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From soilscapes to landscapes: A landscape-oriented
approach to simulate soil organic carbon dynamics
in intensively managed landscapes
A. N. (Thanos) Papanicolaou1, Kenneth M. Wacha2, Benjamin K. Abban1, Christopher G. Wilson1,
Jerry L. Hatfield3, Charles O. Stanier4, and Timothy R. Filley5

1Hydraulics and Sedimentation Laboratory, Department of Civil and Environmental Engineering, University of Tennessee,
Knoxville, Knoxville, Tennessee, USA, 2IIHR, Hydroscience and Engineering, Department of Civil and Environmental
Engineering, University of Iowa, Iowa City, Iowa, USA, 3USDA-ARS National Laboratory for Agriculture and the Environment,
Ames, Iowa, USA, 4IIHR, Hydroscience and Engineering, Department of Chemical and Biochemical Engineering, University
of Iowa, Iowa City, Iowa, USA, 5Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette,
Indiana, USA

Abstract Most available biogeochemical models focus within a soil profile and cannot adequately resolve
contributions of the lighter size fractions of organic rich soils for enrichment ratio (ER) estimates, thereby
causing unintended errors in soil organic carbon (SOC) storage predictions. These models set ER as constant,
usually equal to unity. The goal of this study is to provide spatiotemporal predictions of SOC stocks at
the hillslope scale that account for the selective entrainment and deposition of lighter size fractions. It is
hypothesized herein that ER values may vary depending on hillslope location, Land Use/Land Cover (LULC)
conditions, and magnitude of the hydrologic event. An ER module interlinked with two established models,
CENTURY and Watershed Erosion Prediction Project, is developed that considers the effects of changing
runoff coefficients, bare soil coverage, tillage depth, fertilization, and soil roughness on SOC redistribution
and storage. In this study, a representative hillslope is partitioned into two control volumes (CVs): a net
erosional upslope zone and a net depositional downslope zone. We first estimate ER values for both CVs I and
II for different hydrologic and LULC conditions. Second, using the improved ER estimates for the two CVs,
we evaluate the effects that management practices have on SOC redistribution during different crop
rotations. Overall, LULC promoting less runoff generally yielded higher ER values, which ranged between
0.97 and 3.25. Eroded soils in the upland CV were up to 4% more enriched in SOC than eroded soils in the
downslope CV due to larger interrill contributions, which were found to be of equal importance to rill
contributions. The chronosequence in SOC storage for the erosional zone revealed that conservation
tillage and enhanced crop yields begun in the 1980s reversed the downward trend in SOC losses, causing
nearly 26% of the lost SOC to be regained.

1. Introduction

Soil organic carbon (SOC) is an important constituent of the Earth’s fabric derived from the breakdown of above-
ground plant residue, plant rhizomes, and root exudates. In intensively managed landscapes (IMLs), determining
the SOC storage potential is of high importance for sustaining soil quality and crop productivity [e.g., Andrews
et al., 2002; Sperow et al., 2003; Cambardella et al., 2004; Lal, 2011], as well as for mitigating rising Carbon
Dioxide (CO2) levels in the atmosphere [e.g., Houghton, 2008; Kuhn et al., 2009; Hatfield and Parkin, 2012].

Several studies conducted over the last quarter of the century have emphasized the understanding of
key biogeochemical processes affecting “above” and “below” ground carbon allocation, as well as other
aspects of carbon dynamics and storage [e.g., Smith and Paul, 1990; Paustian et al., 1992, 2006; Gregorich
et al., 1998; Richter et al., 1999; Metting et al., 1999; Lal, 2004; Polyakov and Lal, 2004; Jacinthe et al., 2009;
Kuhn et al., 2009; Du and Walling, 2011; Li et al., 2012; Navas et al., 2012; Zhang et al., 2013]. Despite consider-
able gains in knowledge about SOC processes, most of these studies have been geospatially limited to the
soil profile, thereby failing to account for the effects of landscape heterogeneity on SOC redistribution and
storage [e.g., Tornquist et al., 2009]. In addition, the majority of the studies has been performed in punctually
disturbed ecosystems, such as grasslands and forests, rather than constantly disturbed IMLs [e.g., Li et al.,
1997; Yoo et al., 2005; Parton et al., 2007].
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Only a handful of models have the capacity to incorporate the effects of rainsplash/runoff and tillage erosion,
defined herein as “collective erosion,” and deposition on SOC predictions at watershed scales [Van Oost et al.,
2000, 2005]. Rainsplash triggers redistribution of the finer fractions of soil through sheet erosion with lateral
inputs to rills (Figure 1). Rills, in turn, erode on their own due to concentrated flows and convey the total
eroded material downslope from erosion-dominated areas to deposition-dominated areas (Figure 1).
Tillage has several effects on SOC redistribution and storage potential through a series of mechanistic
processes [Moore and Burch, 1986; Van Oost et al., 2000; Billings et al., 2010; Lal, 2011]. These include the
incorporation of residue within the soil profile (Figure 1) and fracturing of soil aggregates which exposes
lighter size fractions of carbon-enriched material to selective entrainment by flow [Kuhn et al., 2009;
Papanicolaou et al., 2009; Van Oost et al., 2009]. Selective entrainment of the lighter size fractions affects
the enrichment ratio (ER), which is a unique measure of change in available SOC through the enrichment
or depletion of the finer size fraction of organic rich soils [Palis et al., 1990; Wang et al., 2013].

Changes in Land Use/Land Cover (LULC) and associated management practices in agricultural IMLs can lead
to a higher degree of spatial heterogeneity and temporal variability in SOC redistribution during crop
rotations uncommon in other systems [Parkin, 1993; Abaci and Papanicolaou, 2009; Dlugoß et al., 2010;
Kravchenko and Robertson, 2011; Du and Walling, 2011; Stavi and Lal, 2011; Navas et al., 2012]. These different
practices lead to changes in the percentage of bare soil, tillage depth, fertilization, and soil roughness. The
degree that these changes influence SOC redistribution and storage may vary depending on the hillslope
location and the magnitude of the hydrologic event. In fact, SOC changes may be significantly different in
erosion-dominated (i.e., upslope) areas of a hillslope versus deposition-dominated (i.e., downslope) areas,
with significant effects on net gains or losses in the SOC stored in these zones [Van Oost et al., 2006; Wang
et al., 2015]. It is, therefore, not surprising that most of the available biogeochemical models, being soil profile
models or “point models in space,” tend to overestimate or underestimate SOC storage predictions in IMLs as
they do not account for outputs or inputs of mobilized SOC [e.g., Parton et al., 1987; Paustian et al., 1992;
Harden et al., 1999; Manies et al., 2001; Mangan et al., 2004; Jarecki et al., 2008; Tornquist et al., 2009; Wilson
et al., 2009; Van Oost et al., 2006; Bortolon et al., 2011; van Groenigen et al., 2011; Vaccari et al., 2012].

Some studies have linked existing biogeochemical models (e.g., Rothamsted Carbon (ROTH-C), DNDC
(DeNitrification-DeComposition), and CENTURY) with lumped erosion models, such as those based on the
Universal Soil Loss Equation or its modifications [e.g., Monreal et al., 1997; Manies et al., 2001; Zhang et al.,
2014], to account for losses of SOC along the downslope. These erosion models tend to provide long-term
(100 year time window) estimates of eroded SOC fluxes, but are neither meant to capture the seasonal
variability in SOC distribution [Harden et al., 1999; Li et al., 1997; Blaschke and Hay, 2001] nor account for
SOC deposition [Gregorich et al., 1998; Van Oost et al., 2006].

Figure 1. Soil and SOC redistribution. In an agricultural farm field, the collective effects of rain splash-/runoff- and tillage-
induced erosion/deposition redistribute finer soil particles and SOC heterogeneously along the hillslope.
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Recently, significant modeling efforts have accounted for the dynamics of collective erosion and the role of
deposition on SOC redistribution and storage [e.g., Billings et al., 2010; Dlugoß et al., 2010, 2012]. However,
these models do not adequately incorporate the effects of selective entrainment and deposition of the finer
size fraction of organic rich soils by the flow [Van Oost et al., 2005;Dlugoß et al., 2010, 2012]. The ER is currently
assumed to be equal to unity [Teixeira and Misra, 1997] or to obtain a constant value greater than unity. On
the contrary, it is anticipated that the range of ER values may vary depending on hillslope location and the
magnitude of the hydrologic event leading to an overestimation of the SOC displaced [Kuhn et al., 2009;
Thompson et al., 2010; Hu et al., 2013].

The goal of this study is to provide spatiotemporal predictions of SOC stocks at the hillslope scale by
accounting for the role of selective entrainment and deposition on SOC redistribution under different
hydrologic and LULC conditions. SOC predictions are made following a similar discretization approach
suggested by Berhe et al. [2012] where the hillslope is partitioned into two control volumes (CVs): an
upslope zone and downslope zone illustrated in Figure 2a. An ER module is developed to account for
selective entrainment and deposition in both zones. The backbone of the proposed modeling framework
is based on the recognition that (1) interrill splash erosion is of equal importance to rill erosion for soil
dislodgement and therefore should not be ignored in estimating ER for both the upslope (CV I) and
downslope (CV II) zones [Hu et al., 2013] and (2) ER estimations for CV II are strongly affected by material
contributions from CV I which in turn affect the potential for material mobilization or settling in CV II under
different hydrologic and LULC conditions.

The proposed landscape-oriented approach is demonstrated at the hillslope scale (0.01 km2) in a case study
site of the U.S. Midwest, namely, Clear Creek, IA. The Clear Creek watershed is an ideal location for resolving
SOC fluxes due to the data availability on soil, hydrologic, and land use properties [Papanicolaou and Abaci,
2008; Abaci and Papanicolaou, 2009].

