. (2010) noted that the initiation points at
7 km mainly corresponded to low differential reflectivity (ZDR) and
weak updrafts (b10 m s−1) during the pre-tornado stage and dissipat-
ing stage of a supercell storm. However, the initiation points at 7 km
were distributed in a more extensive range during the mature stage
with tornadoes, particularly toward the southern and eastern sides of
the reflectivity hook, with the eastern parts in strong updraft regions
(N15 m s−1). In contrast, Calhoun et al. (2013) revealed that areas
with many flash initiations were in and near updrafts ≥20 m s−1 but
usually outside regions with updrafts ≥40 m s−1.

On the other hand, many observations have indicated that flashes
are mainly initiated in or near the cores of storms (e.g., Wiens et al.,
2005; Tessendorf et al., 2007). Recent studies provided information on
flash initiations in distant anvils. Kuhlman et al. (2009) first presented
observations of flashes initiated in anvils several tens of kilometers
from the convective core of a storm. The authors suggested that in situ
chargingwas responsible for the large electric field that initiates flashes.
Weiss et al. (2012) also reported flashes that were initiated in the for-
ward anvil in several supercells whose initial positions corresponded
to the local reflectivity maximum, the region between the main charge
and the screening layer, and intersecting anvils from two adjacent
storms. The authors related the flash initiations in the anvils to embed-
ded convection.

With its special capability in identifying the hydrometeor species, po-
larimetric radar data have been combined with the flash activity of thun-
derstorms recently, which significantly deepened the understanding of
the relationship between microphysical process and electric process
(e.g., Dotzek et al., 2001; Bruning et al., 2007; Lund et al., 2009; Payne
et al., 2010). In this study, radar data from the Norman, Oklahoma, polar-
imetric radar (KOUN) and flash data from Oklahoma Lightning Mapping
Array (OK-LMA) were combined to investigate the association of the
flash initiations and the structures of a supercell cluster. Supercells have
been widely researched in terms of flash activity. Extremely frequent
intra-cloud (IC) flashes, low proportions of cloud-to-ground (CG) flashes
(e.g., MacGorman et al., 1989, 2005; Wiens et al., 2005; Tessendorf et al.,
2007), changes in the dominant polarity of CG flashes with types of
supercells (high precipitation or low precipitation, e.g., Branick and
Doswell, 1992; Knupp et al., 2003), complex charge structures
(e.g., Stolzenburg et al., 1998; MacGorman et al., 2005; Wiens et al.,
2005; Bruning et al., 2010), and lightning holes (e.g., Krehbiel et al.,
2000; Goodman and Coauthors, 2005; Payne et al., 2010) have been stud-
ied. However, only limited studies specifically considered the characteris-
tics of initiation points of flashes (e.g., Payne et al., 2010; Calhoun et al.,
2013; mentioned above). In this study, we focus on the topical subject
to the following questions: what are the features of flash initiations in
density, height, height range and size of their leadingflashes in a supercell
storm and what are the relationships of these features to the hydrome-
teors and dynamic structures of a supercell storm?

2. Instrumentation and data processing

2.1. Oklahoma Lightning Mapping Array (OK-LMA)

OK-LMA, which includes 10 stations (Fig. 1), locates the breakdown
of flashes at a very high frequency (VHF, 60−66 MHz). Details of the
technology, accuracy, and operation can be found in Rison et al.
(1999), Krehbiel et al. (2000), Thomas et al. (2004) and MacGorman
and Coauthors (2008).

Following previous work (e.g., Lund et al., 2009), only the sources lo-
cated by at least 7 stations with a chi-square goodness-of-fit value χv

2≤
2 (Thomas et al., 2004) were chosen for this study. The algorithm for
reconstructing an individual flash from sources was introduced by
MacGorman and Coauthors (2008). However, the original algorithm
was found to perform poorly when the storms were vigorous and
where sources were highly concentrated, with a large number of flashes

having the duration of 3 s which is the longest duration permitted by
the algorithm. Therefore, new combinations of thresholds were tested
while retaining the original algorithm and the permitted flash duration
(3 s). The flashes identified by each combination of thresholdswere com-
pared with manual analyses to identify the best combination. Based on
these tests, a potential flash source must occur within 180 ms of the pre-
vious source andwithin 2 km and 300ms of any other flash source; these
thresholds differ from those used in the original formulation
(MacGorman and Coauthors, 2008), i.e., 150 ms, 3 km and 500 ms, re-
spectively. Flashes with 10 or fewer points were not used. The algorithm
described by Lund et al. (2009) was used to determine the initial position
of a flash, whichwas calculated as the centroid of a compact cluster of the
initial 10 points; the influence of outliers has been removed.

The flash size is expressed by using the area of the convex hull of the
horizontal plan projection of VHF source points that belong to the same
flash. A convex hull, which is the polygon produced by allowing a band
to contract on all the points constituting the flash (Fig. 2), was used by
Bruning and MacGorman (2013) to calculate the minimum area that
collects all the source points of one flash in their study on flash-size
spectra. This area showed a good flash-size metric in describing the 2-
D extension of one flash.

2.2. National Lightning Detection Network (NLDN)

Data from theNational Lightning Detection Network (NLDN; Orville,
2008) were used to describe the CG flash activity of the supercells. To
exclude NLDN data that might incorrectly identify an IC flash as a CG
flash (e.g., Cummins et al., 1998; Johnson andMansell, 2006), only pos-
itive cloud-to-ground (PCG) flashes with peak currents greater than
15 kA and negative cloud-to-ground (NCG) flashes with peak currents
less than −15 kA were extracted. These thresholds were chosen
based on experience analyzing thunderstorms, particularly supercells
with inverted charge structures (such as the supercells studied here).

