
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Biological Systems Engineering: Papers and
Publications Biological Systems Engineering

2015

Robust estimates of soil moisture and latent heat
flux coupling strength obtained from triple
collocation
Wade T. Crow
Hydrology and Remote Sensing Laboratory, USDA ARS, Beltsville, Maryland, wade.crow@ars.usda.gov

Fangni Lei
Hydrology and Remote Sensing Laboratory, USDA ARS, Beltsville, Maryland

Christopher R. Hain
ESSIC/NOAA-NESDIS, College Park, Maryland, christopher.hain@nasa.gov

Martha C. Anderson
USDA ARS, martha.anderson@ars.usda.gov

Russell L. Scott
Southwest Watershed Research Center, USDA ARS, Tucson, Arizona

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/biosysengfacpub

Part of the Bioresource and Agricultural Engineering Commons, Environmental Engineering
Commons, and the Other Civil and Environmental Engineering Commons

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Crow, Wade T.; Lei, Fangni; Hain, Christopher R.; Anderson, Martha C.; Scott, Russell L.; Billesbach, David P.; and Arkebauer,
Timothy, "Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation" (2015). Biological
Systems Engineering: Papers and Publications. 389.
http://digitalcommons.unl.edu/biosysengfacpub/389

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/33147426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agbiosyseng?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/biosysengfacpub/389?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Wade T. Crow, Fangni Lei, Christopher R. Hain, Martha C. Anderson, Russell L. Scott, David P. Billesbach,
and Timothy Arkebauer

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/biosysengfacpub/389

http://digitalcommons.unl.edu/biosysengfacpub/389?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages


Robust estimates of soil moisture and latent
heat flux coupling strength obtained
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David Billesbach5, and Timothy Arkebauer6
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Research Center, USDA ARS, Tucson, Arizona, USA, 5Department of Biological Systems Engineering, University of
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Abstract Land surfacemodels (LSMs) are often applied to predict the one-way coupling strength between
surface soil moisture (SM) and latent heat (LH) flux. However, the ability of LSMs to accurately represent such
coupling has not been adequately established. Likewise, the estimation of SM/LH coupling strength using
ground-based observational data is potentially compromised by the impact of independent SM and LH
measurements errors. Here we apply a new statistical technique to acquire estimates of one-way SM/LH
coupling strength which are nonbiased in the presence of random error using a triple collocation approach
based on leveraging the simultaneous availability of independent SM and LH estimates acquired from (1) LSMs,
(2) satellite remote sensing, and (3) ground-based observations. Results suggest that LSMs do not generally
overestimate the strength of one-way surface SM/LH coupling.

1. Introduction

Land surface models (LSMs) play an important role in diagnosing both the strength and downstream impact
of water and energy feedbacks operating within the soil, vegetation, and atmospheric interface along the
Earth’s surface [e.g., Van den Hurk et al., 2011; Seneviratne et al., 2013]. A critical element of these feedbacks
is the one-way coupling between soil moisture (SM) availability and surface latent heat flux (LH) [Guo et al.,
2006]. Such coupling is commonly quantified via the temporal correlation coefficient between collocated
SM and LH estimates [Dirmeyer et al., 2009]. Unfortunately, the ability of LSMs to accurately reproduce
SM/LH one-way coupling strengths has not been adequately verified [Dirmeyer et al., 2006].

The recent maturation of long-term, ground-based SM and LH data sets provides a tool for evaluating the
accuracy of LSM coupling predictions. However, given that ground-based observations of SM and LH are known
to be degraded by significant levels of randomerror [Robinson et al., 2008; Richardson et al., 2006], the possibility
remains that one-way SM/LH coupling strengths estimated via comparison of independent ground-based SM
and LH observations are biased low due to randommeasurement errors. While comparable errors surely exist in
LSM-derived SM and LH predictions, theywill tend to be cross correlated and therefore exert less of a degrading
effect on estimated SM/LH coupling strength. Consequently, the question arises whether apparent differences
between LSM-based and ground-based SM/LH coupling strengths reflect systematic errors in LSMs or the
spurious impact of independent random errors in ground-based SM and LH measurements.