We first estimate ER values for both CVs I and II at the hillslope scale for different hydrologic and LULC
conditions. Second, using the improved ER estimates for the two CVs, we evaluate the effects that manage-
ment practices with different crop cover, tillage depths, fertilization, and soil roughness characteristics have
on SOC redistribution in CVs I and II. The simulations are supplemented with detailed site historic and current
management practices as well as climate data (benchmark dates of the different management practices
within the simulation period are detailed in section 3.2). To assess the predictive capabilities of the newly

Figure 2. Linked WEPP-CENTURYmodeling framework. A hillslope is segmented into control volume (CV) sections composed
of a flow region, soil active layer, and parent layer. (a) The WEPP model and ER module are used to simulate the mobilization,
transport, and deposition of soil size fractions and SOC along the hillslope. (b) The integrative modeling framework allows
the CV active layer to be updated via redistribution (from Figure 2a) as well as physical mechanisms (processes) of decompo-
sition, stabilization, and incorporation.
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developed framework, samples collected from representative field locations in Clear Creek for recent years
are compared with model predictions.

2. Integrative WEPP-CENTURY Models

We consider the coupling of two established process-based models, namely, the Watershed Erosion Prediction
Project, WEPP (version 2012.8) and the biogeochemical soil-column model, CENTURY (version 4.6). Detailed
reviews ofWEPP and CENTURY are not the focus here as they have already been presented in past publications
[Flanagan et al., 2007; Parton et al., 1987; Tornquist et al., 2009]. Instead, the emphasis is placed here on the
steps involved in the coupling of the two models and the ER module.

The coupling of WEPP with CENTURY (Figure 2b) occurs here in a “loose” sense. The soil profile within a CV
represents the spatial domain of the CENTURY model. It composes a top layer, known as the active layer
(usually the top 20 cm in the soil profile [Papanicolaou et al., 2010]), and a lower subhorizon layer, known
as the parent layer. CENTURY simulates changes of SOC stocks within the soil active layer through inputs from
residue incorporation and losses by decomposition [e.g., Parton et al., 1987; Jarecki et al., 2008; Tornquist et al.,
2009; Wilson et al., 2009; Vaccari et al., 2012; Zhang et al., 2013]. However, CENTURY alone cannot explicitly
simulate the SOC fluxes entering or exiting the soil profile via the action of collective erosion [Campbell
et al., 1996; Metting et al., 1999].

The role of WEPP is to supplement these missing features in CENTURY. WEPP simulations can capture
the downslope variability of key soil parameters (e.g., surface roughness, dry bulk density, critical erosional
strength, and hydraulic conductivity) and provide textural updates of the active layer [Foster, 1982; Nearing
and Nicks, 1998; Pieri et al., 2007], all of which can strongly influence SOC fluxes.

However, WEPP in its present form cannot adequately resolve contributions of rill and interrill areas on ER
estimates [Vázquez et al., 2005; Thompson et al., 2010] and is unable to simulate the ER of material being
deposited within a CV as it tracks only the ER of material exiting from a CV [Flanagan and Nearing, 2000].

To address these limitations, an ER module is developed, which is interlinked with WEPP and CENTURY. The
module considers separate transport capacity formulae for rill and interrill erosion [Yalin, 1963; Abrahams
et al., 2001] aiming to provide improved estimates of selective entrainment and deposition for both rill and
interrill erosion processes. The separate capacity formulae for rill and interrill areas allow for a better representa-
tion of different soil size fraction redistribution and associated SOC enrichment for each of the two zones. For CV
I, enrichment is calculated for net erosion as the ratio of the concentration of the eroded fraction contributed by
rill and interrill processes to the total available concentration found in the active layer prior to an event (see
equation (13)). Alternatively, enrichment for CV II is calculated for either net erosion or deposition depending
on the “direction” of the net flux. Direction is strongly affected by the material contributions from CV I.
Positive direction is defined here as net erosion, whereas negative directions as net deposition. In the case of
net erosion, the ER in CV II is calculated similarly as in CV I. In the case of net deposition, the ER in CV II is calculated
as the ratio of the concentration of the deposited material fraction in CV II to the concentration of the material
fraction eroded from CV I derived by rill and interrill processes (see equation (14)).

The daily outputs of updated ER values along with the daily net soil fluxes and size fractions from the ER
module and WEPP are aggregated to a monthly time scale and input into CENTURY to determine SOC stocks
within a CV. Updates on SOC stocks due to the effects of decay and physicochemical stabilization of SOC are
also estimated.

The following subsections describe the assumptions of the proposed landscape-oriented approach, as well as
the enhanced erosion process formulation that the new framework offers.

2.1. Modeling Assumptions

The proposed landscape-oriented approach is based on the following assumptions:

1. The distribution of rainfall is uniformly applied to the CVs at the hillslope scale [Elhakeem and
Papanicolaou, 2009]. Soil properties within each CV are treated as homogeneous but heterogeneous
between the two CVs, which are updated during the simulations.

2. The impact of tillage events is to exacerbate the effects of rainfall-runoff erosion on SOC stocks rather than
directly displacing soil in the downslope [Quine et al., 1999; Van Oost et al., 2005].
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3. A fixed fraction of the SOC transported in runoff is considered to be mineralized so that the C loss due to
mineralization of SOC in the transported soil can be estimated by a simple relation. In our study it is
assumed that 20% of the mobilized material is mineralized [Lal, 2006; Yadav and Malanson, 2009].

4. Soil is mobilized and transported through both interrill and rill processes [Zhang et al., 2003; Wang et al.,
2013], where rainsplash effects dominate the interrill areas [e.g., Gilley et al., 1985; Gabet and Dunne, 2003]
and concentrated overland flow is the main driver for soil particle movement in rills [e.g., Römkens et al.,
2002; Rieke-Zapp and Nearing, 2005].

5. The capacity of a soil particle to bind SOC is proportional to its surface area and the affinity of its surface to
hold carbon [Palis et al., 1997; Thevenot et al., 2010; Wäldchen et al., 2012; Wang et al., 2013].

6. The soil continuum is composed of both primary particles and aggregates [Foster et al., 1985]. The primary
particles (i.e., clay, silt, and sand) are each assigned their median diameters. Aggregates are partitioned
into small and large aggregates, with specific gravity values of 1.8 and 1.6, respectively. The size distribution
and composition of mobilized soil particles is based on the availability of the range of size fractions found
within the active layer of the soil column [Foster et al., 1985]. Rill and interrill areas are source contributors
of different size fractions to the active layer. The eroding zone is treated as supply limited (i.e., no incoming
material from upslope sections) [Yalin, 1963; Abrahams et al., 2001].

7. Surface residue is distributed homogenously across the soil surface of each CV and is incorporated
vertically within the soil active layer profile during a tillage event [Salinas-García et al., 2002; Flanagan
et al., 2012].

8. SOC biogeochemical stabilization within the active layer is treated as a continuous process that includes
not only supply contributions from decayed labile forms of SOC, such as root exudates and residue
leachates, but also the decayed portions of incorporated residue and roots, which are relatively more
decay resistant than fresh plant material [Six et al., 2002; Olchin et al., 2008].

2.2. Enhanced Model Formulation

In the sections below, we provide the basic relationship used to estimate SOC stocks within the active layer
followed by the key formulation for estimating daily soil fluxes, enrichment ratios, textural updates of the
active layer, and related monthly-aggregated SOC fluxes and changes.

Updates in soil flux inputs/outputs along with updates in textural and soil microclimate conditions
affect rates of decomposition, stabilization, and respiration within the soil profile [Paustian et al., 2006].
Appendix A provides key formulation for the hydrologic component and Appendix A describes formula-
tion for the decomposition, stabilization, and respiration processes. All formulation is presented below
in index notation.
2.2.1. Estimation of SOC Stocks Within the Active Layer

The stock of SOC (g C/m2) present within the active layer of CV i at time j, SOCACTð Þ ji , is defined as follows:

SOCACTð Þ ji¼ ρBulkACT
MCarbonACT

MSoilACT

� �
DACT

� �j

i

(1)

where ρBulkACT is the dry soil bulk density of the active layer at time j (g/m3);MCarbonACT is the mass of carbon
in the active layer (g); MSoilACT is the mass of soil within the active layer (g); and DACT is the active layer
depth (m).

Studies in agricultural fields have shown that the dry bulk density values can fluctuate subseasonally or
seasonally via management and microclimate perturbations [Logsdon and Karlen, 2004; Osunbitan et al.,
2005; Burras et al., 2005]. To reflect these changes, we estimate the dry bulk density within the soil active
layer, ρBulkACT , of CV i at time j, with (assumption 2):

ρbulkACT
� �j

i¼ ρtillð Þji þ Δρrf þ Δρwtð Þ j�DTE
i (2)

where ρtill is the dry bulk density value following a particular tillage event (g/m3); DTE is the number of days
since the last tillage disturbance; Δρrf is the increase in density due to rainfall consolidation (g/m3); and Δρwt
is the increase in density due to weathering consolidation (g/m3) that is mostly triggered by heavy
equipment [e.g., Williams et al., 1984; Flanagan et al., 2007].
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2.2.2. Estimation of Net Soil Fluxes and ER—“The ER Module”

The steps involved in estimating the net soil fluxes and ER for daily rainfall-runoff events via WEPP and the ER
module are outlined in Figure 3 and are as follows: (1) determination of interrill contributions of different size
fractions (five fractions are used in this study) using an improved interrill transport capacity formula, see
equations (5), (6), (7a), and (7b); (2) determination of rill contributions and routing of the transported soil flux
of different size fractions (both interrill and rill contributions) along the downslope, see equations (8), (9),
(10a), and (10b); (3) updating the composition of the active layer based on the net fluxes of material of each
size fraction, equation (11); and (4) aggregating the daily net fluxes to a monthly scale to estimate losses or
gains in SOC stocks, see equations (12)–(17).
2.2.2.1. Size Fractions
We take advantage of existing WEPP features to represent size fractions of soil (denoted by p). WEPP employs
five size fractions (p= 1,…, 5) representing the soil matrix as both primary particles and aggregates [Foster
et al., 1985]. The primary particle diameters dclay, dsilt, and dsand are assigned median values of 0.002, 0.010,

Figure 3. ER module and SOC stock updates. The enrichment ratios and SOC stock updates in the upslope and downslope
zones are determined taking into account the mobilization and deposition of the different size fractions in both rill and
interrill areas. The ER module considers the flow transport capacity in each area of the CV and updates the composition
of the active layer with each event.

