
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Papers in Natural Resources Natural Resources, School of

4-2015

Uncertainty in simulating gross primary production
of cropland ecosystem from satellite-based models
Wenping Yuan
Beijing Normal University, yuanwpcn@126.com

Wenwen Cai
Beijing Normal University

Anthony L. Nguy-Robertson
University of Nebraska-Lincoln

Huajun Fang
Chinese Academy of Sciences, Beijing, fanghj@igsnrr.ac.cn

Andrew E. Suyker
University of Nebraska-Lincoln, asuyker1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers

Part of the Agriculture Commons, Environmental Monitoring Commons, Oceanography and
Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other
Environmental Sciences Commons

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Yuan, Wenping; Cai, Wenwen; Nguy-Robertson, Anthony L.; Fang, Huajun; Suyker, Andrew E.; Chen, Yang; Dong, Wenjie; Liu,
Shuguang; and Zhang, Haicheng, "Uncertainty in simulating gross primary production of cropland ecosystem from satellite-based
models" (2015). Papers in Natural Resources. 520.
http://digitalcommons.unl.edu/natrespapers/520

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natres?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/166?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natrespapers/520?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Wenping Yuan, Wenwen Cai, Anthony L. Nguy-Robertson, Huajun Fang, Andrew E. Suyker, Yang Chen,
Wenjie Dong, Shuguang Liu, and Haicheng Zhang

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/natrespapers/520

http://digitalcommons.unl.edu/natrespapers/520?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages


Approximately, 12% of Earth’s ice-free land surface is cultivated crop-
land (Wood et al., 2000) and up to 33% and 20% of this land surface 
in Europe and the United States, respectively, is arable (Ramankutty 
et al., 2008). Crop gross primary production (GPP) contributes ap-
proximately 15% of global carbon dioxide fixation (Malmstrom et al., 
1997). There is broad agreement that global crop vegetation produc-
tion is and will be significantly affected by climate change (Parry et 
al., 2004; Schmidhuber and Tubiello, 2007; Wheeler and von Braun, 
2013). Therefore, crop vegetation production monitoring and forecast-
ing are important for agricultural management (Mulla, 2013), food se-
curity (Meroni et al., 2014), yield estimates (Ines et al., 2013) and car-
bon cycle research (Gitelson et al., 2014; Li et al., 2014). 

Numerous approaches have been developed to model vegetation 
primary production in various cropping systems (Li et al., 2013; Cai 
et al., 2014). Monteith (1972, 1977) remarked that throughout a wide 
range of crops and environmental conditions, the ratio of absorbed 
light to carbon assimilation over the growing season is relatively con-
stant. Then a production efficiency model that estimated crop growth 
from absorbed photosynthetically active radiation (APAR) and max-
imal light use efficiency (LUEmax) was introduced (Running et al., 
2004). Subsequent studies further improved the model by expressing 
LUEmax as a function of one or more factors: light climate, tempera-
ture, water, and nutrient stress (Gamon et al., 1997; Xiao et al., 2004; 
Suyker and Verma, 2012). 
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Abstract 
Accurate estimates of gross primary production (GPP) for croplands are needed to assess carbon cycle and crop yield. 
Satellite-based models have been developed to monitor spatial and temporal GPP patterns. However, there are still 
large uncertainties in estimating cropland GPP. This study compares three light use efficiency (LUE) models (MODIS-
GPP, EC-LUE, and VPM) with eddy-covariance measurements at three adjacent AmeriFlux crop sites located near Mead, 
Nebraska, USA. These sites have different croprotation systems (continuous maize vs. maize and soybean rotated an-
nually) and water management practices (irrigation vs. rainfed). The results reveal several major uncertainties in esti-
mating GPP which need to be sufficiently considered in future model improvements. Firstly, the C4 crop species (maize) 
shows a larger photosynthetic capacity compared to the C3 species (soybean). LUE models need to use different model 
parameters (i.e., maximal light use efficiency) for C3 and C4 crop species, and thus, it is necessary to have accurate spe-
cies-distribution products in order to determine regional and global estimates of GPP. Secondly, the 1 km sized MODIS 
fPAR and EVI products, which are used to remotely identify the fraction of photosynthetically active radiation absorbed 
by the vegetation canopy, may not accurately reflect differences in phenology between maize and soybean. Such errors 
will propagate in the GPP model, reducing estimation accuracy. Thirdly, the water-stress variables in the remote sensing 
models do not fully characterize the impacts of water availability on vegetation production. This analysis highlights the 
need to improve LUE models with regard to model parameters, vegetation indices, and water-stress inputs.  