Recent progress on the application of triple collocation (TC) sampling strategies to land surface data sets offers
an approach for addressing this question. In particular, TC provides a tool for obtaining correlation estimates
which are unbiased by the presence of random error [Draper et al., 2013; McColl et al., 2014]. Here we apply a
new variant of TC to acquire unbiased estimates of the one-way coupling strength between SM and LH based
on a triplet of SM and LH estimates acquired from ground measurements, remote sensing, and LSMs.

2. Triple Collocation Approach

As noted above, our approach is based on leveraging the simultaneous availability of three SM and three
LH flux estimates acquired from: ground-based (G) measurements, remote sensing (RS) retrievals, and
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land surface model (LSM) predictions. To start, assume that they all can be linearly related to an unknown
truth via

SMG ¼ αGSMTrue þ μG þ εG
SMRS ¼ αRSSMTrue þ μRS þ εRS

SMLSM ¼ αLSMSMTrue þ μLSM þ εLSM
LHG ¼ βGLHTrue þ δG þ σG
LHRS ¼ βRSLHTrue þ δRS þ σRS

LHLSM ¼ βLSMLHTrue þ δLSM þ σLSM

(1)

where μ and δ are temporally constant biases, α and β are temporally constant gains, and ε and σ are mean
zero, random variables representing estimation errors in each product. These random errors are assumed to
be adequately described by a temporally constant variance. All “true” variables are assumed to have a spatial
support equal to a common coarse-scale grid on which both RS and LSM predictions are provided. Therefore,
the ground-based error terms εG and σG also reflect upscaling errors associated with the use of a local-scale
observation to characterize a (much coarser) grid-scale average.

In addition, we assume both the mutual independence of random errors among all three SM products and all
three LH errors:

E εiεj
� � ¼ 0 i ≠ j

E σlσm½ � ¼ 0 l ≠ m;
(2)

and the orthogonality of all errors with respect to the truth:

E SMTrueεi½ � ¼ 0

E LHTrueσl½ � ¼ 0 :
(3)

Note that (2) only asserts the mutual independence of SM and/or LH errors and does not address the possibility
of cross correlation between SM and LH errors. For ease of notation, the general index triplets i, j, and k (for SM)
and l, m, n (for LH) will be used to reflect the source of an arbitrary SM or LH product (i.e., “G,” “RS,” or “LSM”).

If assumptions in (1)–(3) hold, and an arbitrary combination of SM product i and LH product l are defined as a
reference, the system of equations in (1) can be cross multiplied, averaged, and solved to express the
temporal variances of SMTrue and LHTrue as

Var SMTrue½ �i ¼ α�2
i

Cov SMi; SMj
� �

Cov SMi; SMk½ �
Cov SMj; SMk

� �

Var LHTrue½ �l ¼ β�2
l

Cov LHl; LHm½ ÞCov LHl; LHn½ �
Cov LHm; LHn½ �

(4)

where i≠ j≠ k and l≠m≠ n [McColl et al., 2014]. Likewise, for any cross combination of SM and LH products i
and l where E[εiσl] = 0, the covariance of SMi and LHl can be written as

Cov SMi; LHl½ � ¼ αiβlCov SMTrue; LHTrue½ �i;l: (5)

assuming that εi and σl are independent of both SMTrue and LHTrue. Therefore, by combining (4) and (5), it is
possible to solve for the coefficient of determination (R2) between SMTrue and LHTrue as

R2 SMTrue; LHTrue½ �i;l ≡
Cov SMTrue; LHTrue½ �2i;l

Var SMTrue½ �iVar LHTrue½ �l
¼ Cov SMi; LHl½ �2Cov SMj; SMk

� �
Cov LHm; LHn½ �

Cov SMi; SMj
� �

Cov SMi; SMk½ �Cov LHl; LHn½ �Cov LHl; LHm½ � (6)

Unlike SM/LH coefficients of determination sampled directly from any two SM and LH products in (1), (6) is
unaffected by independent random errors in the products. In addition, partially redundant estimates of
R2[SMTrue, LHTrue] can be obtained from (6) by utilizing different combinations of SM and LH products to serve
as the reference data sets i and l. However, as noted above, certain combinations of SM and LH products
(e.g., SMLSM and LHLSM) are expected to possess cross-correlated errors and will therefore represent an
unsuitable reference combination.