Journal of Geophysical Research: Biogeosciences 10.1002/2015JG003078

PAPANICOLAOU ET AL. SOIL ORGANIC CARBON DYNAMICS 2380



and 0.2mm, respectively. The diameter, dsmag, of small aggregates (mm) is approximated using the following
empirical equations where cl denotes the clay percentage [Foster et al., 1985]:

dsmag ¼
0:030

0:2 cl� 0:25ð Þ þ 0:030

0:100

8><
>:

cl < 0:25

0:25 ≤ cl ≤ 0:60

cl > 0:60

(3)

For large aggregates, the diameter, dlgag (mm), is determined as follows:

dlgag ¼
0:300

2cl

�
cl ≤ 0:15

cl > 0:15
(4)

In WEPP, small and large aggregates are assigned to specific gravity values of 1.8 and 1.6, respectively. If
coarser material fractions were present, WEPP can easily incorporate them by modifying the number of soil
size fractions p.
2.2.2.2. Interrill Erosion
For each size fraction p, the interrill detachment rate, Dinte pi (g/s/m), is estimated as:

Dinte pi ¼ f pDintei (5)

where fp is the mass fraction of size fraction p in the active layer and Dinte (g/s/m) is calculated asDintei ¼ Kinti

Ieσinti Rinti [Foster et al., 1995] where Kinti is the interrill erodibility (g/s/m4); Ie is the effective rainfall intensity
(m/s); σinti is the interrill runoff rate (m/s); and Rinti is the width of the interrill area.

To estimate soil contributions to rills from interrill areas, we introduce into the ER module the Abrahams et al.
[2001] transport capacity formula, rewritten for each size fraction as follows:

TCintp
i
¼ ϕρsp g SGp � 1

� �
dp

� �0:5
dp (6)

where

ϕ ¼ aτ�int pi1:5 1� τ�c int pi

τ�int pi

 !0:5
uinti
u*inti

 !c
wsp

u*inti

 !�0:5

a ¼ 10� 0:42Cr inti =Dr
0:2
inti

c ¼ 1þ 0:42Crinti=Dr
0:2
inti

where TCintpi (g/s/m) is the sediment transport capacity of size fraction p in the CV; SGp is the particle specific
gravity (�) of each size fraction p; ρsp is the particle density (g/m

3); dp is the median particle diameter (m) for
each fraction p; τ�int pi is the dimensionless shear stress acting on size fraction p (�); τ�c int pi

is the dimensionless
critical shear stress (�);uinti is the interrill flow velocity (m/s);u*inti is the shear velocity (m/s); wsp is the settling
velocity (m/s) of the median particle diameter; and a and c are regression coefficients dependent on the
concentration of roughness elements;Crinti (�), and the characteristic roughness diameter,Drinti (m) in the CV.

If the transport capacity of the size fraction, TCintpi , is greater than its detachment rate, (i.e., TCintpi > Dinte pi ),

then the interrill supply,Dintpi, of the size fraction to the rill (per unit rill area; kg/s/m2) is determined as follows:

Dintpi ¼
Dinte pi

wrill
(7a)

where wrill is the width of the rill (m). On the other hand, if TCint pi < Dinte pi , then Dintpi (g/s/m
2) is calculated

as follows:

Dint pi ¼
1
wrill

Dinte pi �
βwsp

σinti
Dinte pi � TCint pi

� �	 

(7b)

where β is a turbulence resuspension coefficient (assigned a value of 0.5) and wsp is the settling velocity for
size fraction p (m/s) estimated using the approach described in Fox and Papanicolaou [2007].
2.2.2.3. Rill Erosion and Downslope Particle Transport
A steady state form of the 1-D sediment continuity equation is used to account for the collective net fluxes
contributed in the downslope by the interrill and rill areas. The downslope flux equation for each size
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fraction is solved along a rill where the contributions of interrill areas are assumed to occur laterally along
the rill longitude:

GACTp;i ¼ Dint pi þ Drill pi (8)

where GACTp (g/m/s) is the transported soil load of size fraction p derived from the active layer within CV i; (,)
implies the derivative of GACTp in the downslope; Dintpi is the net interrill flux rate of size fraction p (g/s/m2)
determined with equations (7a) and (7b); and Drill pi is the net rill flux rate of size fraction p (g/s/m2).

For determining whether net erosion or deposition is occurring within CV i, the rill flow transport capacity,
TCrill pi (g/m/s), is determined using the Yalin [1977] formula:

TCrill pi

SGpdpρ0:5τo rill pi
0:5

¼ 0:635δ 1� 1
β0

ln 1þ β0ð Þ
	 


(9)

where

β0 ¼ 2:45 SGp
� ��0:4 τ�c rill pi

� �0:5
δ

δ ¼ τ�rill pi
τ�c rill pi

� 1

τ�rill pi ¼
τo rill pi

ρ SGp � 1
� �

gdp

τ�c rill pi
¼ τc rill pi

ρ SGp � 1
� �

gdp

where SGp is the particle specific gravity (�) of size fraction p; g is the acceleration due to gravity (m/s2); ρ is
the density of water (g/m3); dp is the particle diameter (m) of size fraction p; τo rill pi is the hydraulic shear stress
(Pa); τc rill pi is the critical erosional strength (Pa); τ�rill pi denotes the dimensionless shear stress acting on the rill
bed; τ�c rill pi

denotes the dimensionless critical shear stress (�), and β0 and δ are dimensionless parameters
that reflect the soil properties [Foster and Meyer, 1972; Alonso et al., 1981; Finkner et al., 1989].

When net erosion occurs for a size fraction (i.e., TCrill pi > GACTpi ) the rill erosion rate, Drill pi (kg/s/m2), is
determined as follows:

Drill pi ¼ Krill pi τo rill pi � τc rill pi

� �
1� GACTpi

TCrill pi

� �
(10a)

where Krill pi denotes the rill erodibility (s/m) that is a function of surface roughness and soil textural
properties. When there is net deposition (i.e., TCrill pi < GACTpi , Drill pi ) is determined as follows:

Drill pi ¼
χwsp

qrill i
TCrill pi � GACTpi

� �
(10b)

where qrill i is the unit discharge (m
2/s) in the rill; wsp is the settling velocity; and χ (~0.5) is a raindrop-induced

turbulent coefficient [Lindley et al., 1995].
2.2.2.4. Active Layer Composition Updates
Equations (5) to (10a) and (10b) are solved for each size fraction to accommodate textural changes in the soil

active layer in CENTURY. At the end of each time step, the updated mass fraction, f jþ1
ACTpi, of each size fraction p

in the soil active layer of CV i at time j+1 is determined as follows [Papanicolaou et al., 2010]:

f jþ1
ACTpi ¼

Mass jþ1
ACTpiX

p

Mass jþ1
ACTpi

(11)

where

Mass jþ1
ACTpi ¼ Mass j

ACTpi � Mass j
erodpi �Mass j

depopi

� �
± ACV iDZρsif PARpi

whereMass j
ACTpi is the mass with size fraction p in the active layer at time j (g);Masserodpi is the mass with size

fraction p (g) that eroded within time interval DT; Massdepopi is the deposited mass with size fraction p (g)
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within DT; ACVi is the surface cross-sectional area (m2) of CV i; fPARpi is the mass fraction of size fraction p
transferred to (� under net deposition) or incorporated from the parent layer (+ under net erosion); ρsi is
the bulk density of the parent layer (under net erosion) or the active layer (under net deposition); and DZi
is the net change in bed elevation (m) for CV i accounting for the net flux of material for all size fractions
and the soil porosity.
2.2.2.5. Soil Enrichment and ER Determination
We determine the ER of mobilized and deposited soil in the CVs by determining the specific surface area of
the active soil material as follows:

SSA ¼
X
p

fmp
f rsndpSSAsnd þ f rsltpSSAslt þ f rclypSSAcly

1þ f rorgp
þ f rorgpSSAorg

1:73

� �
(12)

where fmp is the proportion of size fraction p in the material being considered (i.e., active layer, mobilized or
depositedmaterial); frsndp, frsltp, frclyp, and frorgp are themass proportions of sand, silt, clay and organic matter
in each size fraction p, respectively; and SSAsnd, SSAslt, SSAcly, and SSAorg are the specific surface areas of sand,
silt, clay and organic carbon, respectively, taken as 0.05, 4.0, 20, and 1000m2/g, respectively [Sposito, 1989;
Flanagan and Nearing, 2000]. For in situ soils, fmp is the proportion of size fraction p in the soil active layer,
whereas for mobilized and deposited soils, fmp is the proportion of size fraction p in the total eroded and
deposited soil fluxes, respectively. The value 1.73 is used to convert the fraction of organic matter to
organic carbon [e.g., Neitsch et al., 2002].

