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Abstract Rhizophora mangle L. is a widespread mangrove
species in theWestern Hemisphere.Mangrove habitat loss and
their importance to coastal and reef ecosystems make greater
understanding of their genetic structure useful for conserva-
tion and management. An amplified fragment polymorphism
(AFLP) analysis was performed on samples from Florida and
the Caribbean to discover the genetic structure present. R.
mangle had variable genetic diversity not related to latitude;
P ranged 7 %–92 %. Some other factor, perhaps human
impact, has caused low genetic diversity in some populations.
Across Florida R. mangle populations varied in genetic diver-
sity with less diversity (Gst=0.195) and greater gene flow on
the Atlantic coast (Nm =2.07) than on the Gulf coast
(Gst=0.717, Nm=0.197). Gene flow between Caribbean
islands was low (Nm=0.386) compared to continental
populations (Nm=1.40), indicating that long distance dispersal
is not common between islands. Analysis of molecular vari-
ance (AMOVA) analysis showed significant deviations from
Hardy-Weinberg expectations at the level of region among
subpopulations and overall genetic difference among subpop-
ulations for R. mangle. One implication for management is

that small continental populations and island populations may
be genetically isolated and distinct from each other.

Keywords Mangrove . AFLP . Florida . Caribbean

Introduction

Mangroves are woody trees or shrubs that occur only on
tropical intertidal muddy shores between latitudes 25°N and
30°S (Valiela et al. 2001), requiring minimum winter
temperatures of >0 °C (Ellison 2002). About 35 % of the
world’s mangrove habitat has disappeared in the last 25
years (Hogarth 2007), and more recent work indicates even
this may be an underestimate (Giri et al. 2011). More than
40 % of vertebrates endemic to mangroves are threatened
(Luther and Greenberg 2009). Mangrove forests are linked
to the health of seagrass beds and coral reefs through
nutrient cycling, nursery services, and sediment flow, as
well as providing habitat for many fish, invertebrates,
reptiles and amphibians, and terrestrial vertebrates (Luther
and Greenberg 2009; Valiela et al. 2001). Mangroves are
species assemblages of high economic and ecological value
(Coastanza et al. 1997; Hogarth 2007). Aburto-Oropeza et
al. (2008) estimate the mangrove fishery to be worth
$37,500/ha annually in Mexican and UNEP-WCMC
(2006) estimates additional ecosystem services ranging from
$2,000/ha to $9,000/ha annually. Tourism can add value as
well, and be greater than fishery value for certain areas
(Conservation International 2008). Mangroves also reduce
damage caused by natural disasters such as cyclones (Das
and Vincent 2009).
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Currently approximately 6 % of mangroves are protected
worldwide (Hogarth 2007). Conservation efforts may benefit
from a clear understanding of the genetic structure of man-
grove populations (Salas-Leiva et al. 2009a). Knowledge of
the genetic structure allows conservation efforts to support
existing genetic diversity, prevent inbreeding depression, and
avoid mixing genetically different populations unintentionally.
Conflicting genetic variability in mangroves has been reported,
and this may be partly due to differences in study design such
as geographical area sampled, number of samples taken, man-
grove species studied, or genetic analysis methods used
(Lakshmi et al. 1997; Chiang et al. 2001; Schwarzbach and
Ricklefs 2001; Dodd and Rafii 2002; Duke et al. 2002;
Castillo-Cárdenas et al. 2005; Arbeláez-Corte et al. 2007;
Proffitt and Travis 2010). This study was undertaken to char-
acterize the genetic variability within and between populations
of red mangrove (Rhizophora mangle L.) from Florida and the
northern Caribbean. By using an increasingly commonmodern
genetic methodology we assessed the genetic health and rela-
tedness of sampled populations and to test the patterns of
geographic mangrove colonization of the Caribbean proposed
by Ricklefs and Lantham (1993) and Plaziat (1995). We also
modified published methods of DNA extraction to get high
quality samples from this species.