Geophysical Research Letters 10.1002/2015GL065929
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3. Data

Our general approach was based on applying (6) to sites where simultaneous ground-based, RS-based, and
LSM-based estimates of both SM and LH can be obtained. All data were resampled to represent daily
averages (0 to 24 UTC) within June/July/August (JJA) for 2002 to 2014. This seasonal period was selected since
it approximates the period of maximum SM/LH coupling. However, only JJA days in which viable SM and LH
estimates are available from all six data sources in (1) were used. All daily RS and LSM estimates were spatially
resampled onto a 0.25° grid prior to matching against ground-based observations. Additional data processing
details are given below.

3.1. Ground-Based Observations of SM and LH

Ground-based SM and LH observations were based on nongap-filled AmeriFlux Standardized Level 2 data
files (http://ameriflux.ornl.gov). Sites were selected based on the availability of long-term, simultaneous SM
and LH data sets and the ability of concurrent LSM and RS predictions to adequately match ground observations
(see section 4). At each AmeriFlux site, half-hourly LH and surface SM observations were aggregated up to a
single daily (0 to 24 UTC) value. No values were calculated for days containing less than 10 half-hourly SM or
36 half-hourly LH observations. Since the depth of “surface” SM observations varied between sites, we used
the shallowest available observation depth at each site (generally between 5 and 10 cm—see Table 1).

For more details on specific AmeriFlux sites utilized here, see Scott [2010], Papuga [2009], Baldocchi et al.
[2010], Krishnan et al. [2012], Fischer et al. [2012], Goldstein et al. [2000], Stoy et al. [2006], Oishi et al. [2010],
Meyers [2009a, 2009b], Billesbach and Arkebauer [2012], Matamala et al. [2008], and Suyker and Verma
[2008]. In addition, a single (non-AmeriFlux) University of Nebraska Bowen Ratio flux tower site in the upland
dunes portion of Nebraska’s Sand Hills Ecosystem was also utilized [Billesbach and Arkebauer, 2012]. See
Table 1 for a complete list of all sites.

3.2. LSM Estimates of SM and LH

Three separate LSM-based surface (0–10 cm) SM and LH products were obtained by individually averaging
hourly Noah, Mosaic, and Variable Infiltration Capacity (VIC) LSM predictions from the North American
Land Data Assimilation System-2 (NLDAS-2) [Xia et al., 2012a, 2012b] into daily (0 to 24 UTC) values. All
LSM simulations were forced using gauge-based daily precipitation estimates disaggregated into hourly

Table 1. Attributes of Ground Sites Utilized in the Analysisa

AmeriFlux Site Abbreviation Latitude/Longitude SM Depth (cm) N (Days) T (Days)

Lucky Hills WHS 31.744°/�110.052° 5 277 2
Kendall Grasslands WKG 31.737°/�109.942° 5 494 2
Santa Rita Mesquite SRM 31.821°/�110.866° 2.5 514 3
Santa Rita Creosote SRC 31.908°/�110.840° 2.5–5 198 3
Tonzi Ranch TON 38.432°/�120.966° 0–2.5b 523 11
Audubon Grasslands AUD 31.591°/�110.509° 10 286 5
ARM-CART ARM 36.606°/�97.489° 10c 413 34
Blodgett Forest BLO 38.895°/�120.633° 10 186 9
Sand Hills Dry Valley SDH 42.069°/�101.407° 10 262 3
Sand Hills Upland Duned SUH 42.066°/�101.367° 10 91 3
Duke Open Field DK1 35.971°/�79.093° 10 304 6
Duke Hardwoods DK2 35.974°/�79.100° 10 327 6
Duke Pine DK3 35.978°/�79.094° 0–30 329 50
Fort Peck FPE 48.308°/�105.102° 10 276 50
Mead Irrigated NE2 41.164°/�96.470° 10 535 28
Mead Rainfed NE3 41.180°/�96.440° 10 554 50
Fermi Agricultural IB1 41.859°/�88.223° 2.5 348 3
Fermi Prairie IB2 41.841°/�88.241° 2.5 321 3