The capacity of a soil particle to bind SOC is proportional to the particles surface area [Palis et al., 1997;Wang et al.,

2013], and the soil enrichment ratio of CV i at time j, ERErodACTð Þ ji , (assumption 5) can be expressed as follows:

ERErodACTð Þji¼
SSAErodACT

SSASOILACT

� �j

i

(13)

where SSAErodACT is the specific surface area of eroded soil (m2/g); and SSASOILACT is the specific surface area of
the in situ soil (m2/g). To determine the enrichment of the material being deposited within CV i at time j,
ERDepoACT
� �j

i the following expression is used:

ERDepoACT
� �j

i¼
SSADepoACT

SSAMobACT

� �j

i

(14)

whereSSADepoACT is the specific surface area of deposited soil (m2/g) andSSAMobACT is the specific surface area of
the total mobilized soil from which material is deposited (m2/g).
2.2.2.6. Net SOC Fluxes Within the Soil Profile

The net flux of material, GACTð Þ ji in g/s, from CV i at time j is calculated as the sum of the fluxes of all the size

fractions (i.e., GACTð Þ ji¼
X
p

GACTp�wrill
� � j

i ). The calculated GACTð Þ ji values are aggregated for each month to

estimate the loss or gain in SOC for the month. For net erosional events (i.e., GACT> 0), the loss of SOC for

CV i in a given month j, SOCNetErodACTð Þ ji , is estimated as follows:

SOCNetErodACTð Þ ji¼ SOCACTð Þ ji
GACTERErodACT
ρBulkACTDACT

� �j

i

DT (15)

where ρBulkACT is obtained from equation (2); and ERErodACT is the enrichment ratio of monthly-aggregated
material leaving the CV (see equation (13)).

Per assumption 3, the portion of SOCNetErodACTð Þ ji that is considered to be mineralized during transport,

SOCOXACTð Þ ji , is estimated as follows:

SOCOXACTð Þ ji¼ fOXi SOCNetErodACTð Þ ji (16)

where f OXi is a fixed fraction assumed to be 20% [Yadav and Malanson, 2009] in this study. For net
depositional events (GACT< 0), fluxes of SOC being deposited within CV i in month j, SOCNetDepoACT

� �j
i are

expressed as follows:

SOCNetDepoACT

� �j
i¼ 1� fOXi�1ð Þ SOCNetErodACTð Þ ji�1

GACTð Þ ji
GACTð Þji�1

ERDepoACT
� � j

i (17)
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where SOCNetErodACTð Þji�1 is the stock of SOC entering CV i from the upslope; and ERDepoACT
� �j

i is the enrichment
ratio of monthly-aggregated material being deposited within CV i (see equation (14)).
2.2.3. Updating SOC Stocks
Using the above outputs from WEPP and the ER module as inputs to the CENTURY model, CENTURY is run
sequentially for each CV along the downslope, simulating SOC dynamics from the impact of management
and climatic events. Stocks of available SOC within the soil active layer are first determined (equation (1)).

At the end of each month j, the net change in total SOC in the soil active layer of CV i, ΔSOCACTð Þji, in g C/m2, is
calculated as follows based on inputs from equations (15) and (17).

For net erosion,

ΔSOCACTð Þ ji¼ SOCACTð Þ ji� SOCACTð Þ j�1
i ≅ STABResDACT � RHetSOCACT � SOCNetErodACTð Þ j�1

i (18a)

For net deposition,

ΔSOCACTð Þ ji¼ SOCACTð Þ ji� SOCACTð Þ j�1
i ≅ STABResDACT � RHetSOCACT þ SOCNetDepoACT

� �j�1
i (18b)

where STABResDACT is the net amount of SOC that was stabilized from decayed residue and root stocks for the
month (g C/m2; assumption 8; see Appendix A for more detail); and RHetSOCACT is the heterotrophic soil
respiration during SOC decomposition for the month (g C/m2; see Appendix A for more detail).

3. Study Site Characteristics
3.1. Topographic Characteristics

The representative hillslope selected here is located within a region of the Clear Creek watershed where the
predominant soil series is Tama (fine-silty, mixed, superactive, mesic Typic Argiudoll), a mollisol, or prairie-
derived soil, that is well drained and formed from loess [Bettis et al., 2003]. Since European settlement, over
80% of the watershed has been converted from intrinsic prairie conditions to row crop agriculture.

Although the watershed features a mosaic of convex and concave hillslopes [Dermisis et al., 2010], the
selected representative hillslope has a convex, downslope curvature as it represents the worst-case
scenario in terms of soil and SOC loss [e.g., Huang et al., 2002; Rieke-Zapp and Nearing, 2005; Hancock et al.,
2010; Dermisis et al., 2010]. The representative hillslope has an elevation drop of 22.5m along a downslope
length of 430m yielding a declination of 5%, which is the approximate average gradient for the watershed
[Dermisis et al., 2010].

For the case study, both upslope and downslope zones (CVs) have the same soil series, which is Tama. The
representative hillslope does not extend all the way to the floodplain where the dominant soil series is
Colo. The length and average gradient of the upslope were 320m and 5.8%, respectively, and of the
downslope, 110m and 3.5%, respectively.

3.2. Management Practices

A detailed time series of local, historical management practices is provided in Table 1. The first cultivation
practices were introduced around 1930 following a final burn and intensive breakup of prairie sod with

Table 1. Summary of Local Historic Management Practices Used in Model Simulationsa

Time Period Management Rotation (year) Crop Tillage Fertilizer

1930–1975 C-C-O-M-M 1 Corn MP Manure,
(Diversity) 2 Corn MP Inorganic

3 Oats –
4 Alfalfa –
5 Alfalfa –

1976–1990 C-C-B 1 Corn CP Broadcast
(Intensification) 2 Corn CP Urea

3 Soybean CP
1991–2010 STC-NTB 1 Corn FC Anhydrous

(Conservation) 2 Soybean – Ammonium

aMP, moldboard plow; CP, chisel plow; FC, field cultivator.
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themoldboard plow [Hart, 2001]. A 5 year diverse crop rotation of corn-corn-oat-meadow-meadow (CCOMM)
with organic fertilizer was then adopted. In years 1 and 2 of that rotation, corn (Zeamays) was planted and the
moldboard plow was used for both spring and fall tillage. Oats (Avena sativa) and alfalfa (Medicago sativa)
were planted simultaneously in year 3 of the rotation with the oats acting as a companion crop to protect
the alfalfa from excessive sunlight exposure and weed competition. Grain harvest of the oats was performed
in late summer of year 3 while in years 4 and 5, the alfalfa was cut and baled for hay twice per year. In each
year of this 5 year rotation, manure applications were applied in both spring and fall. However, in 1951, these
manure applications were replaced with inorganic fertilizers [Keeney and Hatfield, 2008].

During the early 1970s, grain prices and demand began to surge, which prompted shifts of many biodiverse
crop rotations (e.g., CCOMM) to more intensified production of other commodity crops [Rupnow and Knox,
1975; Trautmann et al., 1985]. From 1976–1990, soybeans (Glycine max) replaced oats and alfalfa grasses
in a 3 year rotation of corn-corn-beans, CCB. The CCB management period consisted of larger fertilizer
applications and higher tillage intensity with the use of the chisel plow [Reicosky et al., 1995; Keeney and
Hatfield, 2008].

In the 1990s, intensified practices were replaced with more conservative tillage practices, including the 2 year
corn-soybean rotation of spring till corn/no-till bean, STC-NTB [Abaci and Papanicolaou, 2009]. During corn
production in the first year of the rotation, a field cultivator performed reduced spring tillage prior to
planting. In the second year of the rotation, soybeans were planted under no-till conditions, with only minor
disturbances to the soil from ripple coulters to chop up and remove residue stubble when planting. Fertilizer
applications of anhydrous ammonium were knifed into the soil following soybean harvest when soil
conditions were favorable [Keeney and Hatfield, 2008].

3.3. Climatic Conditions

Due to the midcontinental location of Iowa, the climate for Clear Creek is characterized by hot summers,
cold winters, and wet springs [Highland and Dideriksen, 1967]. Daily high temperatures reach an average
July maximum of 30 °C, while daily low temperatures reach an average minimum of �10°C in February
[Markstrom et al., 2012]. Average annual precipitation is approximately 876mm/yr with convective thunder-
storms prominent in the early summer and snowfall in the winter [Iowa Environmental Mesonet (IEM),
2015]. For site-specific information, the observed data from a neighboring weather station found in
Williamsburg, IA was used [Arnold and Williams, 1989; Gete et al., 1999; Abaci and Papanicolaou, 2009].
We focus on the period of 1930–2010 as this is the period coinciding with the different management
periods described earlier (see Table 1).

The time series of historic monthly precipitation for the period of 1930–2010 highlights a sequence of
seasonal Gaussian distributions, with the peak rainfall in the watershed being received in May and June of
each year [Abaci and Papanicolaou, 2009]. In addition to the seasonal variability, several notable extreme
climatic events, namely, floods and droughts have occurred throughout this time period, with implications
to the overall carbon cycle [Reichstein et al., 2013]. Two major flooding events occurred in years 1982 and
1993 [Heinitz, 1986; Mutel, 2010] and an intensive drought period in 1988 [Handler, 1990].

4. Methodological Procedures
4.1. Model Initialization and Calibration

Prior to performing model simulations, the initialization and calibration steps of the loosely coupled models
were considered carefully. Careful attention was first placed on the initialization of CENTURY to ensure that
the initial stocks of SOC adequately represented the conditions found within the active layer (top 20 cm)
before introducing cultivation practices. The model was run for an extended period of time prior to 1930
to allow key biogeochemical processes and recalcitrant pools of SOC within CENTURY sufficient time to reach
the pseudoequilibrated state conditions where conditions do not change in an average sense with time
[Metherell et al., 1993]. The year 1930 is considered a benchmark date to our modeling efforts as this is the
year that the first cultivation practices were introduced.