2.3. KOUN polarimetric radar

The KOUN polarimetric radar is located in Norman, Oklahoma
(Fig. 1). In addition to the traditional variables of reflectivity factor at
horizontal polarization ZHH, velocity, and spectrum width, this S-band
radar provides additional polarimetric variables, including differential
reflectivity (ZDR), copolar cross-correlation coefficient (ρhv), and

Fig. 1.Map showing the coverage of the Oklahoma LightningMapping Array (OK-LMA) and
the KOUN polarimetric radar, along with tracks of tornadoes during 10–11May 2010 (UTC).
The positions of the OK-LMA stations are shown by “+” symbols. The red-orange shading
(within 100 km of the center of OK-LMA) indicates the area in which lightning can be
mapped in three dimensions. The purple shading (100–200 km from the center of OK-
LMA) indicates the area in which two-dimensional locations of sources are reliable. The
white circles show distances of 50, 100, and 150 km from the KOUN radar. The color key
for the EF scale ratings given to the tornadoes as rated by the National Weather Service is
shown in the lower left. The cluster of supercells analyzed in this study was mainly located
to the area within 100 km of the centers of the OK-LMA and the KOUN radars.
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differential phase shift (ΦDP). The specific differential phase (KDP) was
computed from ΦDP. The details on the dual-polarization variables
were provided byKumjian (2013a, b, and c). Studies on the polarimetric
characteristics of supercells can be found in Dotzek et al. (2001), Loney
et al. (2002), Kumjian and Ryzhkov (2008), Van Den Broeke et al.
(2008), Snyder et al. (2010, 2013), Palmer et al. (2011), among others.

In this study, the hydrometeor classification algorithm (HCA) devel-
oped by Park et al. (2009) was used to classify hydrometeors. The HCA
includes the quality control of the polarimetric variables. This method
classifies 10 types of radar echoes: 1) ground clutter, including that
due to anomalous propagation (GC/AP); 2) biological scatterers (BS);
3) dry aggregated snow (DS); 4) wet snow (WS); 5) crystals of various
orientations (CR); 6) graupel (GR); 7) “big drops” (BD); 8) light and
moderate rain (RA); 9) heavy rain (HR); and 10) a mixture of rain and
hail (RH, written as rain/hail hereafter). In addition, the radar time
used in the following text refers to the time when one volume scan
starts at the first tilt (0.5°).

3. Overview of the supercell cluster

3.1. Evolution of the storms

A tornado outbreak with a total of 55 documented tornadoes from
13 storms occurred in Oklahoma (Fig. 1) from 10 May to 11 May 2010
(UTC; afternoon and evening of 10 May 2010, CDT). More information
on this outbreak can be found in Palmer et al. (2011). The environment
in which the storms developed was characterized by strong low-level
shear, high convective available potential energy (CAPE) (2759 J kg−1

at Norman, Oklahoma, at 2100UTC), as shown in Fig. 3.
The composite reflectivity of the analyzed cluster of supercells ob-

served by the KOUN radar is shown in Fig. 4. Over its lifetime, the
storm cluster experienced merging of storms in the south and splitting
in the north during its move fromwest by south to east by north. Storm
initiation within the cluster occurred at approximately 2051:52 UTC. As
they developed, by 2109:09 UTC, three separate stormswere present to
the west-southwest of the KOUN radar, as shown in Fig. 4a. By 2126:24
UTC (Fig. 4b), these three storms were in the process of merging (the
30-dBZ contours at low levels still separated from each other), which

were located to the west of the KOUN radar (between y = −30 km
and y = 30 km, where y is the distance north of the KOUN radar). By
2146:50 UTC (Fig. 4c), an EF0 tornado had developed within the
supercell of the cluster. Two new storms occurred to the southwest of
the cluster. The northern one, however, did not develop further and
seemed to be quickly absorbed into the cluster. The southern one devel-
oped rapidly and later became a supercell. By 2212:40UTC (Fig. 4d), the
storm just south of the KOUN radarwas strengthening. Meanwhile, two
storms located to the north of the line y=60kmwere splitting from the
cluster. By 2234:09 UTC (Fig. 4e), the southern storm had merged into
the cluster, while a storm straddling the y = 60 km line was splitting
away from the cluster. Three tornadoes occurred in the supercells dur-
ing this period. The analysis ended at 2258:51 UTC (Fig. 4f) when the
main body of the cluster moved out of the region of reliable analysis
(see Fig. 1). At that time, another storm located at y = −20 km and
x=50 kmwasmerging into the cluster. After that, the cluster produced
an EF3 tornado in its southern region which is not considered here.

Because separating one storm from another is difficult, the storms in
the cluster were studied as awhole. In addition, the cluster is referred to
as a supercell cluster because the storms ultimately developed into
supercell storms.

3.2. Overall height and frequency of flash initiations

Fig. 5 shows the LMA sources in the supercell cluster starting at 2058
UTC and the CG flashes starting from 2122 UTC. The flash frequency
continued to increase after 2240 UTC, while the source frequency de-
creased; this finding is partly due to the decrease in the detection effi-
ciency of OK-LMA at large distances.