Keywords: Light use efficiency, MODIS, EC-LUE, MODIS-GPP, VPM, Maize, Soybean  
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However, global and regional NPP or GPP estimates of cropland 
ecosystems still have large uncertainties among different methods (Cra-
mer et al., 1999). For example, carbon balance studies of European 
croplands have found that cropland net primary production (NPP) es-
timates range from 490 to 846 gCm–2year–1

 using various methods (Ci-
ais et al., 2010). Accurate estimates of vegetation production are criti-
cal as they are inputs into other models (i.e., crop yield) and can reduce 
the accuracy of these models. For example, crop yield estimates based 
on MODIS GPP data collected over the Midwestern United states were 
underestimated due to the absence of including the impact of irriga-
tion (Xin et al., 2013). Even small biases in GPP models can accumu-
late in long-term studies and this can lead to erroneous conclusions in 
forecasting climate change (Richardson et al., 2012). 

The goal of this study is to determine uncertainties in estimating 
vegetation production from MODIS imagery acquired over cropland 
ecosystems. These estimates will be compared with 4 years of contin-
uous eddy covariance (EC) measurements from three AmeriFlux sites 
located in Nebraska, U.S.A. The specific objectives were to determine 
the accuracy of light use efficiency models in estimating vegetation 

production by (a) crop type, maize vs. soybean, (b) water manage-
ment practices, irrigated vs. rainfed, and (c) model approaches, MO-
DIS-GPP vs. EC-LUE vs. VPM. 

2. Models and data 

2.1. Study sites and eddy flux measurements 

In this study, three adjacent AmeriFlux eddy covariance towers were 
selected, which were located within 1.6km of each other at the Univer-
sity of Nebraska-Lincoln Agricultural Research and Development Cen-
ter near Mead, Nebraska, USA. They have similar climatic conditions 
(Figure 1). US-Ne1 (41.1651°N, 96.4766°W) was planted as continu-
ous maize and was equipped with a center pivot irrigation system. US-
Ne2 (41.1649°N, 96.4701°W) and US-Ne3 (41.1797°N, 96.4397°W) 
were both planted as a maize–soybean rotation, with maize planted 
in odd years. Similar to US-Ne1, US-Ne2 was irrigated using center-
pivot irrigation. US-Ne3 relied entirely on rainfall for moisture. The 
soil characterize in these three sites is very similar (Table 1). More  

Figure 1. Histogram of daily difference of four climate variables among three sites. Tem, Prec, PAR and VPD indicate air temperature, precipitation, 
photosynthetically active radiation and vapor pressure deficit, respectively. The numbers in the x-axis label represent the site, and 1–3 represent US-
NE1, US-NE2 and US-NE3, respectively. Mean and SD in the figures indicate the mean value and standard deviation of differences through all days.  
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details about the crop management and field history of these study sites 
are available in Suyker and Verma (2012) and Verma et al. (2005). 

