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1. Introduction

Characterization of the spatial and temporal patterns in terrestrial gross 
primary production (GPP) and net primary production (NPP) is es-
sential to understand and quantify the carbon exchange between the 
atmosphere and terrestrial ecosystems (Beer et al., 2010; Lobell et 
al., 2002). Satellite remote sensing provides spatially continuous and 
temporally repetitive observations of land surfaces, and has become 
increasingly important for monitoring vegetation photosynthetic ac-
tivities over large geographic regions. In satellite-based studies, Pro-
duction Efficiency Models (PEMs) have been widely employed to es-
timate terrestrial productivity (Field et al., 1995; Goetz et al., 1999; 
Gower et al., 2001; Potter et al.,1993; Prince and Goward, 1995; Run-
ning et al., 2000, 2004).

The underlying theory behind a variety of PEMs is that vegetation 

GPP/NPP is linearly related to the amount of photosynthetically ac-
tive radiation (PAR) absorbed by the canopy: 

GPP = ε*
GPP × f (ε) × PAR × FPAR                        (1)

where the ε*
GPP (gC MJ−1) value for the GPP calculation is the maxi-

mum light use efficiency (LUE) when the environment is not limiting 
for plant carbon uptake; PAR (MJ) is the photosynthetically active ra-
diation incident on the canopy; FPAR (dimensionless) is the fraction 
of incident PAR absorbed by the canopy; and f(ε) (dimensionless) is a 
scalar that accounts for the effects of environmentalstress and is for-
mulated differently in various PEMs.

However, parameterization of ε*
GPP, a key component in these mod-

els, differs widely for croplands in studies at different scales. Typical 
ε*

GPP in site-scale studies range from 2.40 to 4.24 gC MJ−1 for C4 crops 
and 1.41 to 1.96 gC MJ−1 for C3 crops (Chen et al., 2011; Kalfas et al., 
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Abstract
Satellite remote sensing provides continuous observations of land surfaces, thereby offering opportunities for large-scale mon-
itoring of terrestrial productivity. Production Efficiency Models (PEMs) have been widely used in satellite-based studies to 
simulate carbon exchanges between the atmosphere and ecosystems. However, model parameterization of the maximum light 
use efficiency (ε*

GPP) varies considerably for croplands in agricultural studies at different scales. In this study, we evaluate 
cropland ε*

GPP in the MODIS Gross Primary Productivity (GPP) model (MOD17) using in situ measurements and inventory 
datasets across the Midwestern US. The site-scale calibration using 28 site-years tower measurements derives ε*

GPP values 
of 2.78 ± 0.48 gC MJ−1(± standard deviation) for corn and 1.64 ± 0.23 gC MJ−1for soybean. The calibrated models could ac-
count for approximately 60–80% of the variances of tower-based GPP. The regional-scale study using 4-year agricultural in-
ventory data suggests comparable ε*

GPP values of 2.48 ± 0.65 gC MJ−1 for corn and 1.18 ± 0.29 gC MJ−1 for soybean. Annual 
GPP derived from inventory data (1848.4 ± 298.1 gC m−2y−1 for corn and 908.9 ± 166.3 gC m−2y−1 for soybean) are consis-
tent with modeled GPP (1887.8 ± 229.8 gC m−2y−1 for corn and 849.1 ± 122.2 gC m−2y−1 for soybean). Our results are in line 
with recent studies and imply that cropland GPP is largely underestimated in the MODIS GPP products for the Midwestern 
US. Our findings indicate that model parameters (primarily ε*

GPP) should be carefully recalibrated for regional studies and 
field-derived ε*

GPP can be consistently applied to large-scale modeling as we did here for the Midwestern US.