Amplified fragment length polymorphism (AFLP)was used
to characterize R. mangle mangrove populations. AFLP uses
DNA to characterize inter- and instraspecific genetic variation
(Vos et al. 1995; Clark et al. 2007; Krumm et al. 2008;
Alamalakala et al. 2008). AFLP uses total genomic digestion,
PCR, and selective amplification to form DNA “fingerprints”
of samples. AFLP produces anonymous multilocus DNA
profiles using many loci. Bensch and Åkesson (2005) consider
AFLP superior to other methods including microsatellite, SNP,
and multigene DNA sequencing.

Materials and methods

Mangrove leaves were collected from locations throughout
Florida, the eastern Caribbean, one location in Bonaire,
Antilles, and one Oahu, Hawaii site (Fig. 1). In each case,
ten leaves each were taken from ten trees located in the same
stand of mangrove. The distance between trees from which
leaves were collected was at least 5 m. The leaves were wiped
clean and frozen. The leaves were shipped overnight to the
University of Nebraska at Kearney and maintained at −20 °C.
They were then transported to the Insect Genetics Laboratory
at the University of Nebraska–Lincoln.

DNA extraction

Thirty samples from each bag of leaves were diced on a
glass plate and ground in 250 μL CTAB buffer by hand

using a blue plastic pestle. Each sample was cut from a
different leaf, and the mean sample weight was 0.034 g.
After grinding, an additional 350 μL CTAB was added for a
total volume of 600 μL and the leaves were ground again for
uniformity. Samples were incubated on a heat block at 65 °C
for 1 h, with mixing every 20 min by inverting the tubes.
The tubes were removed from the heat block and 15 μL
RNase Awas added to each tube. Tubes were then incubated
at 37 °C on the heat block for 2 h, mixing every 20 min by
inverting the tubes. Following incubation, the samples were
centrifuged for 5 min at 12,000 rpm and room temperature
in an Eppendorf 5417R centrifuge. The supernatant was
removed and transferred to new autoclaved 1.5 mL tubes,
and 600 μL phenol:chloroform:isoamyl alcohol (24:24:1)
was added to the new tubes. Samples were mixed by
inverting the tubes, and centrifuged for 20 min at room
temperature and 12,000 rpm. The top aqueous phase was
transferred to new autoclaved 1.5 mL tubes. The bottom
chloroform phase was discarded. This phenol:chloroform:
isoamyl alcohol step was then repeated for a second time.
The top aqueous phase was removed and transferred to new
autoclaved 1.5 mL tubes, and 400 μL chilled (–20 °C)
100 % isopropanol and 90 μL sodium acetate were added.
The tubes were rocked until the DNA began to precipitate.
Samples were then stored at 4 °C overnight.

The centrifuge was cooled to 4 °C, then the samples were
spun for 30 min at 4 °C and 12,000 rpm, after which a pellet
of DNA was visible. The supernatant was poured off, and
samples were washed with 400 μL absolute ethanol. Tubes
were tapped until the pellet broke free from the bottom of
the tube. Samples were centrifuged for 5 min at 4 °C and
12,000 rpm, the absolute ethanol was poured off, and
400 μL chilled (–20 °C) 75 % ethanol was added to each
tube. They were centrifuged again for 5 min after which a
small pellet of DNA remained visible. The ethanol was
poured off, and the remainder was removed with a pipette.
Samples were air dried for 25 min until the ethanol was
evaporated, then resuspended in 50 μL 1X TE buffer. The
DNAwas stored at 4 °C until analysis continued. The DNA
samples from populations 1–18 (extracted by M. Albrecht)
and the DNA extracted from the Oahu and Dutch Antilles
leaves were tested for quantity and quality on the NanoDrop
spectrophotometer (Thermo Fisher Scientific 2009).