Flux and meteorological variables are available on the FLUXNET 
Synthesis Dataset (http://www.fluxdata.org) for these three study sites. 
The eddy covariance flux measurements were collected using a Gill 
Sonic anemometer (Model R3; Gill Instruments Ltd., Lymington, UK), 
a closed-path system (LI-6262), and the LI-7500 open-path CO2/H2O 
water vapor sensor (LI-Cor Lincoln, NE). Data from the closed path 
system were the primary source of CO2 fluxes in these three towers, 
and open-path CO2 fluxes were used during the growing season only 
when closed-path fluxes were not available. Previous study have com-
pared hourly CO2 fluxes measurements obtained from the closed-path 
and open-path system with application of WPL correction, and found, 
they agreed very well (Yasuda and Watanabe, 2001). Key supporting 
meteorological variables were measured including air temperature, hu-
midity, incident photosynthetically active radiation, soil heat flux, in-
cident air and soil temperature, and windspeed. 

The data were quality-checked and gap-filled based on guidelines and 
previous studies (Munger and Loescher, 2006; Agarwal et al., 2010). Net 
ecosystem exchange (NEE) was processed following theFLUXNETpro-
cedure, from whichGPPvalues were computed (Agarwal et al., 2010). 
Daily NEE, ecosystem respiration (Re), latent heat (LE), sensible heat 
(H), net radiation (Rn), photosynthetically active radiation (PAR), air 
temperature (Ta), daily minimum air temperature (Tmin), vapor pres-
sure deficit (VPD), and soil moisture (SWC) were collected from 2001 
through 2004. GPP was calculated as the sum of NEE and Re. 

2.2. Light use efficiency models 

2.2.1. EC-LUE model 
Yuan et al. (2007, 2010),) developed the eddy covariance-light 

use efficiency (EC-LUE) model to simulate daily GPP. The EC-LUE 
modelis driven by four variables: NDVI, PAR, Ta, and the evapora-
tive fraction (the ratio of latent heat flux with net radiation). 

GPP = PAR × fPAR × LUEmax × Min(Ts,Ws)                  (1) 

fPAR = 1.24 × NDVI − 0.168                           (2) 

                   
Ts =

          (Ta − Tmin) × (Ta − Tmax) 
                            (Ta − Tmin) × (Ta − Tmax) − (Ta − Topt)

2       (3) 

Ws =
  LE 

Rn                                                               
(4) 

where LUEmax is the maximal light use efficiency without environmen-
tal stress (g Cm–2

 MJ–1
 APAR). In the EC-LUE model, environmental 

stress includes water and temperature stresses. Min denotes the mini-
mum values of Ts and Ws, assuming that the impacts of temperature and 
moisture on LUE follow Liebig’s Law (i.e., LUE is affected only by the 
most limiting factor at any given time) (Liebig, 1840); and Tmin, Tmax, 
and Topt are the daily minimum, maximum, and optimum air temper-
atures (°C) for photosynthetic activity. If the air temperature falls be-
low Tmin or increases beyond Tmax, Ts is set to zero. In this study, Tmin 
and Tmax were set to 0 and 40 °C, respectively, whereas, Topt was deter-

mined using nonlinear optimization as 21 °C (Yuan et al., 2007). LE is 
latent heat (MJm–2), and Rn is net radiation (MJm–2). 

2.2.2. MODIS-GPP product 
The MODIS-GPP algorithm (Running et al., 2004) is a LUE approach, 
with inputs from MODIS-fPAR, land cover, and biomespecific clima-
tologic data sources from NASA’s Data Assimilation Office. Light use 
efficiency is calculated based on two factors. The first is the biome-
specific maximum conversion efficiency, LUEmax, amultiplier that re-
duces the conversion efficiency when cold temperatures limit plant 
function. The second multiplier reduces the maximum conversion effi-
ciency when the vapor pressure deficit (VPD) is high enough to inhibit 
photosynthesis. MODIS-GPP used VPD to indicate drought stress. 