Fig. 5a indicates that the sources were first observed at heights of
5–12 km (MSL, same to below) and were then extended from the sur-
face to 15 km. During the early stage (2110−2130 UTC), the region
with the highest density of sources occurred at a height of approximate-
ly 9 km; this height decreased to 6 kmbetween 2130 UTC and 2145UTC
and subsequently rose to approximately 8 km at 2200 UTC; then, the
heights varied between 7 and 9 km. Although the initial heights of the
flashes were widely distributed (mainly between 6 and 12 km), the
level with the greatest initial positions (the red solid line in Fig. 5a)
was always above the level with the largest number of sources (the
black solid line in Fig. 5a); the levels were approximately 2 km apart
after 2150 UTC.

Fig. 2. Example of the horizontal projection of VHF source points belonging to a flash at
2223:20 UTC 10May 2010. The distances are relative to the KOUN radar position. The con-
vex hull is defined by the solid linewith an area of 346 km2. The red square marks the ini-
tial position of the flash.

Fig. 3. Skew-T/log-P diagram of the temperature and dewpoint temperature from the
2100 UTC sounding at the Norman, Oklahoma on 10 May 2010, provided by the National
Weather Service (NWS) Forecast Office. The original skew-T/log-P diagram was provided
by the University of Wyoming and downloaded from http://weather.uwyo.edu/upperair/
sounding.html. We cropped the image and added the axes labels.
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Fig. 4. Evolution of the cluster of supercells shown by the composite reflectivity of the KOUN radar. (a) 2109:09 UTC; (b) 2126:24 UTC; (c) 2146:50 UTC; (d) 2212:40 UTC; (e) 2234:09
UTC; and (f) 2258:51 UTC. The dashed circle encloses the region within 100 km of the center of OK-LMA. The solid yellow ellipses encircle the main bodies of the analyzed cluster. The
tracks of tornadoes are shown as black solid lines. Distances (km) are shown to the east (x-axis) and north (y-axis) of the KOUN radar.
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The LMA data were used to infer the charge regions that participated
in the discharges according to themethod introducedbyprevious authors
(Rust and Coauthors, 2005;Wiens et al., 2005; Bruning et al., 2007, 2010;
MacGorman and Coauthors, 2008; Li et al., 2013), which is based on the
concept that a flash leader traverses charged regions of opposite polarity
(Shao andKrehbiel, 1996; Coleman et al., 2003) and the observations that
sources associated with negative breakdown of flash radiate greater
power (Shao and Krehbiel, 1996; Rison et al., 1999; Thomas et al.,
2001). Therefore, the main positive charge regions that participated in
the discharge were expected to be located at the middle levels, which in-
dicated an overall inverted electric structure (Rust and Coauthors, 2005;
Tessendorf et al., 2007; Bruning et al., 2014) in the main body of the
cluster.

The lightning activity (Fig. 5b) was extreme, with a total of 27,297
flashes recorded by the OK-LMA during the analysis period. However,
only 291 NLDN CG flashes were recorded, an extremely low proportion
of the total (1.07%). Meanwhile, the proportion of PCG flashes to the CG
flashes reached 56.70%,which ismuchhigher than climatological values
(approximately 6%−10% in the analysis region; see Fig. 9 in Orville and
Huffines, 2001). Numerous in-cloud flashes, low ratios of CG flashes,
and high ratios of PCG flashes were also reported in other severe storms
and were attributed to broad and strong updrafts (e.g., MacGorman
et al., 1989; Lang et al., 2000; Soula et al., 2004).

3.3. Flash initiations and associated hydrometeors

Flashes that initiated 2min before and 2min after the central time of
a volume scan and within 100 km of the center of OK-LMA were

selected for this general analysis, and initiations in the cone of silence
of radarwere removed from the dataset. The hydrometeors at the initial
positions of the flashes were provided by the HCA. A total of 17,344
samples were ultimately chosen for the statistical analysis.

During the evolution of the cluster in the analysis period, the initial po-
sitions of the flashes were dominated by four types of hydrometeors
(Fig. 6a): graupel, dry snow, rain/hail and crystals, accounting for 44.3%,
44.1%, 8.0% and 3.0% of the total samples, respectively.Within the analysis
window, 99.4% of the flash initiations were associated with these four
types of dominant hydrometeors. In addition, during most periods,
more than 85% of the flash initiations were associated with graupel and
dry snow.

Fig. 6b indicates that the first dominant hydrometeor associated
with the flash initiations changed with height. The proportion corre-
sponding to graupel increased from 4 km to a maximum (64.9%) at
7 km,where the temperaturewas approximately−20 °C; then, thepro-
portion of flashes decreased to a minimum at 11 km. The proportion of
the flash initiations associated with dry snow began to increase at 4 km
and terminated at 11 km, where the maximumwas 74.8%. The propor-
tion of the flash initiations associated with crystals increased above
5 km to a maximum of 13.7% at 13 km.

The hydrometeor classification algorithm does not distinguish the
proportion of rain and hail in a mixture. It was necessary to assess if the
hail was in a wet environment (hail with water coat or surrounded by
rain) or in a dry environment (dry surface and less surrounding rain)
for the flash initiations associated with the classification of rain/hail.
Therefore, the data associated with the rain/hail classification were plot-
ted on the axes of ZHH−ZDR, ZHH−ρhv, and ZHH−KDP (Fig. 7a−c). In

a

b

Fig. 5.Overall lightning activity in the supercell cluster. (a) Density of sources as a function of height and time; the colors indicate the relative density (0.5-min interval and 0.2-km span),
and thewhite contour lines indicate the density of the initial positions of the lightning as a function of height and time (1-min interval and 0.5-km span). The black and red solid linesmark
the heightswith themaximumsource density and the heightswith themost initiation points, respectively. The positive (red “+”) and negative (green “∇”) CG lightning times aremarked
near the time axis. Levels with environmental temperatures of 0 °C, −10 °C, −20 °C, −30 °C and−40 °C are plotted as gray dashed lines. (b) Average number of lightning flashes and
sources observed in 1-min intervals by OK-LMA and positive and negative CG lightning flashes observed by the NLDN in 5-min intervals.
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Fig. 7, the hydrometeor regions defined by Straka et al. (2000) were su-
perposed (Fig. 7a−c), and the height distribution of the flash initiations
associated with this classification was added (Fig. 7d).