DNA analysis

DNA samples were each diluted to 20–100 ng/μL, the
optimum concentration for use in Amplified Fragment
Length Polymorphism (AFLP) analysis (Vos et al. 1995;
Krumm et al. 2008). A restriction digestion mixture was
prepared using 7 μL template DNA, 0.125 μL MseI and
0.0625 μL EcoRI restriction enzymes, 0.125 μL Bovine
Serum Albumen (New England Biolabs Inc., Ipswich,
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MA), 1.25 μL 10X One Phor All buffer (Amersham
Parmacia Biotech Inc., Piscataway, NJ) and Nanopure H2O
for a total volume of 12.5 μL. The mixture was aliquotted
into 0.2 mL PCR tubes and incubated on a PTC-200 thermal
cycler (MJ Research, GMI Inc., Ramsey, MN.) at 37 °C for
2 h, with a final cycle of 70 °C for 15 min and a 4 °C soak.
An adapter ligation mix was prepared (0.5 μL EcoRI adapt-
er, 0.5 μL MseI adapter, 0.15 μLT4 DNA Ligase, 0.5 μLT4
DNA Ligase buffer, 3.35 μL Nanopure H2O) and 5 μL of
the mix was added to each sample. Samples were incubated
at 25 °C for 8 h. on the PTC-200 thermal cycler and left
overnight at 4 °C.

Samples were removed from the thermal cycler and 135μL
1X TE buffer was added to each tube for a 1:10 dilution. A
pre-amplification mix was prepared (10 μL pre-amplification

mix II, 1.25 μL 10X PCR buffer, 0.75 μL 15 mM MgCl2,
0.25 μL 5U/mL Taq polymerase), transferred in 12.25 μL
aliquots to new PCR tubes, and 1.25 μL of the diluted ligation
reactions were added to each tube. This pre-amplification mix
was run on the same thermal cycler for 20 cycles of: 94 °C for
30 s, 56 °C for 1 min. and 72 °C for 1 min. followed by storage
at 4 °C. The pre-amplification product was diluted 1:20 and a
selective amplification PCR mix was prepared (1.2 μL 10X
PCR buffer, 0.72 μL 15 mM MgCl2, 0.08 μL 5U/mL Taq
polymerase, 4.1 μL dH2O, and the primers M-CTG and
E-ACT). Added 8.6 μL selective amplification mix and
2.0 μL of diluted pre-amplification product to new PCR tubes
and ran on the thermal cycler for 1 cycle of: 94 °C for 30 s,
65 °C for 30 s and 72 °C for 1 min, followed by 12 cycles of:
94 °C for 30 s, 56 °C for 30 s and 72 °C for 1 min. Added

Fig. 1 Samples sites of mangrove collection, except Oahu, Hawaii
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2.5 μL stop solution to each tube, then ran on thermal cycler at
94 °C for 1 min. for denaturation. The PCR product was
stored at 4 °C.

The samples were electrophoresed on KBPlus 6.5 %
polyacrylamide gel (LICOR) for 2 h and the image was
saved for scoring and analysis. Subsequently, the entire
process was repeated using the primer pair M-CTG/E-ACA.

The finished AFLP product was run on acrylamide gels in a
LI-COR Gene Reader 4200 (LI-COR, Lincoln, NE). Gels
were scored for the presence or absence of bands using the
SAGA software package (LI-COR, Lincoln, NE). DBOOT v.
1.1 (Coelho 2001) was used to assess whether the number of
loci used were sufficient. The resulting Boolean vectors were
analyzed using PopGene (Yeh et al. 1997). Hardy-Weinberg
equilibrium was assumed (Fis=0) and the populations were
analyzed for the percent of polymorphic loci as well as Nei’s
genetic diversity (Gst). PAUP v.4.01b was used to construct
dendrograms using UPGMA, a modified distance method.
Zea mays (L.) was used as an outgroup. Arlequin v. 3.1
(Excoffier et al. 2005) was used to assess the genetic structure
of populations using the analysis of molecular variance
(AMOVA) (Excoffier et al. 1992). For the analyses,
populations were grouped geographically and by species
(Table 1). Mantel tests were performed by the Arlequin
software on each species separately.

Results

Thirteen locations were sampled for this study: six sites in
Florida, three in the Bahamas, and one each from Vieques,
Puerto Rico, St. Croix, U.S. Virgin Islands, Lac Cai, Bonaire,
and Oahu Hawaii (Fig. 1). We sampled the R. mangle of

Florida in a grid pattern to compare the Gulf of Mexico coast
to the Atlantic coast at approximately the same latitudes
(Fig. 2). A total of 95 loci were identified and used for analysis.
DBOOT analysis (Fig. 3) revealed that approximately 90 % of
the genetic variation in these populations is accounted for with
our markers, indicating that the markers used are sufficient for
further analysis.