GPP = PAR × f PAR × LUEmax × Ts ×Ws                                   (5) 

 0  Tmin < TMINmin

  Ts = 
     Tmin − TMINmin  TMINmin < Tmin < TMINmax     (6)

 
 TMINmax − TMINmin
 1  Tmin > TMINmax

 0  VPD > VPDmax

 Ws =
    VPDmin − VPD  

VPDmin < VPD < VPDmax         (7)
 VPDmax − VPDmin  
 1  VPD < VPDmin 

where TMINmax is the daily minimum temperature at which LUE = 
LUEmax, TMINmin is the daily minimum temperature at which LUE 
= 0.0, VPDmax is the daylight average vapor pressure deficit at which 
LUE = 0, and VPDmin is the daylight average vapor pressure deficit 
at which LUE = LUEmax. Based on the MODIS land cover product 
(MOD12), a set of biome-specific radiation use efficiency parameters 
were extracted from the biome properties look-up table (BPLUT) for 
each pixel. BPLUT contains parameters for temperature and VPD lim-
its for representative vegetation in each biome type (Running et al., 
2004). Five parameters were used to calculate GPP. 

2.2.3. VPM model 
In the vegetation production model (VPM) (Xiao et al., 2004), LUE-
max is affected by temperature, land surface moisture, and phenology: 

GPP = PAR × fPAR × LUEmax × Ts ×Ws × Ps                (8) 

fPAR is assumed to be a linear function of EVI, and the coefficient is 
simply set to 1.0 (Xiao et al., 2004). The Ts, Ws, and Ps indicate the ef-
fects of temperature, water, and phenology on the light use efficiency 
of vegetation. Ts is estimated at each time step using the equation de-
veloped for the terrestrial ecosystem model (Raich et al., 1991) and 
shown in Eq. (3). 

The VPM also uses the land-surface water index (LSWI) (Xiao et 
al., 2004) to capture the effects of water stress and phenology on plant 
photosynthesis: 

LSWI =
 ρNIR − ρSWIR 

                                                     ρNIR + ρSWIR         
(9)

 

where ρNIR and ρSWIR refer to the reflectance of 841–876 nm band and 
1628–1652 nm band, respectively. The water index was calculated as: 

Ws =
  1 + LSWI 

                                                    1 + LSWImax         
(10) 

where LSWImax is the maximum LSWI within the plant growing sea-
son for individual pixels. Pscalar is included to account for the effect of 
leaf phenology (leaf age) on photosynthesis at the canopy level as im-

Table 1. Soil characteristics in the three study sites. 

Site  Clay  Sand  SC  WP  Soil C  Soil N 

US-Ne1  34.25  10.54  0.39  0.22  9.92  1.00 
US-Ne2  30.35  11.84  0.41  0.26  10.16  1.06 
US-Ne3  34.96  8.32  0.39  0.23  10.54  1.02 

Clay: soil clay content (%); Sand: soil sand content (%); SC: field satura-
tion moisture capacity (m3 m−3); WP: wilting point (m3 m−3); Soil C: soil 
carbon content (g/Kg); Soil N: soil nitrogen content (g/Kg).  

{
{
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mature leaves do not have the same photosynthetic capacity as mature 
leaves (Reich et al., 1991). Leaf age at the canopy level can be cap-
tured using remote sensing imagery to monitor phenological change. 
The calculation of Ps depends on the longevity of leaves (deciduous vs. 
evergreen). Ps was calculated as a linear function of LSWI from bud 
burst (i.e., emergence for crops) to full leaf expansion: 

Ps =
 1 + LSWI 

                                                          2                   
(11) 

At full leaf expansion Ps was 1. The dates for the three distinct grow-
ing phases (emergence, full canopy, and senescence) were obtained 
using an EVI seasonal threshold similar to that of the MODIS phenol-
ogy product (MOD12Q2) (Friedl et al., 2002). 