The ratios of the samples above 0 °C, −10 °C, −20 °C, −30 °C,
and −40 °C to the total samples were approximately 98.7%, 92.5%,
72.5%, 46.5% and 21.3%, respectively. Fig. 7a−c reveals that themajority
of the samples were narrowly distributed. The overwhelming majority
had ZHH values from 40 to 60 dBZ, ZDR values from −1 dB to 0.3 dB,
ρhv values from 0.95 to 1, and KDP values from −0.5 deg km−1 to
0.5 deg km−1. These ranges of the polarimetric variables indicate that
most of the initiationswere located at positions dominated by high con-
centrations of small hail with a dry surface or in an environment with
less rain: 1) a large ρhv should not be caused by a mixture of hail and
rain, which would reduce the value of ρhv to less than 0.95
(Balakrishnan and Zrnić, 1990; Straka et al., 2000); 2) large hail also
tends to cause a small ρhv at least on account of resonance effects
(Balakrishnan and Zrnić, 1990; Kumjian et al., 2013a,2013b,2013c);

and 3) the existence of rain or melting shells would contribute to
large ZDR and KDP (Ryzhkov et al., 2013).

4. Flash initiations in supercells during the tornadic stage

The relationships of the flash initiations to the structures of
supercells with tornadoes are discussed in this section. Four volume
scans starting at 2234:09 UTC and ending at 2250:14 UTC were chosen
for the following reasons: 1) the structure of the cluster that could be
detected by the KOUN radar was relatively integrated and the main
bodies of the clusterweremeanwhile locatedwithin 100 km of the cen-
ter of OK-LMA; and 2) the southern supercell in the cluster exhibited a
usual supercell structure, which made it possible for us to relate the
characteristics of flash initiations to the typical structure of supercell
(ref. Lemon and Doswell, 1979; Markowski, 2008; Wang et al., 2010;
Davies-Jones, 2015; Manzato et al., 2015).

a

b

Fig. 6. The distribution of flash initiations associated with special dominant hydrometeors. (a) Distribution by volume scan time. The black solid line depicts the ratio of the available ini-
tiation points to the total set, distinguishing the impact of the radar's cone of silence. (b) Distribution of heights. The black solid line depicts the variation in the number (top x axis) of
initiation points with height.
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Fig. 8 exhibits the sector scans of ZHH and ZDR of the cluster at 0.9° tilt
during the analysis period. At 2234:09 UTC, the southern supercell had
nearly completelymergedwith the northern supercell in one scan time.
The northern supercell produced an EF4 tornado, while the southern
supercell yielded another EF4 tornado (Fig. 8a1 and a2). The southern
supercell further strengthened at 2238:27 UTC with a clear hook echo
(southwest of the main body). The southern supercell was producing
two tornadoes simultaneously at this time (~2245 UTC) while the tor-
nado associated with the northern supercell was still ongoing. So,
there were actually three tornadoes in progress at the time presented
in Fig. 8c1–c2. At 2250:14 UTC (Fig. 8d1 and d2), the two tornadoes in
the southern supercell nearly intersected, leading to a relatively large
area with near-zero ZDR. The tornado in themiddle supercell was ongo-
ing, while that in the northern supercell was dissipating.

The southern supercell is the focus of the analysis because of its clas-
sical structure including its hook echo, notches associated with inflow
and main updrafts (UD), and ZDR arc (south part of the main body).
The ZDR arc refers to the region along the gradient of ZHH along the in-
flow side of the forward flank of supercell storms, where the value of
ZDR is usually greater than 3 dB at the low levels (Fig. 8a2, b2, c2, and
d2). The size-sorting hypothesis, in which strongly veering wind shear
in supercell environments advects raindrops from their source posi-
tions,was believed to result in a region of large drops along the southern
edge of the forward flank downdraft (FFD) (e.g., Kumjian and Ryzhkov,
2008, 2009; Dawson et al., 2014).

A sketch of the low-level supercell structure given by Lemon and
Doswell (1979), which was rotated to fit this case, was portrayed on a

schematic diagram to describe the southern supercell in the cluster in
Fig. 9. The directional terms used below are defined in the upper-left cor-
ner of Fig. 9. Note that anvil regions, which are identified by referring to
the extension of the reflectivity at different heights, are depicted by red
lines in Fig. 9. The region at the front of the main body of the supercell
is defined as the adjacent forward anvil to distinguish from the forward
anvils strictly defined by Kuhlman et al. (2009) and Weiss et al. (2012).
These authors identified a flash as an anvil flash if it began or extended
more than 30 km downshear of the 30-dBZ reflectivity contour around
the main precipitation core of the storms at the mean anvil height. No
flash was initiated in the region defined using these criteria during this
volume scan. The right anvil mainly extended toward the south, while
the rear anvil spread toward the west of the cluster. The extension of
the rear anvil was small, with the boundary nearly overlapping the west-
ern edge of the 30-dBZ echo contour, which is likely due to the impact of
the environmental wind at this high level.