aN relates the total number June-July-August days between 2003 and 2011 where daily AmeriFlux LH and SM, ALEXI
LH, Noah LH and SM, and AMSR-E SM are all simultaneously available. T is the time scale parameter required to optimize
the fit between filtered AMSR-E SM retrievals and ground-based SM measurements (see section 4).

bDescribed as “surface” in AmeriFlux L2 documentation.
cWas 5 cm prior to 04/13/2005.
dNot an AmeriFlux site (operated by the University of Nebraska).

Geophysical Research Letters 10.1002/2015GL065929
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estimates using rain radar measurements [Cosgrove et al., 2003] and topographically corrected via monthly
climatological information acquired from the Parameter-elevation Regressions on Independent Slopes
Model [Daly et al., 1994]. Remaining nonprecipitation forcing data for NLDAS-2 simulations were obtained
from National Center for Environmental Prediction North American Regional Reanalysis estimates. Noah
was used as the baseline LSM, and results from other LSMs were considered to examine sensitivity to
variations in LSM type.

3.3. RS Estimates of SM

Two passive and one active microwave remotely sensed surface soil moisture products were utilized to
provide three separate remotely sensed estimates of SM. Baseline passive microwave soil moisture retrievals
were derived from the dual-polarized C band (6.93GHz) and X band (10.65 GHz) channels of the Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E) aboard the NASA EOS Aqua satellite.
The AMSR-E instrument data were acquired from the launch of Aqua in June 2002 until the failure of the
instrument in October 2011. C and X band brightness temperatures measured by AMSR-E were processed
into surface (1–3 cm depth) soil moisture using the Land Parameter Retrieval Model [Owe et al., 2008;
Parinussa et al., 2011]. Based on AMSR-E soil moisture validation results [Crow et al., 2010], only 1:30 A.M.
(local time) descending AMSR-E overpasses were utilized in the analysis.

The Soil Moisture and Ocean Salinity (SMOS) satellite mission measures global surface soil moisture at L band
(1.4 GHz) with a 3 day revisit at the equator and ascending/descending overpasses at 6:00 A.M./P.M. local
solar time [Kerr et al., 2010]. The SMOS mission aims at monitoring surface soil moisture at a depth of about
3 to 5 cm with 30–50 km spatial resolution. Retrievals were derived from the daily SMOS Level 3 surface soil
moisture product released by the Centre Aval de Traitement des Données.

The advanced scatterometer (ASCAT) on board the ESA MetOp satellite is a real aperture radar instrument
operating at C band (5.255GHz) with an equatorial local overpass time of 9:30 P.M./A.M. for ascending and
descending orbits, respectively. From January 2007 onward, ASCAT backscatter measurements were used
to generate surface soil moisture estimates using the TU Wien soil moisture change detection algorithm
[Naeimi et al., 2009]. Soil moisture retrieval products from both overpasses were used to construct a
combined daily product.

For AMSR-E surface soil moisture products, retrievals are screened out for vegetation optical depths larger
than 0.8 [�] or if radio frequency interference (RFI) contamination was noted in both C and X band retrievals
[Owe et al., 2001]. The SMOS Level 3 retrievals with Data Quality Index values larger than 0.06 [�] or RFI
probability larger than 0.3 [�] were also filtered out [Al-Yaari et al., 2014]. ASCAT soil moisture retrievals were
masked for frozen soil conditions.