2.3. Model operation and satellite data at the EC sites 

Three LUE models were run at daily time steps at the EC sites. Envi-
ronmental variables measured at the EC sites were used to drive these 
three models. The 16-day MODIS-NDVI/EVI data (MOD13A2) and 
8-day MODIS-fPAR (MOD15A2) with 1-km spatial resolution were 
used to drive LUE models. Only the NDVI, EVI, and fPAR values of 
the pixel containing the tower were used. Quality control (QC) flags, 
which signal cloud contamination in each pixel, were examined to 
screen and reject NDVI, EVI, and fPAR data of insufficient quality. 
Missing or unreliable values for each 1-km MODIS pixel were tem-

porally filled in based on their corresponding quality assessment data 
fields as proposed by Zhao et al. (2005): (1)if the first (or last) 8-day 
or 16-day satellite value is unreliable or missing, it will be replaced by 
the closest reliable value. (2) Other unreliable values will be replaced 
by linear interpolation of the nearest reliable value before it and the 
closest reliable value after it. If there are no reliable values during the 
entire year, the annual maximum will be chosen from unreliable pe-
riods in the current year and will be used as a constant value across 
the entire year. Daily NDVI, EVI and fPAR values were derived from 
two consecutive 8-day or 16-day composites by linear interpretation. 
The daily MODIS Surface Reflectance product (MOD09GA) at 1-km 
spatial resolution was used to calculate LSWI. The same method that 
was used for NDVI was used to conduct data QC and fill missing data 
gaps for MODIS Surface Reflectance product. 

2.4. Statistical methods 

The nonlinear regression procedure (Proc NLIN) in the Statistical 
Analysis System (SAS, SAS Institute Inc., Cary, NC, USA) was ap-
plied to two calculations: (1) to conduct the statistics analysis, and (2) 
to optimize the parameters of three models across the study EC sites. 
Three metrics were used to evaluate the performance of the models, in-
cluding correlation coefficient of determination (R2), root mean square 
error (RMSE), and mean predictive error (BIAS, difference between 
mean observations and simulations). 

Figure 2. Comparison of gross primary production (GPP), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and frac-
tion of absorbed photosynthetically active radiation (fPAR) among the three AmeriFlux sites (US-Ne1, US-Ne2, and US-Ne3). The green dashed lines 
indicate the start of the maize growing season at US-Ne1 in even years.  
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3. Results 

Differences in GPP estimates based on EC measurements between 
maize and soybean were examined for the two irrigated sites (US-Ne1 
and US-Ne2), and the maximum GPP of maize was found to be sub-
stantially larger than that of soybean (Figure 2). For example, in 2004, 
the highest GPP of maize was 29.20 gCm–2

 day–1
 (US-Ne1), but the 

peak value of soybean GPP was only 13.98 gCm–2
 day–1

 (US-Ne2). 
Other environmental variables at these two sites, such as air temper-
ature, relative humidity, photosynthetically active radiation, and soil 
moisture, were comparable (Figure 1). EVI and MODIS-fPAR of soy-
bean at an irrigated site (US-Ne2) were close to those of maize at an ir-
rigated site (US-Ne1), but there was a short lag at the start of the grow-
ing season for NDVI in soybean (Figure 2b–d). 

The LUEmax of MODIS, EC-LUE, and VPM was calibrated for 
maize and soybean, respectively. LUEmax of maize was significantly 
larger than that of soybean (p < 0.05) (Figure 3). For example, in the 
EC-LUE model, LUEmax was only 1.44 gCMJ–1

 for soybean, but 2.25 
gCMJ–1

 for maize at US-Ne2. 
Uncertainties in satellite data introduce inaccuracies in GPP simula-

tions (Figs. 4 and 5). The GPP simulations based on the MODIS-GPP 
and VPM models could not indicate the differences between the two 
crop species (Figures 4 & 5). Figure 6 shows a comparison of the ratio 
between GPP observations and simulations for the two sites (i.e., US-
Ne1 and US-Ne2). Based on NDVI data, the ECLUE model could de-
tect the different phenological characteristics of maize and soybean (Fig-
ure 6). However, the GPP estimates based on MODIS-GPP and VPM 
failed to identify the difference between the two crop species (Figure 6). 