Table 1 gives the location, genetic analysis group, distur-
bance level, proportion of polymorphic loci (P), and Nei’s
(Nei 1978) genetic diversity (h) of R. mangle samples. The
mean value of P was 46 % (SE ±7.25), and the mean h value
was 0.1503 (SE ±0.0233). The Nei genetic diversity h values
varied widely. The Gst values were similar for the Bahamas
and Florida Gulf Coast regions (Gst=0.6166 and Gst=0.7174
respectively), but much lower for the Florida Atlantic Coast
region (Table 2). These Gst values indicate genetic isolation
between the Bahamas and Gulf Coast locations, but not
among the Atlantic Coast locations. Likewise, only the
Atlantic coast locations show enough gene flow to counteract
genetic drift (Nm=2.0691).

Nei’s genetic identity and genetic distance measures cal-
culations are given in Table 3 (Nei 1978). The Caribbean
samples, Vieques Puerto Rico, St. Croix USVI, Bimini
Bahamas, show high genetic identity numbers with the
Florida sites of Punta Gorda and Rookery Bay. These are
the two southern sampling sites on the Gulf Coast of
Florida. Values are much lower when the Caribbean sites
are compared to the other sites in Florida. Comparisons to
Grand Bahama, Oahu Hawaii, and La Cai Bonaire are
intermediate. The same pattern is reflected in the genetic
distance values.

The AMOVA results indicate 12 % of the genetic variation
seen was between geographic groups, 52 % was between

Table 1 R. mangle (red mangrove) sample sites, latitude, longitude, size of mangrove areas, AMOVA group, proportion of polymorphic loci (P),
and Nei’s (1978) gene diversity index (h)

Location Latitude Longitude Group Disturbance P h

South Coast, Vieques, PR 26.1 −65.6 4 Low 74 % 0.2452

Sandy point, St. Croix US VI 17.7 −64.9 5 Low 64 % 0.1898

Oahu, HI 21.4 −157.8 6 Low 60 % 0.1838

Lac Cai, Bonaire 12.1 −68.2 7 Low 92 % 0.3386

Bimini, Bahamas 25.7 −77.3 8 Low 62 % 0.1750

Grand Bahama, Bahamas 26.5 −78.8 8 Medium 21 % 0.0860

Grand Bahama, Bahamas 26.7 −78.9 8 Medium 46 % 0.1797

Punta Gorda, FL 26.9 −82.1 9 Medium 71 % 0.1518

Rookery Bay, FL 26.0 −81.7 9 Medium 23 % 0.0477

Cedar Key, FL 29.2 −83.1 9 High 33 % 0.1381

New Smyrna Beach, FL 29.0 −80.9 10 High 21 % 0.0851

Jupiter, FL 26.9 −80.1 10 High 7 % 0.0267

Cutler Ridge, FL 25.6 −80.3 10 Medium 25 % 0.1061

Means (±SE) 46 % (±7.25) 0.1503 (±0.0233)

M. Albrecht et al.



sample locations within the geographic groups, and 36 % was
within sample locations themselves (Table 4). Fst again
indicates a relatively high amount of genetic isolation among
locations (Fst=0.63742).

The Mantel test for R. mangle data was not significant
(r=−0.0537, p=0.6740), indicating no correlation between
genetic and geographic distance. Likewise, the UPGMA
dendrogram (Fig. 4) of the R. mangle samples shows no
relationship between genetic and geographic distance.