3.4. RS Estimates of LH

Remotely sensed estimates of LH were obtained from the Atmosphere Land Exchange Inverse (ALEXI) model
using thermal-infrared (TIR) remote sensing data without any precipitation input [Anderson et al., 2011]. In
order to estimate RS-based LH estimates, ALEXI was run at a native spatial resolution of 4 km over the period
of 2003–2012 and forced with: meteorological inputs from the North American Regional Reanalysis [Mesinger
et al., 2006], TIR land surface temperature from Geostationary Operational Environmental Satellites, and
vegetation cover fraction estimated using leaf area index (LAI) retrievals from the 8 day Terra Moderate
Resolution Imaging Spectroradiometer product (MOD15A2). Instantaneous LH retrieved from ALEXI were
upscaled to daytime-integrated LH estimates assuming a self-preservation of the ratio of latent heat flux
and incoming shortwave radiation (fSUN) during daytime hours [Cammalleri et al., 2014]. Gap filling for cloudy
days was based on an interpolation of clear-sky retrievals of fSUN and estimates of the daily integrated
incoming shortwave radiation to estimate daily ET. As described above, ALEXI LH estimates were resampled
onto a 0.25° grid prior to analysis.

4. Data Preprocessing and Analysis

The application of (6) to the SM and LH data sets described in section 3 requires several additional considera-
tions. First, the vertical measurement depth of RS-based SM retrievals is likely to be shallower than either the
LSM or ground-based SM products. This inconsistency in SM measurement depth across products imperils
the mutual linearity assumptions implicit in (1). Therefore, as an initial preprocessing step, the exponential
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filtering approach of Albergel et al. [2008] was applied to all RS soil moisture sets. By removing high-frequency
components of the soil moisture time series and lagging its features in time, this approach can be used
to effectively increase the vertical depth of superficial soil moisture observations. Here the time scale para-
meter T required by the filter was assumed to be temporally constant and tuned on a site-by-site basis to
maximize the temporal correlation between the filtered RS SM product and ground-based SM observations
(see Table 1).

A second concern is the impact of potential nonlinearity in the mutual relationship between SM and LH
products obtained from various sources. In order to minimize such effects, all SM and LH products were
transformed into temporal ranks after the exponential smoothing of the RS-based SM products and
prior to the application of (6). Therefore, R2[SMTrue, LHTrue] estimates obtained from (6) are equivalent to
Spearman rank coefficients of determination. This rank transition has the benefit of expressing SM/LH
one-way coupling strength in terms of a rank correlation coefficient which will not be spuriously degraded
by the presence of nonlinearity in the relationship between SM and LH.

Given the relatively limited number of days in which all SM and LH estimates are simultaneously available
from all data sources described in section 3 (Table 1), sampling uncertainty is likely to be large in estimates
of R2[SMTrue, LHTrue] obtained from (6). One technique for easing such concerns is leveraging partially redun-
dant estimates of R2[SMTrue, LHTrue] obtained by applying (6) to all possible combinations of SM product i and
LH product lwith independent errors. For the SM and LH data sets described in section 3, seven different quasi-
independent estimates of R2[SMTrue, LHTrue] can be sampled: (1) SMG/LHRS, (2) SMG/LHLSM, (3) SMRS/LHG,
(4) SMRS/LHRS, (5) SMRS/LHLSM, (6) SMLSM/LHG, and (7) SMLSM/LHRS. The only potential combinations not
sampled were SMG/LHG (due to the potential for cross-correlated spatial representativeness errors in ground-
based SM and LH measurements) and SMLSM/LHLSM (due to the potential for cross-correlated SM and LH errors
in LSM-based estimates).