Calibration was needed for both models. Topographic data (section 3.1) as well as longitudinal data of
changes in management practices (section 3.2) and climate records (section 3.3) helped us perform the
calibration procedures. Appendix A provides details of the initialization and calibration steps.
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4.2. Verification

To assess the predictive capabilities of the newly developed framework, samples (n=250) were collected
from representative field locations in 2005, 2007, and 2010 and tested for SOC using an elemental analyzer
following methods in Martinotti et al. [1997] and Pansu et al. [2001]. Sampling locations were determined
based on results from Papanicolaou et al. [2009] and literature found in Fox and Papanicolaou [2007, 2008].
Factors hypothesized to induce variation of SOC stocks in the study site (e.g., depth, soil type, management,
and gradient) were used to fine tune the sampling locations in both eroding and depositional areas.
Comparisons of the measured and the simulated values are presented in section 5.4.

5. Analysis of Results

In this section, we present estimates of net erosion/deposition and dry soil bulk density generated from
WEPP, as well as ER values generated from the ER module for the upslope and downslope CVs for the period
of 1930–2010. These estimates are generated by accounting for rill and interrill contributions and are utilized
to generate, via CENTURY, SOC trends where long-term changes in SOC stocks are assessed as a function of
historic management practices and climatic conditions for 1930–2010.

5.1. Spatial Heterogeneity and Temporal Variability Results of Net Soil Fluxes

Figure 4a provides a time series of the daily precipitation, color coded with simulated daily runoff coefficients
(RC) from 1930–2010 to discern the effects of rainsplash from concentrated flow on the magnitude and direc-
tion of the soil fluxes. Figures 4b and 4c illustrate the corresponding net erosion and net deposition fluxes for
the different management practices.

The RC values throughout the CCOMM management period (1930–1975) averaged 0.18. During the corn
production years of the CCOMM rotation (years 1–2), however, RC values were found to be 35% higher than
years in grass production (years 3–5 of rotation) despite similar precipitation amounts. During the CCB
management period (1976–1990), RCs were highest, averaging 0.30. The highest RC during this time period
was during the June flood of 1982 [Heinitz, 1986; Barnes and Eash, 1994], which produced a monthly RC value
of 0.65. In the management period of STC-NTB (1991–2010), RC values dropped to an average of 0.26, as
conservation tillage methods become prevalent. However, extreme events during the flood of 1993 had
an average RC of 0.46, which was almost double the average of the entire period.

Figure 4. Time series of simulated runoff coefficient and soil redistribution. (a) A time series of simulated runoff coefficients
(RC) is shown, with corresponding net erosion rates for the (b) upslope and (c) downslope zones of the representative
hillslope. The net erosion plots (Figures 4b and 4c) are color coded with the following corresponding RC intervals (0.00–
0.25 = green diamond; 0.25–0.50 = orange triangle; 0.50–0.75 = blue square; 0.75–1.00 = red circle). The time series covers
the years 1930 to 2010, reflecting CCOMM, CCB, and STC-NTB management practices. Note that the scale of net erosion for
the downslope zone is different from the upslope zone due to the presence of net deposition.
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In CV I (Figure 4b), the net erosion events appeared to be more spread out during the CCOMM period
comparatively to the CCB and STC-NTB periods. Significant erosion events occurred for the CCOMM period
in only two of the 5 years of the rotation when corn was grown and attributed to the decreased land
cover from tillage activities. The average net monthly erosion for the entire period was estimated as
0.48 kg/m2/month. The frequency of erosion events intensified during the CCB period due to reduced land
cover in each year of the rotation and increased tillage frequency (3 out of 3 year for CCB versus 2 out of 5 year
for CCOMM). The first year of the rotation generally experienced the highest net erosion rates because
fall tillage events performed after harvesting soybeans provided less residue cover than corn [Abaci
and Papanicolaou, 2009]. The average net monthly erosion during the CCB management period was
0.99 kg/m2/month, which was more than double the CCOMM rates. The largest net flux for the entire simula-
tion period, 25.2 kg/m2, occurred in the CCB period during the recorded flood event in June of 1982, where
15 cm of rainfall fell on top of an already wet year [Barnes and Eash, 1994]. There was a significant reduction in
net erosion rates with the introduction of conservation practices in the STC-NTB period, in the form of
reduced tillage and no-till practices [Abaci and Papanicolaou, 2009]. Overall, during STC-NTB management,
the soil loss in CV I was found to average 0.21 kg/m2/month, which was less than half the average rate during
the CCOMMmanagement. Similar value ranges for STC-NTB management have been reported in this region
(although the emphasis has been in Western Iowa) by Burkart et al. [2005] and Karlen et al. [2013].

In the downslope control volume, CV II (Figure 4c), the absolute magnitude of net soil fluxes during all
management periods was generally less than the magnitude in the upslope CV. During the CCOMM and
CCB periods, deposition events in the downslope appeared to “mirror” incoming fluxes from the upslope
(Figure 4b), suggesting that contributions from the upslope generally exceeded the transport capacity of flow
in the downslope, where the unit flow power term—defined as the amount of flow energy available to mobi-
lize and transport material [Yang, 1973] and expressed in equation (9) through the bed shear stress terms and
coefficients as functions of gradient and velocity—was lower comparatively to the upslope. Overall, CV II
experienced an average monthly net deposition rate of 0.66 kg/m2/month in the CCOMM period. Net deposi-
tion events continued throughout the CCBmanagement period, with an average net monthly deposition rate
of 1.08 kg/m2/month. This trend was consistent with net fluxes from the upslope during the CCB period being
twice as much as the fluxes during the CCOMM period. During the STC-NTB conservation management, net
soil fluxes in the downslope switched from net deposition to net erosion, at an average monthly rate of
0.11 kg/m2/month. The considerably reduced supply of incoming material from the upslope during the
STC-NTB period resulted to a supply limited system in CV II and increased mobilization of material derived
from the downslope. Hence, although there were still some deposition for certain events, on average, the
net flux for each month had generally a positive direction (net erosion). Despite the switch to net erosion,
the flux rates in the downslope were less than half the rates in the upslope due to the lower unit stream
power (equations (9), (10a), and (10b)). What is worth noting is that despite the positive net flux in both
the upslope and downslope CVs for the STC-NTB period, the average monthly flux of material exiting the
hillslope for that period was considerably less than the CCOMM and CCB periods due to the effectiveness
of the STC-NTB management at reducing net erosion overall.

5.2. Bulk Density Spatial and Temporal Variability

As seen in Figure 5, the dry soil bulk density (BD) decreased directly following a tillage event and then
increased as cumulative rainfall increased. The simulated BD values ranged between 0.92 to 1.40 g/cm3.
This is in good agreement with observed BD values of 0.90 to 1.40 g/cm3, gathered from a collection of past
and current research conducted within the study site [O’neal, 2009; Papanicolaou et al., 2015; http://critical-
zone.org/iml/infrastructure/field-area/clear-creek-watershed].

The introduction of the moldboard plow spurred interannual fluctuations in BD, decreasing values from 1.40
to 0.92 g/cm3 during the years in which corn was planted in the CCOMM management period. The BD
increased in the months following the tillage events, potentially due to weight consolidation. In rotation
years 3–5 when oats or alfalfa was present, the BD increased due to the prolonged absence of tillage events.
During the CCB management period, interannual variability in BD decreased (1.35 to 1.00 g/cm3) as less
intensive tillage practices were used in the production of both corn and soybeans, and the BD was unable
to reach to the maximum values found in CCOMM because the CCB rotation did not have long-enough
“rebounding” periods. In year 1 of the 2 year STC-NTB management practice, fluctuations in BD ranged from
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1.38 to 1.13 g/cm3. The smaller decrease in density
was found to be from the reduced spring tillage
before corn planting [Abaci and Papanicolaou,
2009]. However, in the second year of the rotation,
when no-till was used for soybean production,
the even smaller decrease in BD from 1.35 to
1.25 g/cm3 was due to disturbance of the soil by
the planter, which was less intrusive. At the end
of the second year, application of the anhydrous
also caused the BD to drop to 1.20 g/cm3.

Overall, the approximate 20–40% change in BD
supports the need to account for temporally
updated values of BD in quantifying transport
and deposition rates of soil and SOC. Similar trends
and the need to account for the chronosequence
in BD changes have been reported in the literature
[Lal, 2005; Kuhn et al., 2009; Schwärzel et al., 2011;
Celik et al., 2012].

5.3. Enrichment Ratio Spatial and
Temporal Variability

Figure 6 highlights the time series of simulated
ER values for the representative hillslope from
1930–2010. Figures 6a and 6b represent material
leaving the upslope and downslope CVs, respec-
tively, while Figure 6c represents material being
deposited within the downslope CV. In all plots,
the ER values are categorized into four classes
corresponding to those used for the precipitation

and net erosion plots in Figure 4 based on the four RC classes. The plots reveal three key findings: (1) there
are distinct differences in ER between the upslope and the downslope; (2) ER varies with event magnitude;
and (3) management practices affect the ER.

In the upslope CV (Figure 6a), ER values ranged from 0.97 to 3.25 for all runoff-generating storms, with the
maximum value reducing systematically from 3.25 to 1.2 from the smallest RC range (0.00–0.25) to the largest
RC range (0.75–1.00). The minimum ER value, on the other hand, was similar for all RC ranges, falling between
0.97 and 0.98. Average ER values followed the same trend as the maximum values, also systematically
decreasing from 1.27 to 1.00 from the smallest RC range to the largest RC range. The general reduction in
ER with increasing RC supports the notion of less preferential mobilization of different size fractions at higher
flows where general motion usually occurs [Papanicolaou et al., 2004]. Under these high-flow conditions, the
composition of the mobilized soil is similar to the composition of the in situ soil, resulting in little to no SOC
enrichment of the transported soil. The results indicated that, on average, mobilized material during CCOMM
period was 8% more enriched compared to the in situ soil, whereas material mobilized during the CCB and
STC-NTB periods were only 1% more enriched.