Discussion

Amplified fragment length polymorphisms (AFLP) is a ge-
netic analysis technique that combines restriction fragment
amplification and PCR. The technique can be applied to any
organism and has strong discrimination and reproducibility
abilities (Amar et al. 2008). It has been described as a DNA
fingerprinting method. AFLP samples a larger proportion of
the total genome than other techniques, producing more

detailed information than microsatellite methods for instance
(Campbell et al. 2003). In our study for example each sample
was marked at 95 polymorphic loci. The resolution of the
techniques provided fine-grained genetic information. AFLP
has been in use since 1995, and has been use increasingly due
to its favorable features (Amar et al. 2008). Papers such as
Kelleher et al. (2005) and Schönswetter et al (2004) demon-
strate that AFLP has been used successfully for population
studies in plants with samples sizes for populations as small as
three individuals. This was possible due to the amount of
information, and the degree of detail that AFLP obtained,
from each organism sampled.

Studies of R. mangle in the Caribbean and South America
show a variety of values even for a broad parameter such as
the proportion of polymorphic loci (P). Any natural varia-
tion is likely increased by the use of different molecular
techniques and experimental designs. Duke et al. (2002)
tracked chlorophyll-deficient mutations in Florida and the
Bahamas and determined that self-pollination rates were
between 71 % and 95 %, indicating that low genetic diversity
would be expected. Nún̄ez-Farfán et al. (2002) examined R.
mangle populations on the Atlantic and Pacific coasts of
Mexico using allozyme analysis. They found an overall poly-
morphism level of 38%, hetereozygosity of 0.069, and an Nm
of 0.621 (Nei 1978). They found higher levels of all these
measures on the Pacific coast than the Atlantic. Nún̄ez-Farfán
et al. (2002) pointed out that there is more human develop-
ment on the Atlantic side of Mexico. Mantel tests were not
significant on either coast (Nún ̄ez-Farfán et al. 2002).
Arbeláez-Corte et al. (2007) investigated R. mangle genetic
structure on the Pacific coast of Columbia using microsatellite
markers. They found 100 % polymorphic loci, an average
heterozygosity of 0.493, and Nei (1973) genetic distances
between 0.046 and 0.318. They also performed an AMOVA
which found 5.58% of the genetic variance occurring between
populations and 94.62 % within populations, which was a
significant result. Arbeláez-Corte et al. (2007) performed a
Mantel test on Nei’s genetic distance versus geographic
distance and found no significant result.

In this study the P values for the populations outside
Florida were about twice those seen in the other populations
(Table 1). P values from the Gulf Coast of Florida were
more than twice as high as those from the Atlantic coast.
The R. mangle samples showed Gst values for the Bahamas
and Gulf Coast of Florida that were high. The Nm values

Fig. 2 Florida R. mangle sample sites showing the approximate grid
pattern of sites

Fig. 3 Coefficient of variation, calculated for R. mangle red mangrove

Table 2 Values of Gst and Nm for R. mangle samples (Nei 1978)

Group Area Gst Nm

8 Bahamas 0.6166 0.3109

9 Gulf Florida Coast 0.7174 0.1969

10 Atlantic Florida Coast 0.1946 2.0691

Genetic diversity and relatedness



were low for the Bahamas region and the Gulf Coast of
Florida, but were high for the Florida Atlantic Coast (Table
2). Our analysis indicated the genetic variation of R. mangle
populations on the Florida Atlantic Coast was low even
though gene flow has been high. The Gulf Coast of
Florida showed the opposite pattern with high genetic di-
versity values and low gene flow. The Bahamian region
values were between the other regions, but more similar to
the Gulf Coast of Florida values.

A latitudinal trend was not seen in the data. In Florida
both the highest and lowest Gst values were found in the
middle latitude samples (Punta Gorda and Jupiter). The Gst

values from the Bimini, Bahamas were similar to those of
Oahu, HI and Sandy Point, St. Croix USVI.

Nei’s genetic identify and genetic distance values for R.
mangle show that the sites from Puerto Rico, St. Croix, Bimini

Bahamas, and southwest Florida: Punta Gorda, FL and
Rookery Bay were different from the east Florida sites, New
Smyrna Beach, Cutler Ridge, Jupiter, Cedar Key in northwest
Florida (Table 3). Figure 4 shows these relationships as well.
The two southwest Florida sites are more similar genetically to
other sites in the Caribbean than to sites on the Florida Atlantic
coast or the Bahamas, with the exception of Bimini, Bahamas.
Bimini is the closest Bahamian island to Florida, and sits on
the edge of the Gulf Stream current. The southwest Florida
sites have been more protected from human development than
the other sites sampled Florida. The other four sites in Florida
were similar to the two sites on Grand Bahamas, Bahamas and
the Oahu, Hawaii sample fell in this group as well. The Oahu
sample may be similar due to Florida being one source of R.
mangle introduced to Hawaii (Allen 1998).