4.1. Dominant hydrometeors associated with the flash initiations

The flash initiations, whose colors indicate specific hydrometeor
species, are plotted on the 30-dBZ contour at 0.9° tilt in Fig. 10. By
assessing the reflectivity at each 0.5-km level, the top positions of the
boundedweak echo regions (BWERs) aremarked by stars in thefigures,
except for Fig. 10a, in which the top position cannot be clearly distin-
guished because of the impact of the cone of silence of radar. At
2245:56 UTC and 2250:14 UTC, the BWERs were most distinguishable.
Note that the entire BWER was tilted, and its top ascended from 5 to
7 km and inclined toward the front of the supercell.

Three types of dominant hydrometeors, i.e., graupel, dry snow, and
small hail, were most distinctly associated with flash initiations; these
hydrometeors showed clear regional differences. The flash initiations
at the positions dominated by graupel were mainly distributed within
the main body, right flank, and forward flank of the supercells. The
flash initiations associated with dry snow were mainly located around
the areas characterized by initiations in graupel-dominating regions,
near the outskirts of the adjacent forward anvil, right anvil, rear anvil
and northern margin of the cluster. The flash initiations at the positions
where small hail dominated were aggregated in the regions near the
main updrafts. In addition to the southern supercell, inwhich the region
containing these small hail-associated initiations extended and inclined
to the front of the updraft as the storm strengthened, the other
supercells in the cluster also experienced small hail-associated initia-
tions near or around their updrafts.

4.2. Density of the flash initiations

Fig. 11 displays the density of the initiation points of the flashes. At
2234:09 UTC and 2238:27 UTC, the densest flash initiations in the
southern supercell occurred in the regions to the front of the updraft
and along the areas overlying the ZDR arc. In addition, the north zonal re-
gions with active initiations in the northern supercell during the first
two scans were also near the regions overlying the ZDR arc. In these
areas, the density of flash initiations reached 2–5 fl km−2 within
4 min (the following density values are all within 4 min). The region
corresponding to the right anvil also experienced frequent flash initia-
tions; the center had peak values of 6 fl km−2 at 2234:09 UTC and
3fl km−2 at 2238:27UTC. At 2245:56 UTC and 2250:14 UTC, as themid-
dle supercell developed, the most frequent flashes occurred in the re-
gions where the middle supercell and the northern supercell
combined. During these two scans, as the southern supercell developed,
the flash initiations in the regions overlying the ZDR arc weakened, and
themaximumdensitieswere usually smaller than 2fl km−2. In compar-
ison, the frequent flash initiations observed to the front of the region
overlying the ZDR arc and those corresponding to the eastern part of
the right anvil increased, with a density of 2–4 fl km−2. Meanwhile,
the central and western parts of the right anvil maintained relatively

Fig. 7. Scattergrams of polarimetric parameters at the positions offlash initiation points asso-
ciated with the classification of rain/hail for (a) ZHH−ZDR, (b) ZHH−ρhv, (c) ZHH−KDP and
(d) distribution of the initial flash positions with height. The delineated regions of hydrome-
teors were adopted from Straka et al. (2000, Fig. 2, Fig. 3 and Fig. 4). The black contour lines
depict the number of pointswithin each grid cell at (a) 2 dBZ−0.2 dBZ, (b) 2 dBZ−0.01, and
(c) 2 dBZ−0.1 deg km−1. The contour values are 5, 10, 20, and 50whenmoving toward the
center. G/HS: graupel/small hail; H: hail; R/H: rain/hail; RS: small-size rain; RM:medium-size
rain; RL: large-size rain; C: ice crystals; SD: dry snow; and SW: wet snow. The colors used for
the points in (a), (b), and (c) represent heights, as shown in (d).
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a1 a2

b1 b2

c1 c2

d1 d2

Fig. 8. KOUN radar measurements of ZHH (left) and ZDR (right) at 0.9° tilt at (a) 2234:09 UTC, (b) 2238:27 UTC, (c) 2245:56 UTC, and (d) 2250:14 UTC. The 30-dBZ contours of ZHH are
superposed on the ZDR images.
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active flash initiations; some areas had densities greater than 2 fl km−2,
except at 2245:56 UTC. Note that a narrow area with few flash initiations
(b0.5fl km−2) exists between the two regionswith active initiations (the
right anvil and the region overlying the ZDR arc). Flash initiations in the
rear of the southern supercell (and the northern supercells) were gener-
ally rare and weakly increased when the southern supercell developed.
Low initiation density was observed in updraft regions, throughout the
FFD, and through the adjacent forward anvil region.

4.3. Average height and height range of the flash initiations

The initiation points of the flashes generally undergo a step-by-step
average height decrease from right to left and from the rear to the front
in Fig. 12a1, b1, c1 and d1. In the right and rear peripheries, the initial
positionswere usually located above 10 km,whichmeant that these ini-
tiations were caused by the right and rear anvils. Great heights for the
flash initiations were also observed in the region near the updraft, par-
ticularly to thewest of the updraft. In contrast, theflash initiations in the
regions to the front of the updraft tended to have an average height of
7–8 km. The regions approximately overlying the ZDR arc were charac-
terized by flash initiations at heights of 8–9 km, sometimes extending
to the west or east. To the north of these regions, the heights of the ini-
tiationswere approximately 7–8 km, although some locations had large
values (N9 km) in some scans. The lowest-altitude flash initiations
(4–5 km) could be found in the adjacent forward anvil, although some
locations with relatively large heights were also interspersed. Because
of the dependence of flash initiations on strong electric fields, the height
distribution of the initial positions of the flashes might embody that of
large electric fields.