All seven of these viable R2[SMTrue, LHTrue] estimates should be unbiased but impacted by (partially indepen-
dent) sampling noise. In order to leverage this redundancy, they were unified into a single, optimized estimate.
Specifically, a 15,000-member boot-strapping analysis was applied to sample the mutual error covariance
matrix for each of the seven quasi-independent R2[SMTrue, LHTrue] estimates obtained from (6). To (roughly)
compensate for the potential impact of temporal autocorrelation, boot-strapped samples were based on N/2
samples acquired with replacement (where N is the total number of days that all SM and LH data sets are
simultaneously available). In addition, in order to maximize their normality, all boot-strapped replicates of
R2[SMTrue, LHTrue] were transformed via their third power prior to sampling of the covariance matrix.

Following Perrons and Cooper [1992], the resulting error covariance matrix was used to derive optimal weights
for each of the (now transformed) seven separate estimates of R2[SMTrue, LHTrue]. The error covariance matrix
was also used to determine 95% confidence bounds for the single (deterministic) maximum likelihood (ML)
prediction based on these weights. After all three R2[SMTrue, LHTrue] values (i.e., the ML estimate plus lower
and upper 95% confidence bounds) were determined in this transformed space they were each inverted back
to their original Spearman rank R2 space.

5. Results

All presented results are based on daily JJA data obtained for the 0.25° pixel containing the ground sites listed in
Table 1, and the availability of at least 80 separate JJA days in which all three SM and LH products are simulta-
neously available (at a given site). In addition, a direct Spearman rank correlation of at least R2> 0.03 [�] is
required for the mutual relationship among all three SM estimates and among all three LH products. While
modest, this R2 cutoff successfully masks sites where (6) produces nonphysical results (due to any single member
of the SM or LH triplet being insufficiently accurate to support the application of triple collocation).

Baseline results are based on the use of Noah SM and LH and AMSR-E SM. For each site utilized in this study,
Figure 1 plots the daily SM/LH Spearman rank coefficient of determination sampled directly from ground
observations (R2[SMG, LHG]; dashed blue line) and Noah estimates (R2[SMLSM, LHLSM]; solid black line) of SM
and LH. The dashed vertical lines group sites which are colocated within a single 0.25° grid box, and sites
are ordered from left to right in terms of their aridity (as measured by averaged R2[SMG, LHG] within a
particular 0.25° grid box).
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Note that for the relatively highly
coupled sites on the left-hand side
of Figure 1, Noah generally predicts
more SM/LH coupling than corre-
sponding ground measurements.
However, as discussed above, cou-
pling estimates based on the direct
sampling of independently acquired
ground observations are likely biased
low due to the impact of random SM
and LH measurement errors.

In contrast, TC-based estimates of
the true coupling strength (R2[SMTrue,
LHTrue]; circles) acquired from (6) are
not biased by random error in LH or
SM estimates. As a result, they tend
to be larger than R2[SMG, LHG] for
the arid sites in Figure 1. In fact,
R2[SMTrue, LHTrue] acquired from (6)
tends to be as large, or even larger
than, Noah-based R2[SMLSM, LHLSM]
(Figure 1). This implies that the high
bias in R2[SMLSM, LHLSM] relative to

R2[SMG, LHG] can be attributed—not to any systematic over coupling between SM and LH in Noah predic-
tions—but rather the biasing impact of independent errors in ground-based SM and LH measurements.
The single exception to this tendency is found at sites located within the Nebraska Sandy Hills region (SDH
and SUH). Here values of R2[SMTrue, LHTrue] obtained from (6) remain larger than R2[SMG, LHG].

The Sand Hills region is notable for exhibiting vigorous surface-groundwater interactions and the direct
uptake of ground water by vegetation within certain wet valleys [Harvey et al., 2007; Gosselin et al., 1999].
Since such surface/groundwater interactions are neglected in the version of Noah applied in NLDAS-2
(Noah 2.8), it is not surprising that Noah overestimates the degree to which grid-scale LH is water limited
in the region. Therefore, at the SDH and SUH sites alone, there is clear evidence of significant over coupling
between Noah SM and LH estimates.

An important verification strategy for TC results in Figure 1 is examining their sensitivity to variations in the
products used to construct the SM and LH triplets on which they are based. This type of evaluation is
especially critical for LSM-based SM and LH estimates since systematic errors in LSM SM/LH coupling may
imperil the assumptions in (2) and (3) that errors in LSM-based SM and LH estimates are purely random.