The two sites in southwest Florida were closer to large
contiguous stands of R. mangle, as well as being in large
protected areas. The two northern sites in Florida are near
the northern limit for this species (Hogarth 2007). The sites on
the Florida Atlantic coast were more disturbed and were from
smaller mangrove patches (T. Champeau, Pers. Comm.).

The AMOVA results showed significant variation of
individuals versus the total data set (FST), and when
comparing variance within sample locations to the total
variance (FSC) but no significance was seen when comparing
variations between regions to the total variance present in the
data (FCT).

Genetic differentiation of populations is dependent upon
the processes of natural selection, founder effect, and gene
flow (Wright 1978; Slatkin 1987). Mangrove species
typically self-pollinate, are colonizers, and are short lived.
These traits lead to greater population differentiation than the
opposite traits. Local extinction and recolonization events
may or may not lead to greater population differentiation
based on the number of migrants.

Table 3 Nei’s unbiased measures of genetic identity (above diagonal) and genetic distance (below diagonal) for R. mangle (Nei 1978)

Sample SV, PR SP, VI B, BH PG, FL RB, FL SB, FL CR, FL CK, FL Ju, FL GB, BH GB, BH O, HI LC, BN

SV,PR – 0.8596 0.8374 0.9303 0.8946 0.3224 0.3337 0.3805 0.2780 0.3928 0.5123 0.5355 0.7759

SP, VI 0.1513 – 0.8480 0.8028 0.7501 0.3422 0.3643 0.4237 0.3454 0.4445 0.4735 0.4713 0.7702

Bi, BH 0.1775 0.1648 – 0.8408 0.8161 0.3496 0.3658 0.4023 0.3184 0.4348 0.5152 0.4806 0.7881

PG, FL 0.0723 0.2197 0.1734 – 0.9708 0.2295 0.2502 0.2827 0.1787 0.2963 0.4307 0.4820 0.7340

RB, FL 0.1113 0.2876 0.2032 0.0296 – 0.2246 0.2447 0.2999 0.1707 0.3154 0.4444 0.4636 0.7173

SB, FL 1.1319 1.0724 1.0509 1.4720 1.4936 – 0.9785 0.9459 0.9757 0.8720 0.8214 0.7394 0.5968

CR, FL 1.0975 1.0097 1.0058 1.3855 1.4078 0.0218 – 0.9646 0.9744 0.8839 0.8557 0.6997 0.5887

CK, FL 0.9664 0.8588 0.9105 1.2635 1.2044 0.0556 0.0360 – 0.9553 0.9053 0.8657 0.7224 0.6115

Ju, FL 1.2800 1.0631 1.1443 1.7222 1.7680 0.0246 0.0259 0.0457 – 0.8851 0.7980 0.7239 0.5597

GH, BH 0.9344 0.8107 0.8329 1.2163 1.1539 0.1370 0.1235 0.0994 0.1220 – 0.8220 0.6912 0.6026

GH, BH 0.6689 0.7476 0.6633 0.8423 0.8111 0.1968 0.1559 0.1442 0.2256 0.1961 – 0.6343 0.6486

Ou, HI 0.6245 0.7522 0.7326 0.7298 0.7687 0.3019 0.3571 0.3252 0.3232 0.3693 0.4552 – 0.6946

LC, BN 0.2538 0.2611 0.2381 0.3093 0.3322 0.5161 0.5298 0.4918 0.5804 0.5065 0.4329 0.3645 –

Table 4 AMOVA results for R. mangle (red mangrove)