Within the three study sites, two sites were under irrigated manage-
ment (US-Ne1 and US-Ne2), whereas, the third site relied entirely on 
rainfall (US-Ne3). Soil moisture was regulated by precipitation at the 
US-Ne3 site, and the average soil moisture was lower than at the two 
irrigated sites, (74% of that in US-Ne2; Figure 7d). This research com-
pared the water stress variables of the three models with the observed 
soil moisture to investigate the differences between irrigated and rain-
fall-dependent sites. All the water stress variables in the three models 
showed lower water availability at US-Ne3 than at the US-Ne2 site 
(Figure 7d). However, three water variables showed large differences 
in identifying water stress. Both evaporative fraction (EF) and vapor 
pressure deficit (VPD) showed only slight decreases temporally with 
soil moisture at a depth of 10cm (Figure 7) and insignificant correla-
tions with soil moisture directly (Figure 8a and b). In contrast, LSWI 
showed a weak correlation with soil moisture (Figure 8c). 

The differences between the irrigated (US-Ne2) and rainfed site 
(US-Ne3) for both measured GPP and water stress variables were cor-
related (Figure 9). Evaporative fraction (EF) showed the highest corre-
lation (Figure 9b) and differences in soil moisture did not explain the 
GPP differences between the sites (Figure 9d). Both VPD and LSWI 
had weak correlations in differences between the sites and measured 
GPP (Figure 9). Consequently, using EF as the waterstress variable, 
the EC-LUE model showed the best performance in simulating GPP 
at all three sites during the growing seasons (Table 2). 

4. Discussion 

4.1. Differences of photosynthesis capability between maize and 
soybean 

Our results imply the strong photosynthetic capacity of maize as a C4 
crop type under similar climate conditions. Figure 3 shows the LUE-
max values of maize, are significant larger than those of soybean at all 
three LUE models. LUEmax is an important parameter in satellite-based 
LUE models because it determines the expected rate of photosynthe-
sis assuming optimal conditions. Previous studies support the conclu-
sion that LUE models need specific model parameters for different crop 
species, especially for C3 and C4 species (Prince and Goward, 1995; 
Suyker and Verma, 2012). Yuan et al. (2010) assumed one value of LU-
Emax for all C3 and C4 crops and found significant errors in GPP esti-
mates. Our results illustrate a significant issue for accurate regional and 
global estimation of GPP: the availability of crop type-specific (i.e., C3 
and C4) products is a prerequisite for model application. 

4.2. Impacts of vegetation index on model performance 

Many LUE models depend on accurate satellite data products, which 
provide spatially and temporally consistent vegetation coverage infor-
mation. Therefore, any noise or errors in satellite data is transferred 
to GPP estimates (Yuan et al., 2007). The EC-LUE and VPMmod-
els useNDVIand EVI to estimate fPAR based on linear relationships. 
The MODIS-GPP algorithm directly uses the MODIS-fPAR product, 
which uses a radiative transfer model and only employs NDVI as a 
back-up algorithm. There are distinct and consistent seasonal dynam-
ics of NDVI, EVI, and fPAR during the growing season (Figure 2b–
d). The growing season of maize is longer and requires earlier plant-
ing dates compared to soybean. This strongly determines the date of 
GPP peaks (Figure 2a). However, only NDVI clearly discriminated 
between maize and soybean at the start of the growing season for this 
data set. Both EVI and MODIS-fPAR had similar temporal behavior 
for both crops (Figure 2b and c). 