In the downslope CV, the average ER values under net erosion conditions (Figure 6b) were generally lower in
magnitude compared to their corresponding values in the upslope CV. Like the upslope, the average ER
values in the downslope decreased systematically with increasing RC range from 1.17 to 0.99. The smaller
ER values in the downslope compared to the upslope highlighted the importance of rainsplash in the
selective transport of finer material on the upper sections of the hillslope [Nadeu et al., 2011; Hu et al.,
2013]. On the lower hillslope sections, concentrated flow effects, which tended to mobilize all fractions, were
dominant and overshadowed the effects of rainsplash, leading to the smaller ER values. In the downslope CV,
the mobilized material during the CCOMM period was only 4% more enriched than the in situ soil, implying
that the loss in SOC per unit mass of soil eroded was less in the downslope compared to the upslope (for the
same initial SOC content).

Figure 5. Soil bulk density. A time series of simulated daily
soil bulk density values for the representative hillslope (black
line) as determined by the WEPP model. The time series
covers the period from 1930 to 2010 to reflect initiation of
tillage. Field measurements of soil bulk density from the study
watershed ranged from 0.90 to 1.48 g/cm3, which are in good
agreement with simulated values [Papanicolaou et al., 2008;
O’Neal, 2009].
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Under net deposition conditions (Figure 6c), material being transported from the upslope CV was deposited
onto the active layer of the downslope CV. Deposition processes were also selective, but, on the contrary,
favored heavier, generally larger size fractions. The deposited fraction was found to be either less or more
enriched compared to the material being transported, depending on the composition of the deposited
fractions. This is seen in Figure 6c, where the range of ER values (from equation (14)) falls between 0.93
and 1.07. The depositional patterns in Figure 6c reflect the management practices in each period. There
are net deposition events during the two corn production years of the CCOMM period, net deposition events
during each year of the CCB period, and net deposition events every other year of the STC-NTB period,
reflecting the tillage practices adopted. The ER values for all the management periods suggest that, on
average, depositional events resulted in the flux of material that was 3–5% more enriched into the soil.
This is consistent with the deposition of larger size fractions containing finer enriched material in their
composition [Nadeu et al., 2011].

Overall, the smaller loss in SOC per unit mass of eroded soil in the downslope, combined with the relative
enrichment of soil in the active layer, tended to promote higher SOC per unit mass in the downslope relative
to the upslope. However, since the ER is concentration ratio, the actual loss or gain in SOC is dependent on
the initial stocks of SOC to a large degree [Schiettecatte et al., 2008].

5.4. Effects of Long-Term Changes in LULC on SOC Stocks

Figure 7 provides the time series of simulated monthly SOC stocks within the upslope and downslope CVs of
the representative hillslope from 1930 to 2010. The year 1930 was selected to represent the introductory
baseline SOC stock value of 4500 g C/m2 supplied from the initialization (represented by the black dot in
Figure 7) right before conversion to agricultural production.

In the upslope CV (green-colored line), the general trend includes (1) significant losses of SOC following
conversion to row crop agriculture during the CCOMM period, (2) a “plateaued” recovery period during the
CCB management period, and (3) a “rebounding” period during the implementation of current STC-NTB con-
servation practices. Similar trends have been reported in other assessments of SOC within IMLs [Mann, 1986;
Owens et al., 2002; Liu et al., 2003; Tornquist et al., 2009; Brown et al., 2010; Bortolon et al., 2011]. On conversion
to row crop production in 1931, there was a sharp, initial spike in SOC stocks due the massive supply of

Figure 6. Time series of simulated enrichment ratios. A time series of daily simulated enrichment ratios (ER) values of mate-
rial leaving the (a) upslope and (b) downslope zones of the representative hillslope are provided. (c) The ER values of the
material being deposited within the downslope zone, aggregated to the monthly time scale. The ER values are broken into
corresponding runoff coefficients (RC), with RC between 0.00 and 0.25 (green diamond); 0.25 and 0.50 (orange triangle);
0.50 and 0.75 (blue square); and 0.75 and 1.00 (red circle).
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organic material delivered to the active layer through tillage-incorporation of prairie grasses. After the spiked
flux, there were SOC losses attributed to the combined tillage effects with rainfall-runoff erosion events
[Stinner et al., 1983; Tivy, 1990]. This is seen in Figure 7 with a series of “descending staircases” suggesting
losses in SOC with time especially throughout the CCOMM period. Residue incorporation rates (i.e.,
SOC contributions from residue decomposition; see equations (18a), (18b), and (B3)) during the period aver-
aged 127 g C/m2/yr, while heterotrophic respiration and net erosional SOC losses were 115 and 67 g C/m2/yr,
respectively.

During the CCB management period, enhanced crop production rates from increased fertilizer usage and
genetic seed advancements (see Figure C1) began to halt the downward trend of SOC stocks. Residue
incorporation rates during this period increased to an average of 237 g C/m2/yr, while heterotrophic
respiration and net erosional losses rose to 131 and 104 g C/m2/yr, respectively. Overall, SOC stocks kept
nearly constant despite a punctuated loss of SOC during the 1982 flood event [Barnes and Eash, 1994].

During the STC-NTB management period, the implementation of conservation practices further decreased
erosion rates, while the adoption of high-yield crop hybrids increased plant production such that residue
incorporation was greater than the losses due to decomposition and erosion, resulting in SOC stock
increases. Here residue inputs averaged 247 g C/m2/yr, while respiration and erosional losses were 148 and
29 g C/m2/yr. Loss of SOC due to erosion under STC-NTB was almost 4 times smaller than the previous CCB
period. In fact, net erosion fluxes from flooding events in 1993 were “dampened” in part due to the protection
offered by increased residue cover from conservation (reduced and no-till) practices [Rhoton et al., 2002].
Toward the end of the simulation, SOC stocks appear to approach a new equilibrium value [Six et al., 2002;
Stewart et al., 2007], building at a rate of 71 g C/m2/yr, which is comparable to increases reported by
Reicosky et al. [1995].

SOC within the downslope net depositional CV (red colored line) for all periods was found to be much higher
than the upslope net erosional CV, which has been reported in the literature [e.g., Stavi and Lal, 2011; Du and
Walling, 2011; Navas et al., 2012;Wang et al., 2015]. Throughout the CCOMMperiod, the gradient of SOC stocks
increased as the frequency of deposition events (Figure 4c) and production rates also increased starting in the
late 1950s (see Figure C1). Residue incorporation rates during this period averaged 196 g C/m2/yr, while
heterotrophic respiration was 217g C/m2/yr. Both of these rates were more than double the values found in

Figure 7. Spatial heterogeneity and temporal variability of SOC. A time series of simulated values of SOC is provided for the
upslope (green line) and downslope (red line) zones of the representative hillslope, highlighting the variability of SOC
throughout historic management practices from 1930 to 2010. Baseline stocks of SOC acquired during model initialization
is plotted (black dot). In addition, field measured values of SOC collected within the upslope (green circle) and downslope
(red circle) zones of several hillslopes within the study watershed are compared to corresponding simulated SOC values.
Note: Vertical error bars represent the standard deviation of the samples in gC/m2.
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the upslope. In addition, SOC losses due to erosion in the downslope were minimized, averaging around
4gC/m2/yr, which is over 10 times less than upslope losses. The average annual stock of SOC deposited from
CV I contributions was 55g C/m2/yr. This finding could havemajor implications to the overall carbon budget of
the system as most of the mobilized material was not actually exiting the hillslope.

During the CCB period, the downslope experienced a constant degradation in SOC stocks. Residue incorpora-
tion and heterotrophic respiration rates averaged 226 and 305 g C/m2/yr, respectively. The rotational switch
from grasses to soybean production not only decreased organic inputs (less biomass) into the soil but also
enhanced microbial activity through increased tillage frequency [Stinner et al., 1983; Tivy, 1990]. Average
SOC losses due to erosion increased to over twice the CCOMM rates at 12 g C/m2/yr, while fluxes of deposited
SOC from CV I contributions decreased to 50 g C/m2/yr.

In the STC-NTB management period, the SOC stock began to slowly build and continued to rise, but at a
slower rate than the corresponding period for the upslope. Residue inputs averaged 291 g C/m2/yr, while
respiration losses were 235 g C/m2/yr. Erosional SOC losses in the downslope during this period, however,
were the highest of all periods, matching rates in the upslope at 34 g C/m2/yr. Deposition of SOC during this
period was negligible due to the reasons outlined earlier (see section 5.1).

Lastly, Figure 7 also provides a comparison of simulated SOC stocks with field measured values of SOC from a
field site in Clear Creek that exhibit nearly identical properties with those selected for the representative
hillslope during the simulations (green dot represents values from upslope; red dot represents values from
downslope). The figure shows good correspondence between the measured and the simulated values for
the representative hillslope. Field values of SOC in the upslope and downslope zones are both increasing over
time, with the downslope values higher than the upslope values, which is consistent with the simulation and
literature reports [e.g., Liu et al., 2003].

6. Discussion and Conclusions

This paper offers an improved methodological framework to account for the collective effects of soil
erosion on SOC redistribution in IMLs by spatially simulating the key processes described in Figure 1, taking
into consideration monthly-aggregated changes in ER and BD. The framework loosely couples two
established process-based models, WEPP and CENTURY, to incorporate the effects of the described
landscape features on SOC stocks. A newly developed ER module is used to overcome some important
limitations of WEPP by accounting for (1) textural updates of the active layer, (2) the enrichment of material
being deposited on the hillslope, and (3) explicitly considering the effects of splash-driven interrill erosion
on ER estimates.