Fig. 12a2, b2, c2 and d2 shows the height ranges of the initial posi-
tions of the flashes. The values were calculated by subtracting the min-
imum height from the maximum height in each horizontal grid.
Focusing on the southern supercell, we found that the greatest height
range lies in the region at the front of the main updraft, where strong
entrainment may have occurred (Browning and Foote, 1976; Klemp
and Wilhelmson, 1978; Nelson, 1983; Tessendorf et al., 2005). During
the four scans, the height ranges were substantially greater than 2 km
in these regions, even reaching 7 km at 2245:56 UTC. A relatively
small region to the rear of the updraft had a height range larger than

FFD

RFD

UD

North

South

Zdr arc

Adjacent 
forward anvil

Right anvil

Rear anvil

Forward
Rear

Right

Left

Fig. 9. Schematic of the southern supercell in the cluster. The basic structure of the
supercell at low level was given by Lemon and Doswell (1979).The diagrams depicted
by the black lines indicate the structures at low levels, and those depicted by the red
lines indicate some of the structures at higher levels. The dotted line in the northern
part of the contour around the main body indicates that no edge existed because the
southern and northern supercells merged. The dotted lines and open gap in the region la-
beled “adjacent forward anvil” indicate the possible additional stretching of the anvil. UD:
main updraft; FFD: forward flank downdraft; RFD: rear flank downdraft.

a b

c d

Fig. 10. Initiation points offlashes,which are colored according to their associateddominant hydrometeor superposed by the 30-dBZ contour at 0.9° tilt. (a) 2234:09UTC; (b) 2238:27UTC;
(c) 2245:56UTC; and (d) 2250:14 UTC. The gray colormeans that the hydrometeor is unknown or cannot be obtained because the initiation points were located in the radar's blind sector.
The top positions of the boundedweak echo regions (BWERs) are marked by stars in the images, except for those at 2234:09 UTC, when the BWER could not be clearly distinguished be-
cause of the radar's blind sector.
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2 km. In the first two scans, the regions approximately overlying the ZDR
arc also had large height ranges (N2 km). As the supercell developed,
the areas with large height ranges seemed to move into the eastern
part of the right anvil, similar to the initiation density (see Fig. 11). Over-
all, the right and rear anvils were principally characterized by small
height ranges (b2 km) and were interspersed by values larger than
2 km. The adjacent forward anvil featured similar height intervals for
the initiations in the right anvil.

4.4. Area of the convex hull of the flashes led by the initiations

Fig. 13 illustrates where flashes with different average convex-hull
areas were initiated. The flashes that were initiated in the adjacent for-
ward anvils tended to be large; the average areas of the convex hulls of
flashes larger than 100 km2 accounted for a relatively high proportion of
the total area. The relatively large flashes that originated in the regions
near the southern edge of the 30-dBZ contour, particularly in the region
ahead of themain updraft and near the region overlying the ZDR arc, had
average areas larger than 25 km2. A regionwith relatively large flash ini-
tiations appearednear the intersection of the southern supercell and the
adjacent supercell to its north. Comparatively, the flashes that originat-
ed in the rear and right anvils were usually small, with convex-hull
areas under 25 km2.

4.5. Conceptual models

To summarize the above results and to elucidate the critical conclu-
sions, some schematics of conceptual models that describe the charac-
teristics of flash initiations and their relationships to the structures of
supercells are shown in Fig. 14. The southern supercell in the cluster is
principally depicted. Based on the above results, the northern part of

the supercell is not considered because its merging process may have
been complex. The models display macroscopic characteristics, which
might be more universal than neglected minor details. The situations
during the vigorous stage (corresponding to the last two scans) are
slightly preferable.

5. Discussion

Non-inductive charging (Takahashi, 1978; Saunders and Peck, 1998;
Berdeklis and List, 2001; Saunders et al., 2006) is generally accepted as
the primary charging process in thunderstorms. In this process, ice par-
ticles gain charge as they collide. Large and small particles are opposite-
ly charged; the polarity ismainly affected by the temperature and liquid
water content. Usually, graupel and ice crystals are considered to be the
main particleswith opposite polarity charges.With the action of the up-
draft, the particles with different weights separate in height, which
leads to the different-polarity dominant charge levels within the
storm. The flashes are usually initiated by the strong electric fields
which are located between two regions with different-polarity charge.
In this study, the flashes that primarily originated where graupel and
dry snow (the aggregation of ice crystals) dominated accounted for ap-
proximately 88% of the total, which is consistentwith the non-inductive
charging mechanism. When studying multicell storms and a MCS,
Bruning et al. (2007) and Lund et al. (2009), respectively, reported
that flashes typically originated near the boundary between graupel
and ice crystals, often within or near the graupel regions. In this study,
the flash initiations within the main body of the supercell and its right
and forwardflankswere at positionswhere graupel dominated.Howev-
er, the flash initiations in the rear and outskirts of the right and adjacent
forward anvils were explicitly associatedwith dry snow. Therefore, a re-
gional difference exists regarding the dominant hydrometeors

a b

c d

Fig. 11. Density of flash initiation points superposed by the 30-dBZ contour at 0.9° tilt. (a) 2234:09 UTC; (b) 2238:27 UTC; (c) 2245:56 UTC; and (d) 2250:14 UTC. The statistical grids are
2 km × 2 km. The data are shown after bilinear interpolation for better display. The same as in Figs. 12–13.
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a1 a2

b1 b2

c1 c2

d1 d2

Fig. 12. Average height (left) and height range (right) of flash initiation points superposed by the 30-dBZ contour at 0.9° tilt. (a) 2234:09 UTC; (b) 2238:27 UTC; (c) 2245:56 UTC; and
(d) 2250:14 UTC. The average height values that show large gradients along the edges between the grids with values and those without values are not reliable due to the interpolation.
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associated with flash initiations in supercell storms, indicating that the
strong electric fields that cause the initiations may not always lie be-
tween regions dominated by graupel and ice crystals.