In order to examine this issue, Figure 1 also plots TC-estimated R2[SMTrue, LHTrue] for the case of LSM-based
SM and LH results derived from VIC and Mosaic. Note that VIC and Mosaic results at some sites are masked
when a particular LSM fails to maintain an adequate Spearman cross correlation (R2> 0.03 [�]) versus both
RS and ground-based SM and LH estimates. Prior to the application of TC, VIC andMosaic predict substantially
lower one-way SM/LH coupling (R2[SMLSM, LHLSM]; green and red lines) than Noah.

However, with the possible exception of a modest low bias in VIC-based results, TC-corrected estimates of
R2[SMTrue, LHTrue] obtained from (6) are generally insensitive to our choice of LSM. That is, TC-based
R2[SMTrue, LHTrue] generated via the use of VIC, Mosaic, and Noah (as the source of LSM-based SM and LH
estimates) generally fall within their mutual 95% confidence bars. This suggests that variations in the
SM/LH coupling strength of LSMs do not appreciably bias TC-based estimates of R2[SMTrue, LHTrue] and lends
credibility to coupling results based on (6).

A comparable robustness test is presented in Figure 2 where R2[SMTrue, LHTrue] are calculated using three
different choices for the source of the RS-based SM product (i.e., AMSR-E, SMOS, and ASCAT—see section 3).
The application of different RS-based SM products in (6) does not significantly alter R2[SMTrue, LHTrue] estimates.

Figure 1. The Spearman rank coefficient of variation (R2) between SM
and LH estimated via the direct sampling of (various) LSM SM and LH
predictions (R2[SMLSM, LHLSM]), the direct sampling of ground-based SM
and LH measurements (R2[SMG, LHG]), and the application of the TC-based
approach in (6) (R2[SMTrue, LHTrue]) for the 0.25° grid cell over a range of
ground sites. Results are shown for the application of various LSMs. Plotted
error bars represent 95% confidence intervals on TC estimates. Vertical lines
group sites within specific 0.25° grid cells.
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This consistency persists despite the
fact that the time period of data avail-
ability, and thus the temporal support
of the R2[SMTrue, LHTrue] estimates, var-
ies among the respective remotely
sensed SM products.

Provided that the error independence
assumptions underlying TC are
respected, results should also be
robust to the particular subgrid site
selected for ground-based observa-
tions. Therefore, a final robustness test
is examining the sensitivity of (6) to
variations in the subgrid location of
the ground measurement site. The
dashed vertical lines in Figures 1 and
2 group ground sites by their respec-
tive 0.25° grid cells. Note that multiple
ground sites located within a single
grid cell (e.g., WHS/WKG, SRM/SRC,
SUH/SDH, DK1/DK2/DK3, NE2/NE3,
and IB1/IB2) generally yield mutually
consistent TC-based R2[SMTrue, LHTrue]
results. This suggests at least some

robustness to variations in both static land cover conditions and dynamic meteorological forcing immedi-
ately surrounding each subgrid groundmeasurement site. For example, transitioning between ground obser-
vations obtained over shrub cover at the Lucky Hills (WHS) site and grass cover at the Kendall Grassland
(WKG) site, 10 km apart, leads to comparable grid-scale coupling estimates even though these sites
commonly experience different rainfall amounts during highly localized summer monsoon storm events.
In Figures 1 and 2, a comparable lack of sensitivity exists between the Santa Rita Creosote (SRC, shrub cover
with little grass) and Santa Rita Mesquite (SRM, tree cover with grass understory) sites and the Nebraska Sand
Hill Dry Valley (SDH) and Upland Dune (SUH) sites.