The framework is applied in Clear Creek to a representative hillslope that is discretized into two CVs, namely,
an upslope net erosional zone and a downslope net depositional zone, to simulate spatial and seasonal
changes in SOC stocks due to historical long-term changes in LULC (Table 1). Figure 8 summarizes the simu-
lation results, illustrating the effects of management practice and hillslope location on changes in net soil
fluxes, ER, BD, and associated SOC stocks. In the figure, the hollow arrows represent net soil fluxes, where
net erosional fluxes are oriented in the downslope direction and net depositional fluxes are oriented verti-
cally downward into the soil active layer. The sizes of the arrows represent the relative magnitudes of the
fluxes; larger arrows indicate greater fluxes (and vice versa). SOC symbols with an upward arrow represent
gains in SOC stocks while a downward arrow represents loss in SOC stocks. For ER and BD, the sizes of the
symbols represent the relative magnitudes of the quantities.

During the CCOMM and CCB management periods, erosion fluxes from the upslope were generally higher
than erosion fluxes from the downslope due to a greater supply of material from the upslope to the
downslope resulting in a reduced capacity of flow to mobilize material in the downslope. On the contrary,
during the STC-NTB period, erosion fluxes from the upslope were lower than the fluxes from the downslope
since the supply from the upslope was greatly reduced and the flow in the downslope had a higher capacity
tomobilize material. The average deposition rate was largest during the CCB period due to the highest supply
of material from the upslope, attributed to the greater tillage frequency and the lower soil cover. The
deposition rate was smallest during the STC-NTB period due to the least supply of material from the upslope
attributed to the effectiveness of conservation practices.
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There was a clear distinction in simulated ER values between the upslope and the downslope. Net erosion
fluxes exiting the upslope were consistently more enriched comparatively to net erosion fluxes from the
downslope, suggesting that, under the same initial SOC stocks, SOC losses per unit eroded soil mass in the
upslope would be greater than SOC losses per unit eroded soil mass in the downslope. The higher ER values
in the upslope were attributed to the relatively more important role of rainsplash (associated with greater
selective transport of finer material) on the upper sections of the hillslope comparatively to the lower
sections, where concentrated flow effects were more important. Enrichment of eroded material was largest
during the CCOMM period due to rainfall-runoff events with low runoff coefficients that preferentially trans-
ported finer fractions.

The simulations also highlighted the importance of accounting for the enrichment of the soil active layer in
the downslope through the preferential deposition of larger size fractions containing finer enriched material
in their composition. On average, deposited material was 3–5% more enriched than the mobilized material
from where they deposited. Furthermore, the ER values of material eroded from the downslope were
generally close to one as the dominant erosion processes and updated soil textures were such that mobilized
material was just as enriched as soil in the active layer. This finding has implications on the fraction of the
enriched organic carbon material that gets delivered into the stream under different management practices
[Dalzell et al., 2007].

The fluctuations in BD were greatest during the first 2 years of the CCOMM rotation due to the use of the
moldboard plow, which was the most intrusive tillage implement. The lowest BD fluctuations were observed
during the STC-NTB due to the conservation practices adopted. Overall, the changes in BD during the
simulation ranged between 20–40%, supporting the need to account for temporally updated values of BD
in quantifying SOC fluxes.

The trends in SOC stocks differed between hillslope locations. In the upslope, SOC stocks declined during the
CCOMM period due to intrusive tillage activities and high-erosion rates but increased during the CCB and
STC-NTB periods. The increase during the CCB period despite the highest erosion rates was due to enhanced
crop production rates from increased fertilizer usage and genetic seed advancements. The continued
increase during the STC-NTB period was also due to the lower erosion rates stemming from conservation
tillage practices. In the downslope, SOC stocks increased during the CCOMM period due to net deposition

Figure 8. Summary of changes in net soil fluxes, BD, ER, and SOC with management practice and hillslope location.
The arrows represent net soil fluxes, with erosional fluxes oriented in the downslope direction and depositional oriented
vertically into the soil active layer. SOC, ΔBD, and ER symbols represent changes in SOC stocks, soil bulk densities, and
enrichment ratios, respectively. The sizes of the arrows and symbols reflect the relative magnitudes of the quantities. For
changes in SOC stocks, up arrows indicate gains in SOC while down arrows indicate SOC loss.
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and increased crop production. During the CCB period, however, the stocks decreased despite the high
deposition rates due to reduced organic inputs from soybean and increased heterotrophic respiration from
increased tillage frequency. SOC stocks increased during the STC-NTB period despite the greater erosion
rates from the zone due to reduced heterotrophic respiration rates from conservation tillage and increased
crop production rates.

Overall, the simulated SOC trends were in agreement with measured trends and values from a field site in
Clear Creek that exhibited nearly identical properties with those of the representative hillslope used for
the simulations (Figure 7). The field values of SOC in the upslope and downslope are both increasing over
time, with the downslope values higher than the upslope values, which is consistent with the simulation
results and literature reports [e.g., Liu et al., 2003; Wang et al., 2015].

As with any framework, there are some caveats associated to the approach considered herein. First, in our
analysis we assumed that the soil composition of the active layer in 1930s is similar to the composition of
the current active layer. This may not be the case in certain regions of the under investigation watershed
where significant soil degradation may have occurred yielding the removal of the A horizon. A recent hydro-
pedologic study by Papanicolaou et al. [2015] has shown that the steeper areas in Clear Creek with gradients
higher than 5% may experience significant degradation resulting in significant coarsening of the top soil.

Second, the framework considers fixed size fractions estimated from empirical relationships developed by
Foster et al. [1985]. For our site, this produced size fractions with median diameters ranging from 0.002 to
0.48mm. In reality, however, there may be larger size fractions or aggregates enriched in SOC [Di Stefano
and Ferro, 2002; Zheng et al., 2012] whose mobilization and deposition could impact SOC dynamics on the
hillslope as they offer further protection to the organic matter trapped within their structure [Berhe et al.,
2012]. Furthermore, it is assumed that the median diameters of the size fractions do not change under either
the impact of rainsplash or hydraulic shear, or as they travel downslope. This may not be the case, as
mobilized fractions may break down or grow in size due to mechanical, chemical, or biological processes.

Third, it is assumed that a fixed fraction (20%) of the mobilized SOC is oxidized during transport. However,
according to Lal [2006], the actual magnitude of oxidation may be dependent on the composition of the
organic matter. Uncertainty in the estimate is reflected in the broad range of fractions proposed in the litera-
ture [e.g., Beyer et al., 1993; Lal, 1995; Schlesinger, 1990; Jacinthe and Lal, 2001; Smith et al., 2001].

Fourth, the framework also adopts the concept of flow transport capacity which is embedded in WEPP as a
means of determining whether or not net erosion or net deposition occurs. Under net erosion, the framework
assumes that there is no deposition, whereas under net deposition, it assumes that there is no erosion.
However, in nature, erosional and depositional processes occur simultaneously and so the soil active layer
continually loses and gains SOC during rainfall-runoff events in both erosional (upslope) and depositional
(downslope) zones [Cao et al., 2012]. This effect may be particularly important in the depositional zone, where
material flux from the upslope could be deposited onto the active layer even when the transport capacity
formula suggests that there should be net erosion.

Fifth, we assume that residue is uniformly distributed across the hillslope and does not simulate the
mobilization and downslope transport of residue by runoff. The impact of residue redistribution on the
landscape on SOC dynamics between the erosional and depositional zones is thus not accounted for
[Thompson et al., 2008]. Lastly, the framework does not account for organo-mineral complexation phenom-
ena, which appear to affect SOC storage differently in erosional and depositional zones [Berhe et al., 2012].
More research is however needed on this front to shed some light on the actual role that complexation plays
in the persistence and storage of SOC in the two zones.

Overall, this study, although limited at the hillslope scale, offers some insight of what it will take in terms of
human activity and here in terms of conservation practices to reverse further degradation of SOC. To assess
the impact of management on SOC budgets at a larger scale where policy needs to bemade (e.g., watershed),
more detailed representation of the landscape and heterogeneous features present is needed [Young et al.,
2014]. High-resolution elevation data, like repeated lidar, could be incorporated into future modeling efforts
to identify flow pathways more precisely, as well as track the geomorphic evolution of the landscape stem-
ming from a sequence of erosion or deposition events [Young et al., 2014]. In this case, flow pathways and
connectivity of the landscape with neighboring units must be considered. Future research should more
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explicitly account for the role of the drainage network on SOC storage as the eloquent work of Liu et al. [2011]
has shown may play a significant role in SOC stocks as well as the role of exchanges between soil and atmo-
sphere in IMLs.

Appendix A: Surface/Subsurface Flow Formulation

During a storm event, runoff is routed along the downslope of sequential control volumes (CVs) using the
kinematic wave equation:

hi; j þ qi;i ¼ qli (A1a)

where i denotes space; the CV element i; j denotes time; (,) denotes first-order derivative; h is the flow depth
(m) within CV i; q is volumetric flow discharge per unit width (m2/s) in CV i; and ql is a source term, a
volumetric flow discharge, which incorporates the lateral (l) inflow rate of excess rainfall (m/s) to the CV,
defined as follows:

qli ¼ ri � f i (A1b)

where r is the rainfall rate (m/s); and f is soil infiltration rate (m/s). In equation (A1a), the left-hand side term q,
is estimated using a typical power law, depth-discharge relation:

q ¼ αh3=2 (A2)

where α is the kinematic depth-discharge coefficient determined as α ¼ C
ffiffiffiffiffi
So

p
; C is the Chezy roughness

coefficient; and So denotes the spatially average surface gradient of the CV. The infiltration rate of the
active layer, f, in (equation (A1b)), is determined using the modified Green-Ampt equation to account for
the effects of management and land use on flow partitioning through the inclusion of the effective
hydraulic conductivity term:

f i ¼ Fi;j ¼ Ψϑdi þ Fi
Fi

� �
Kei (A3a)

where Ψ is the average capillary potential (m); ϑd is the soil moisture deficit (m/m); Ke is the effective
hydraulic conductivity (m/s) that accounts for the collective effects of surface roughness and developed
crust, tillage, raindrop impact, as well as canopy and residue cover within CV i [Kidwell et al., 1997]; and F is
the cumulative infiltration depth (m), which is iteratively determined by applying the Newton–Raphson
method to the equation:

F ¼ KeDT þ Ψϑd ln 1þ F
Ψϑd

� �
(A3b)

where DT is a time period (s). All terms in equations (B1)–(B3) are written for the CV element i.