Dynamic processes seemed to have a critical impact on the charac-
teristics of flash initiations. Light, dry snow was transported far from
the region around the updraft relative to heavy hail and graupel. The in-
cline of the small-hail flash initiations toward the front of the updraft
might be due to the strong recycling, entrainment, and repeat growth
of hydrometeors on the forward flank of the updraft where strong cy-
clonic flow and shear exist (Browning and Foote, 1976; Klemp and
Wilhelmson, 1978; Nelson, 1983; Tessendorf et al., 2005). Although
similarly associated with dominant hydrometeors, the initiations in
the right and rear anvils had greater heights (N10 km) than those in
the forward anvil (b9 km). The relatively low height of the initiations
in the forward anvil is attributed to the descent of the particles during
their advection from the origin. Therefore, a lifting mechanism should
be responsible for the higher flash initiations in the right and rear anvils.

In Fig. 15, the Doppler velocity fields at 6.4° tilt (Fig. 15a) and 15.6°
tilt (Fig. 15b) are exhibited. Considering the moving direction of the
cluster, a convergence zone identified by the velocity difference could
be roughly deduced in the regions circled by the green solid line in
Fig. 15a (the height corresponding to the Doppler velocity field was be-
tween approximately 5 and 6 km). Divergence could be inferred at 15.6°
tilt (Fig. 15b) in a similar position (between approximately 11 and
14 km heights). In fact, the convergence near the southern edge of the
main body of the southern supercell could be distinctly inferred at tilts
from 3.1° to 12.5° (not shown); thus, rising motion might exist near
the southern edge of the 30-dBZ contour. This rising motion lifted the
small particles (transported by a size-sorting mechanism) and contrib-
uted to the higher position of the particles and flash initiations in the
right anvil. Speculatively, the narrow area with weak flash initiations

that divides the active initiations near the region overlying the ZDR arc
and right anvil might be associated with this rising motion, but further
evidence is not available.

Meanwhile, another convergence zonewas located at the rear of the
updraft (circled by the blue solid lines in Fig. 15). This region had a
height of approximately 4 km in Fig. 15a and 9 km in Fig. 15b. The con-
vergence, which should cause a rising motion and initiate high-level
flashes in the rear anvil, might have resulted from the interaction be-
tween the environmental wind and the upwind outflow from the
updraft.

Furthermore, the density distribution of the initial points differed
from that of the sources. Fig. 16 shows the relative source density during
the four scans. Flashes preferentially propagated through the regions
that contained more net charge (Williams et al., 1985; Coleman et al.,
2003, 2008). Therefore, the distribution of sources might be related to
that of the charge. According to Fig. 5a, the source densitymainly repre-
sents the distribution of charges at the middle levels. In Fig. 16, the re-
gions at the front of the main updraft of the south supercell contained
the most charge (within the south supercell) in all the four stages,
which should be attributed to the frequent collision between particles
and the strong charging process in the entrainment regions. The region
overlying the ZDR arc was also characterized by the second largest
source density, primarily because particles carrying charges were
transported by the size-sorting mechanism responsible for the ZDR arc.
The right anvil had a small source density, although it was still larger
than that in the adjacent forward anvil. In contrast, frequent flash initi-
ations were observed in the right anvil, followed by the regions overly-
ing the ZDR arc, adjacent forward anvil and interior and main updraft
area. However, the sizes of the flashes initiated in the aforementioned
locations were decreased from large to small as follows: the adjacent
forward anvil, the region approximately overlying the ZDR arc, the

a b

c d

Fig. 13.Average area of the convexhull of theflashes shown at their initial positions superposed by the 30-dBZ contour at 0.9° tilt. (a) 2234:09UTC; (b) 2238:27UTC; (c) 2245:56UTC; and
(d) 2250:14 UTC. The average areas of the flashes are labeled at their initiation positions, which distinguish where the different-sized flashes originated.
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region around the updraft, and the right and rear anvils. The distribution
of the average flash size is further supported by Fig. 17, in which the av-
erage areas of the convex hulls of the flashes are shown. The flashes in
the rear and right anvils were smallest. The sizes of the flashes increased
toward the main body and the forward anvil of the southern supercell.
Overall, the largest flashes were more easily identified in the forward
anvil. The basic distribution characteristics of the flash size are similar
to those exposed by Bruning and MacGorman (2013).