Xiao et al. (2004) compared the correlations between the two veg-
etation indices (EVI, NDVI) and GPP for an evergreen needleleaf for-
est and found that EVI seasonal dynamics followed those of GPP bet-
ter than those of NDVI in terms of GPP phase and amplitude. However, 
NDVI was found to be the best index to predict fPAR in subalpine 
grassland (Rossini et al., 2012) and is used as the back-up algorithm for 
estimating fPAR (Myneni et al., 1997) in the MOD15 product. In this 
study, differences in EVI and MODIS-fPAR between crops were not 
clear, and thus, were not optimal characterizing phenological stages. 
Figure 2 shows that both of EVI and MODIS-fPAR failed to indicate 
the differences of maize and soybean. This is in contrast with other 
studies that have determined that the behavior of EVI is linearly re-
lated to NDVI (Wardlow et al., 2007) and both VIs tend to follow each 
other temporally (Nguy-Robertson et al., 2013). It is possible that the 
EVI and fPAR products were influenced by the mixed pixels due to the 
high spatial resolution (1 km) which is larger than the study site (i.e., 

Table 2. Summary of the three light use efficiency models related to eddy covariance measurements collected at the three study sites. 

                                            MODIS-GPP                                                        EC-LUE                                                               VPM 
                              R2                  RMSE                 BIAS                    R2                  RMSE                 BIAS                    R2                   RMSE                  BIAS 

US-Ne1  0.65  4.91  −0.41  0.84  3.26  0.37  0.67  4.41  1.51 
US-Ne2  0.67  4.52  −0.06  0.83  3.18  0.13  0.79  3.43  1.70 
US-Ne3  0.64  4.17  −0.17  0.81  2.74  0.16  0.50  4.24  1.02 

Units of RMSE and BIAS are g Cm–2 day–1.   
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included roads, grass, adjacent fields). Fang et al. (2013) found that 
up to 71% of MODIS LAI pixels were mixed. While the Fang et al. 
(2013) and Lotsch et al. (2003) both determined that mixed pixels may 
be frequent, they do not generally impact LAI and fPAR products be-
cause surrounding vegetation has similar phenology. This assumption 
is not always true in crop ecosystems where the phenological behav-
ior of surrounding vegetation may be starkly different. The temporal 
behavior of NDVI was likely impacted less, since it is more sensitive 
than EVI to low biomass and responds quickly to small changes in leaf 
area (Viña et al., 2011). 

4.3. Impacts of water stress on model performance 

While multiple parameters constraining LUE have been examined, 
many studies have focused on different parameterizations of water 
stress. These different approaches have led to considerable differences 
in results of LUE models (Yuan et al., 2014). Defining a remote-sens-
ing function to capture the constraint of moisture availability on plant 

photosynthesis, has already been a challenge for many years. The ef-
fects of water availability on GPP have been estimated in different 
ways in various LUE models, including as a function of soil mois-
ture, of evaporative fraction, and of atmospheric vapor pressure deficit 
(Field et al., 1995; Prince and Goward, 1995). In the EC-LUE model, 
water stress is estimated using the evaporative fraction (the ratio of ac-
tual evapotranspiration to net shortwave radiation) because decreas-
ing amounts of energy devoted to evaporating water suggest a more 
severe moisture limitation (Kurc and Small, 2004). The VPM model 
uses the LSWI index to estimate the seasonal dynamics of water stress 
(Xiao et al., 2004). 

All water-related variables used in the LUE models have uncer-
tainties for representing water-availability constraints. Previous stud-
ies indicated that vapor pressure deficit is not a good indicator of the 
spatial heterogeneity of soil moisture conditions across the landscape 
(e.g., slopes vs. valleys) and is not likely to be linearly related to soil-
water availability, for which, it is often used as a proxy (Yuan et al., 
2007). In this study, the results showed slow responses of VPD to 

Figure 3. Comparison of maximal light use efficiency (LUEmax) of maize and soybean at the three AmeriFlux sites (US-Ne1, US-Ne2, and US-Ne3) for 
MODIS-GPP (a), EC-LUE (b) and VPM (c). The “M” in the y-axis label indicates maize, and “S” indicates soybean. There was a statistical difference be-
tween the two crops for each GPP model (MODIS-GPP, EC-LUE, and VPM), indicated by ‘a’ and ‘b’. Error bars represent standard deviation of esti-
mated parameters. 