Appendix B: SOC Decomposition Formulation

In CENTURY, the mass of SOC that is decomposed per unit area during a period DT, DsocACT , and within the
active layer (g C/m2), or rate of decay, is approximated by a multiparametric equation [Parton et al., 2007]
(assumption 3):

DsocACTð Þ ji¼ SOCACTð Þ j�1
i KsocACTANERBACTCDIACTTEXACTTILLACTð Þ j�1

i DT (B1)

where SOCACTð Þ j�1
i is the stock of SOC (g C/m) present within the active layer of CV i at time j�1, KSOCACT is the

maximum, equilibrated SOC decomposition rate (one per year); ANERBACT is a coefficient that adjusts KSOCACT

due to anaerobic conditions and oxygen availability (�), which are dictated by the soil drainage, or
downslope saturation; CDIACT the Climatic Decomposition Index, a correction coefficient that adjusts
KSOCACT for seasonal changes in temperature moisture (�); TEXACT is a coefficient that accounts for soil
texture effects on KSOCACT (�); and TILLACT is a multiplier effect for enhanced KSOCACT following tillage under
different management practices (�).

In a similarmanner, the decomposition of residue,DResACT, within the active layer (g C/m
2) is expressed as follows:

DResACTð Þ ji¼ LACTð Þ j�1
i KResACTANERBACTCDIACTTILLACTð Þ j�1

i DT (B2)
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where LACT is the stock of soil residue within the active layer (g C/m
2); andKResACT is themaximum, equilibrated

residue decomposition rate (one per year).

A portion of the decayed stocks in equations (B1) and (B2) can be stabilized into more decay-resistant forms
of SOC within the soil active layer based on soil texture, prevalent C/N ratio, and residue lignin content
[Sorensen, 1981; Van Veen et al., 1984; Holland and Coleman, 1987]. The portion transferred to the more
decay-resistant pools is what we define herein as “stabilized SOC” with the recognition though that this term
has been presented in the literature in different ways somewhat inconsistent [Berhe and Kleber, 2013]. Taking
into account these factors, the amount of SOC stabilized, STABSOCACT , in the active layer (g C/m2) is expressed
as follows (assumption 8):

STABSOCACTð Þ ji¼ STABSOCDACT þ STABResDACT ¼ f SOC DSOCACTð Þ jiþf Res DResACTð Þ ji (B3)

where fSOC is the fraction of decomposed SOC that is stabilized (values found in Parton et al. [1987]); and fRes is
the fraction of decomposed residue that is stabilized as SOC based on lignin availability [Melillo et al., 1982].
Lastly, the portion of decayed stocks that is not stabilized within the soil is lost from the active layer in the
form of CO2, defined here as heterotrophic soil respiration (g C/m2), RHetACT , and expressed as follows:

RHetACTð Þ ji¼ RHetSOCACT þ RHetResACT ¼ 1� f SOCð Þ DSOCACTð Þ jiþ 1� f Resð Þ DResACTð Þ ji (B4)

Appendix C: Initialization and Calibration Steps

During the initialization period, intrinsic prairie conditions were considered, as a tall grass has been histori-
cally found throughout much of Iowa and the Midwest with minor grazing from free-range buffalo, and a
10 year fire frequency (Table C1) [Hart, 2001; Weaver, 1968; Delucia et al., 1992; Macha and Cihacek, 2009;
Kaiser, 2011]. For the representative hillslope, an initial stock of SOC (at t= 0) was first estimated as
5500 g C/m2 using the semiempirical relation developed by Burke et al. [1989], which considers average
annual climatic and soil texture conditions as input parameters (see Table C1). Then, assuming the presence
of the Big Bluestem (Andropogon gerardii Vitman), the model was run until the SOC stocks reached
pseudoequilibrated values of 4520 g C/m2 after approximately 4000 years. This pseudoequilibrated value
of SOC agrees with the ranges of the reported field measured SOC stocks found within the Dinesen prairie,
a remnant, native tallgrass prairie, the closest “undisturbed” location with SOC measurements to the study
site [Harden et al., 1999; Manies et al., 2001]. No initialization of WEPP was needed since it was reasonable to
assume that SOC mobilization due to erosion during the prairie period was insignificant other than some
episodic events.

Typically, the calibration procedure for WEPP starts with flow (i.e., the driving mechanism for upland erosion)
and continues with the sediment component [Santhi et al., 2001]. Additional information is needed in the
model for key state variables such as the effective hydraulic conductivity, critical erosional strength, and resi-
due cover, which is available for the study site [see Abaci and Papanicolaou, 2009, Tables 12 and 13]. Because

Table C1. Input Data for Model Initialization

Input Data Units Range Reference

Soil Properties
Sand content % 5.0–15.0 Current study
Silt content % 60.0–70.0 Current study
Clay content % 18.0–30.0 Current study

Climate
Monthly precipitation (cm/month) 6.47–8.14 Abaci and Papanicolaou [2009]
Monthly temperature (°C) 8.83–10.83 IEM [2015]

Management-Prairie-Big Bluestem
Lignin content 0.17 Saxena and Stotzky [2001]
Grazing frequency (months/year) 2 Hart [2001]
Grazing intensity % vegetation consumed 30 Hart [2001]
Fire frequency # years without fire 10 Collins and Wallace [1990]
Fire intensity % vegetation consumed 90 Collins and Wallace [1990]
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the procedural steps for calibrating WEPP have
been extensively described in the literature
[e.g., Flanagan et al., 2007; Papanicolaou and
Abaci, 2008; Abaci and Papanicolaou, 2009;
Dermisis et al., 2010] an emphasis here has
been placed on the calibration for CENTURY.

The plant production submodel of CENTURY
was calibrated to ensure accurate inputs of
plant material into the soil active layer. Based
on prior studies, the CENTURY model must be
first calibrated using reported ranges of above-
ground net primary production (NPP) in this
region, defined here as the total net carbon
stored in aboveground vegetation (i.e., stems,
leaves, and grain) [e.g., Chapin et al., 2002].
Having the NPP estimated values within the
measured ranges was deemed important for
ensuring that CENTURY incorporates the cor-
rect inputs of aboveground C allocation for
simulating belowground C allocations and
stocks. The first step of the calibration process
involved the collection of historic corn and soy-
bean grain yield data (1930–2010) from Iowa
County, where is the study location [National
Agricultural Statistics Service (NASS), 2012].
Yield data were converted to total grain mass
and corrected for seed moisture, which is com-
monly assumed to be 15.5% [Lauer, 2002].
Using unique harvest indices, defined here as
the ratio of grain to total plant mass [Huehn,

1993; Prince et al., 2001], the grain mass was used to estimate aboveground biomass. The aboveground
biomass and grain mass data were then converted to a carbon density, namely, NPP, by utilizing vegetative
carbon contents of corn and soybean plants (i.e., leaves, stems, and grain) collected within the study site
(A. N. Papanicolaou, unpublished data, 2014). Measured values of corn and soybean plant carbon contents
were found to be in good agreement (correlation above 90%) with reported literature values [Latshaw and
Miller, 1924; Machinet et al., 2009].

A sensitivity analysis revealed that precipitation and temperature data were sensitive parameters within the
CENTURY plant production submodel [Xiao et al., 2004; Schurgers et al., 2011]. For this reason, local climate
data from the Williamsburg site was used to simulate the time series of NPP from 1930–2010. The simulation
period was partitioned into the following key crop rotations: CCOMM from 1930 to 1975; CCB 1976 to 1990;
and STC-NTB 1991 to 2010 (see Table 1), with soybeans present in years 1976–2010, and corn present
throughout the entire simulation. During the calibration efforts the reported statewide nitrogen fertilizer
application rates for Iowa were adopted [NASS, 2012].

Comparisons of NPP values estimated using the above mentioned methods and simulated NPP from 1930 to
2010 are shown in Figure C1. In terms of corn, there is an overall upward trend in simulated NPP from 1930 to
2010 which agrees well with the estimated NPP values. During this time period, NPP increases from 350 g
C/m2 to around 1400 g C/m2. Large variability in NPP occurs during CCB management, between the years
1980 to 1993, due to reported extreme climatic events, namely droughts and flooding [Rosenzweig
et al., 2002].

For soybeans (1976–2010), simulated values increase from 288 g C/m2 to around 450 g C/m2. Overall, the
simulated and estimated NPP appear to be in an agreement (R2 value = 0.84) for the entire period from
1930 to 2010.

Figure C1. Model calibration. Local corn and soybean grain yield
data and field measured values of vegetative carbon content as
well as harvest indices were used to generate a times series of
estimated aboveground net primary production (NPP) values of
corn (solid black line) and soybeans (dashed black line) from 1930
to 2010 as well as simulated values of corn NPP (black cross) and
soybean NPP (black diamond). The simulated values of NPP are
the average of the upslope and downslope zones.
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