Small flashes and their frequent initiationmight be explained by the
concept of charge pockets (e.g., Bruning and MacGorman, 2013;
Calhoun et al., 2013). In the analysis of a high-precipitation supercell
storm, Calhoun et al. (2013) reported that flashes were frequently initi-
ated near the core but were shorter in duration and smaller in horizon-
tal extent relative to flashes far from the updraft. The authors suggested
that the small pockets of charge near the core, i.e., opposite polarities in
close proximity, could produce a strong electric field in many small re-
gions and frequently initiate flashes. Lightning leaders of each polarity
could only propagate a relatively short distance before reaching regions
with unfavorable electric potential, leading to small flashes. The results
presented here support this view when comparing the sizes and initia-
tions of flashes around the updraft and near the region overlying the ZDR
arc. In addition, whenwe comprehensively consider the source density,
flash initiations and flash sizes, the pockets of charge should be more
abundant and compact in the right anvil due to the frequent flash initi-
ations, small flashes, and small height interval (i.e., the flashes were ini-
tiated in thin layers). Thus, the pockets in the regions around and at the
front of the updraft and the regions overlying the ZDR arc, althoughdom-
inated by charge pockets because of the relatively small flashes, were
not as compact as those in the right anvil due to the thicker layer of
flash initiations (Fig. 12) and the analogous and smaller initiation densi-
ty of flashes compared with the right anvil. The rear anvil should also
contain charge pockets due to the small flashes. The forward anvil,
which usually features large-scale and horizontally extending charges
due to advection, tended to yield large flashes. Additionally, the charge
pockets tended to occur in regions with wind shear. The right anvil and
the region overlying the ZDR arc were associated with convergence
along the southern edge of the main body of the southern supercell;
the rear anvil was associated with convergence upwind of the updraft,
and the region around the updraft was associated with large horizontal
shear (Klemp and Wilhelmson, 1978).

6. Conclusion

In this study, we examined a cluster of supercells on 10–11 May
2010 that produced frequent tornadoes, hail, strongwind, extremely ac-
tive in-cloud flashes, a low proportion of CG flashes (1.07%), and a high
proportion of PCG flashes (56.70%) with a generally inverted charge
structure.

Flash initiations in areas dominated by graupel, dry snow, small hail
and crystals accounted for 44.3%, 44.1%, 8.0% and 3.0% of the total avail-
able samples, respectively. The maximum number of flash initiations
occurred at 7 km for graupel and 11 km for dry snow.

In the tornadic stage examined in this paper, the flash initiations in
areas dominated by graupel mainly occupied the main body, right
flank, and forward flank of the supercells, while the flashes that
corresponded to dry snow were located at the outskirts of the adjacent
forward anvil, right anvil, and rear anvil. The flash initiations associated
with small hail were located around the main updraft and inclined to-
ward the front.

A large number of flash initiations with values larger than 2 fl km−2

per 4 min usually occurred in the region overlying the ZDR arc (particu-
larly during the early periods of tornadic-stage supercells) and the right
anvil, which were divided by a narrow area with a density smaller than
0.5 fl km−2 per 4 min. The updraft, rear of the supercell, FFD and adja-
cent forward anvil essentially yielded less flash initiations. The density
of flash initiations was not consistent with that of the flash sources,
whose large density distinctly occupied the front of the updraft and
the region overlying the ZDR arc.

The average initial height of the flashes decreased from the rear to
the front and from right to left of the storms. The right and rear anvils
and the regionwest of the updraft were characterized by an average ini-
tial height larger than 10 km, while that of the region to the front of the
updraftwas 7–8 km; the region overlying the ZDR arc and its forward ex-
tensions were 8–9 km. The adjacent forward region, although
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Fig. 14. Schematics of conceptual models that describe the characteristics of flash initia-
tions and their relations to the structures of supercells. (a) The flash initiations and their
associated dominant hydrometeors, (b) density of flash initiations, (c) average height of
the initial positions of the flashes, (d) height range of the flash initiations, and
(e) average area of the convex hull of the flashes at their initial positions.
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interspersed by a few flash initiations with relative large heights, had a
lower average height of flash initiations overall.

The height range over which flashes were initiated was maximized
at the front of the updraft, where the range was larger than 4 km. A
height range between 2 km and 4 kmwas found in the region overlying
the ZDR arc during the early period of the tornadic-stage supercell and
the eastern part of the right anvil during the vigorous period of the
tornadic-stage supercell. Generally, the flash initiations in the right,

rear and adjacent forward anvils had small height ranges (b2 km),
with values only surpassing 2 km at the local scale.

The flashes that initiated in the adjacent forward anvils were gener-
ally the largest, featuring an average convex-hull area larger than
100 km2. The average area of the convex hull of the flashes that were
initiated in the regions ahead of the main updraft and approximately
overlying the ZDR arc ranged 25–100 km2 overall; locally, the values
were larger than 100 km2. Flashes that were initiated in the rear and

a b

Fig. 15. Doppler velocities at 6.4° tilt (a) and 15.6° tilt (b) superposed by the 30-dBZ contour at 0.9° tilt at 2250:14 UTC. The green ellipses roughly circle the region with convergence in
(a) and divergence in (b). The blue ellipses roughly circle the region with convergence in (a) and (b).

a b

c d

Fig. 16. Relative source density superposed by the 30-dBZ contour at 0.9° tilt. (a) 2234:09 UTC; (b) 2238:27 UTC; (c) 2245:56 UTC; and (d) 2250:14 UTC. The statistical grids are
1 km × 1 km. The data are shown after bilinear interpolation for better display. The same as in Fig. 17.
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right anvils were the smallest, with convex-hull areas under 25 km2.
The average convex-hull area of the flashes for the entire supercell dis-
tinctly increased from the rear to the front and from the south to the
main body of the supercell.

This study supports the concept of charge pockets (e.g., Bruning and
MacGorman, 2013; Calhoun et al., 2013) and further deduces that the
charge pockets should be more abundant and compact in the right anvil
than in the region around the front of theupdraft and the regionoverlying
the ZDR arc. Charge pockets tend to exist in regions with wind shear.
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