6. Discussion

Relative to the other data products used in this analysis, the availability of ALEXI LH retrievals is particularly
vital since all other RS-based LH products are either not sufficiently independent from LSM or RS SM products
or do not provide a daily product. One consequence of this is that the robustness of results to the use of other
RS-based LH products cannot be directly examined. Therefore, themost important untested assumption here
is likely to be the mutual independence of LSM and RS LH estimates. Nevertheless, Crow et al. [2005] demon-
strated that even in cases where LSMs and the Two-Source Energy Balance model (i.e., the diagnostic surface
energy flux model at the core of ALEXI) are run with identical meteorological, vegetative, and radiative forcing
information, they still yield LH estimates with mutually independent errors. This occurs because of the funda-
mentally different ways in which ALEXI and LSMs calculate surface energy fluxes [Yilmaz et al., 2014].

A second issue is the realism of ground observation errors implied by this analysis. Based on (6), we attribute
the observed difference between R2[SMG, LHG] and R2[SMTrue, LHTrue] to the impact of random error on
ground-based SM and LH measurements. In order to further assess this claim, we assumed that LSM-based
SM and LH predictions represent reality and examined how profoundly R2[SMLSM, LHLSM] is degraded via
the introduction of artificial noise corresponding to expected levels of measurement error. To this end,
Figure 2 also plots Noah-based R2[SMLSM, LHLSM] after independent, Gaussian random errors, with a standard
deviation of 0.030m3m�3 (volumetric) and 10Wm�2 have been synthetically added to daily Noah SM and
LH. These error levels are realistic expectations for the magnitude of random error present in daily ground-
based SM and LHmeasurements [Robinson et al., 2008; Richardson et al., 2006]. Note that the random SM error

Figure 2. The Spearman rank coefficient of variation (R2) between SM
and LH estimated via the direct sampling of (various) LSM SM and LH
predictions (R2[SMLSM, LHLSM]) with and without synthetically generated
noise, the direct sampling of ground-based SM and LH measurements
(R2[SMG, LHG]) and the application of the TC-based approach in (6)
(R2[SMTrue, LHTrue]) for the 0.25° grid cell covering a range of ground sites.
Results are shown for the application of various RS SM products. Plotted
error bars represent 95% confidence intervals on TC estimates. Vertical lines
group sites within specific 0.25° grid cells.
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level is inflated slightly to capture the impact of spatial representativeness error associated with using a
point-scale SM observation to represent a fetch-scale (~500m2) area consistent with the support of a
tower-based LH measurement [Famiglietti et al., 2008].

The inclusion of such synthetic noise leads to a reductions in Noah-based R2[SMLSM, LHLSM] (compare solid and
dashed black lines in Figure 2) that are generally as large as the observed difference between R2[SMG, LHG] and
R2[SMTrue, LHTrue] (compare symbols to dashed blue line in Figure 2). This implies that themagnitude of random
measurement error implied by (6) is consistent with our a priori expectations concerning random errors in
ground-based SM and LH measurements.

7. Conclusions

Estimates of the true one-way coupling strength between SM and LH derived from the direct sampling of
independent ground observations will be biased low by the presence of random measurement errors.
Here we develop and apply a new triple collocation (TC) approach which provides a robust estimate of
one-way SM/LH coupling strength (based on a Spearman rank coefficient of determination) which remains
unbiased in the presence of random measurement and modeling errors. The TC approach is based on the
simultaneous availability of SM and LH estimates acquired from ground measurements, remote sensing,
and land surface modeling. Results suggest that the apparent overcoupling of LSM SM and LH predictions
relative to ground measurements can be attributed to independent random errors in ground-based SM
and LH measurements, and the Noah LSM provides relatively accurate predictions of SM/LH coupling
strength across a range of climate and land cover types. In fact, there exists evidence of undercoupling within
VIC and Mosaic SM and LH predictions at certain arid and semiarid sites (Figures 1 and 2). These TC-based
inferences are robust to variations to LSM parameterizations, choice of RS-based SM data set and the subgrid
location of ground-based SM and LH measurements. Following up on recent TC work with rainfall
[Alemohammad et al., 2015], future work may be needed to clarify the impact of nonadditive error models
for LH and SM.
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