Source of variation D.F. Sum of
squares

Variance
components

Percent of
variation

Among regions 6 1422.282 2.59574 Va 11.98

Among locations
within regions

6 675.000 13.21340 Vb 51.76

Among samples 151 1186.089 7.85489 Vc 36.26

Total 163 3283.451 21.36034

Fixation Indices

FCT 0.11982

FSC 0.58807

FST 0.63742

P-value

Va and FCT 0.16716±0.00992

Vb and FSC 0.00000

Vc and FST 0.00000

M. Albrecht et al.



Geography also has an effect on population differentiation.
Generally, the greater the degree of isolation a population expe-
riences will lead greater differentiation. The geographic effects
on populations have been widely studied for some species, but
mangrove species in the Caribbean only recently (Plaziat et al.
2001; Nettel and Dodd 2007). The Caribbean Ocean was
formed approximately 100 Mya ago with the volcanic forma-
tion of the Lesser Antilles along the edge of the Caribbean and
North American plates. This includes Puerto Rico and St. Croix.
Mangrove species are thought to have spread to North and
South American from their origins in Asia, as a band of tropical
vegetation existed across the separating Pangea during the Early
Cretaceous period (Plaziat et al. 2001). The peninsula of Florida

was present as early as the middle Jurassic and appears to have
come from the northwestern edge of Africa (Ziegler et al. 2001).
The result is that for mangrove there has been a separation of
land between the coasts of Florida since that time. Plaziat et al.
(2001) argues that mangrove were pantropical by the Eocene,
and that climate change, not continental drift brought about the
evolution of mangrove floras.

The placement of the R. mangle from Oahu, Hawaii in
the dendrograms was of interest. The date of introduction of
R. mangle to Hawaii is 1902 and Florida has been suggested
as a possible source (Allen 1998). This agrees with our results
which point to the Atlantic Coast of Florida or Grand Bahama
Island as close to the origin of these founders.

SCoast Vieques

Punta Gorda FL

Rookery Bay FL

Bimini Bahamas

Sandy PtSt Croix

Bonaire

New Smyrna FL

Jupiter FL
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Grand Bahamas 2FL

Oahu

Maize

Fig. 4 Dendrogram of genetic
similarity by AFLP analysis for
sampled populations of R.
mangle
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In the last 20 years mangrove ecology has become more
clearly understood, leading to a growing recognition of the
importance of mangrove in tropical marine ecosystem health
(Ricklefs and Lantham 1993; Spalding et al. 1997; Hogarth
2007). Our results showing mangrove from small populations
have lower polymorphism and heterozygosity is not surpris-
ing, but is troubling. Due to the ongoing reduction of man-
grove habitat worldwide conservation and reforestation efforts
are under way including projects such asMangrove Dynamics
and Management (MADAM) in Brazil, the “Coastal Habitats
and Risk” project and Integrated Mangrove-Aquaculture
System (IMAS) in Asia (Berger et al. 1999; Field 1999;
Adeel and Pomeroy 2002; Peng et al. 2009). Examples of
such efforts in the United States include mangrove nurseries at
the at Vieques, Puerto Rico Fish andWildlife Service National
Wildlife Refuge and the St. Croix, Virgin Islands Sandy Point
National Wildlife Refuge (Mike Barandiaran, Pers. Comm.)
and the Reef Ball Mangrove Solutions Foundation locations
in Grand Cayman and Florida (Reef Ball 2011). Other efforts
are ongoing in Columbia (Salas-Leiva et al. 2009b). Secretary
of State Clinton spoke on the important of mangrove
restoration in Port Moresby, Papua New Guinea in
November 2010 (Clinton 2010).

There were genetic differences between the populations of
R. mangle sampled in this study. Factors such as ocean
currents, storms, as well as recent human disturbances have
given each population a different history. Our results showed
that isolation, as demonstrated by higher genetic distance
values at the level of sample sites and higher Gst values at
the regional level were seen in oceanic island sites and sites
from areas that are highly impacted by human activity. This
indicates that mangrove conservation and restoration efforts
need to consider the species involved and the source of
propagules. This study identified hotspots of genetic diversity
such as Lac Cai, Bonaire. This study also showed that the
geographic location of a mangrove area does not predict the
genetic diversity of the population well. We suggest that
conservation and restoration plans include genetic analysis at
both the local and regional levels.
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