Figure 4. Daily variation of predicted and estimated gross primary production (GPP) from eddy covariance measurements at the three AmeriFlux 
sites (US-Ne1, US-Ne2, and US-Ne3). The black solid lines represent the predicted GPP from the three models (MODIS-GPP, EC-LUE, and VPM), and 
the open circular dots represent estimated GPP.  
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soil moisture variations and weak correlations of differences between 
VPD and GPP. Although the evaporative fraction did not identify dif-
ferences in soil moisture between irrigated and rainfed sites (Figure 
5b), it was related to GPP differences (Figure 7b). There is a close cou-
pling relationship between plant transpiration and photosynthesis be-
cause both water and the photosynthetic cycle exchange through the 
stomata (Chapin et al., 2012). Plant transpiration is the largest compo-
nent of ecosystem evapotranspiration (Yuan et al., 2012; Chen et al., 

2014). However, the evaporative fraction needs an ET model to simu-
late ecosystem evapotranspiration, and there are still large uncertain-
ties in the current ET models (Chen et al., 2014). Any noises or errors 
in the ET simulations, therefore, would have been transferred to GPP 
predictions and further reduce LUE model performance (Yuan et al., 
2014). Although the LSWI was sensitive to soil moisture variability 
(Figure 6c), the differences between the two sites in both LSWI and 
GPP were only weakly correlated (Figure 7c).  

Figure 5. Predicted vs. the estimated GPP at the three sites. The long dash line is 1:1 line and the solid line is linear regression line.  

Figure 6. GPP ratios of maize and soybean between the AmeriFlux sites US-Ne1 and US-Ne2 for the measured and modeled (MODIS-GPP, EC-LUE, 
and VPM) and gross primary production (GPP).  
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Water availability is the dominant control for most terrestrial eco-
systems (Yuan et al., 2007), and previous studies have reported that 
rainfed cropland accounts for 72% of cropland globally (FAO, 2005). 
Recent increases in global drought incidence (Dai et al., 2004) and 
decreased in global evapotranspiration suggest that current terrestrial 

ecosystems are finding themselves in more water-limited environments 
(Jung et al., 2010). However, our results showed that it remains diffi-
cult to characterize water availability for plants and its effect on pho-
tosynthesis, and this limits the accuracy of GPP models. Further re-
search on the effects of water stress is still necessary. 

Figure 7. Three water-stress variables (vapor pressure deficit, VPD; evaporative fraction, EF; and land surface water index, LSWI) at the irrigated (US-
Ne2, solid black line) and the rainfed sites (US-Ne3, dashed red line). 

Figure 8. Correlation of the differences of three water-stress variables (vapor pressure deficit, VPD; evaporative fraction, EF; and land surface water 
index, LSWI) and soil moisture between the irrigated (US-Ne2) and the rainfed sites (US-Ne3). The coefficient of determination (R2) for the best-fit 
line was indicated.  
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Summary 

Three light use efficiency models (MODIS-GPP, EC-LUE, and VPM) 
were examined at three adjacent sites with different crop species 
(maize and soybean) and management practices (irrigated and rain-
fed). Because of their differences in photosynthesis capability, GPP 
estimation algorithms are species-specific for maize and soybeans in 
all three models, which highlights the availability of crop-specific (i.e., 
C3 and C4) distribution products for accurately estimating regional 
and global GPP of cropland. Moreover, the results showed maize has 
an earlier growing season than soybean, but EVI and MODIS-fPAR 
for the study sites could not accurately identify the associated pheno-
logical differences, resulting in large model errors. The analyses con-
ducted in this research indicate that the model water stress equations 
are limited in their ability to determine the impacts of water availabil-
ity on vegetation production. Although the LSWI was sensitive to soil 
moisture variability, differences between the two sites in both LSWI 
and GPP were only weakly correlated.  
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