Keywords: Remote sensing, Net primary production, Crop yield, Flux tower, National inventory
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2011; Lindquist et al., 2005; Singer et al.,2011; Turner et al., 2002), 
while ε*

GPP in many large-scale modeling efforts are about 0.604–1.08 
gC MJ−1 for croplands (Bradford et al., 2005; Heinsch et al., 2003; Lo-
bell et al., 2002; Zhao and Running, 2010). Note that the ε*

GPP values 
prescribed in many large-scale biogeochemical models are only ap-
proximately half of those in a number of small-scale studies. The dis-
crepancy regarding the ε*

GPP values at different scales may result in 
biased GPP estimates for croplands. In a recent study, GPP estimates 
derived from sun-induced chlorophyll fluorescence datasets were ap-
proximately 50–75% higher than results from state-of-the-art carbon 
cycle models, like the MODIS (Moderate Resolution Imaging Spec-
troradiometer) GPP/NPP product (Guanter et al., 2014). Bandaruet al. 
(2013) found that modeled NPP in Illinois and Iowa were 2.4 and 1.1 
times greater than the MODIS GPP/NPP product for corn and soy-
bean, respectively. However, model evaluation did not identify signif-
icant biases in other biomes (Sjöström et al., 2013; Turner et al., 2006), 
which implies that the differences between field and satellite LUE es-
timates are the most pronounced in croplands (Garbulsky et al., 2010).

Given the importance of the LUE in modeling cropland productiv-
ity, there is a need to investigate reasons for the inconsistent ε*

GPP values 
in studies at different scales. Most validation efforts for MODIS GPP 
have been made using eddy covariance data from flux tower measure-
ments, and some studies suggest increasing the ε*

GPP values in models 
to estimate cropland GPP (Chen et al., 2011; Zhang et al., 2008). On the 
other hand, some large-scale modeling studies identified overestima-
tions of crop productivity in comparison with statistical inventory data 
when applying field-derived ε*

GPP values (Lobell et al., 2002; Ruimy et 
al., 1994; Turner et al., 2006). However, two recent studies that incor-
porate fine-resolution land use maps and coarse-resolution MODIS data 
recommend applying field-estimated LUE values for large-scale crop-
land modeling (Bandaru et al., 2013; Xin et al., 2013).

The objective of this paper is to evaluate cropland ε*
GPP in the 

MOD17 model at different scales. We perform model calibrations 
across the Midwestern US using both independent in situ measure-
ments and regional statistical datasets. This would help generate mul-
tiple lines of evidence to determine appropriate ε*

GPP values for crop-
land GPP estimates.

2. Materials and methods

2.1. The MODIS GPP (MOD17) model

Among a variety of PEMs (Cramer et al., 1999; Wu et al., 2010; Yang 
et al., 2013), we employed the MOD17 model (Running et al., 2004) 
developed by the Numerical Terradynamic Simulation Group (NTSG) 
at the University of Montana (UMT). The MOD17 model is used to 
provide GPP/NPP estimates from MODIS data at 8-day and yearly 
time steps. In addition to Eq. (1), this model uses the following equa-
tions to down-regulate the influences of environmental factors on light 
use efficiency: 

f (ε) = TMINs × VPDs                                   (2)

where TMINs and VPDs are the attenuation scalars for the daily min-
imum temperature (TMIN) and daily vapor pressure deficit (VPD).
These values are calculated with the following simple linear ramp 
functions: 

                                TMINs =
   TMIN − TMINmin                (3) 

                                               TMINmax − TMINmin

                               VPDs =
   VPDmax − VPD 

                                             VPDmax – VPDmin           (4)

where TMINmax and TMINmin are daily minimum temperatures at εGPP 
= ε*

GPP and εGPP = 0, respectively; and VPDmax and VPDmin are day-
light vapor pressure deficits at εGPP = 0 and εGPP = ε*

GPP, respectively.
The MOD17 model prescribes specific parameters in a Biome-Prop-

erties-Look-Up-Table (BPLUT) for each biome category. For cropland 
in MOD17 Collection 5.1, the ε*

GPP, TMINmin, TMINmax,VPDmin, and 
VPDmax are defaulted as 1.044 gC MJ−1, −8.00°C, 12.02°C, 650 Pa, 
and 4300 Pa, respectively (Zhao and Running, 2010). FPAR data are 
derived from the upstream MOD15 products (Myneni et al., 2002). 
Meteorological data such as air temperature, VPD, and incident short-
wave radiation come from National Center for Environmental Predic-
tion – Department of Energy (NCEP-DOE) Reanalysis II datasets — 
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html  

2.2. Flux tower site data

We analyzed seven agricultural sites in the Midwestern US (Figure 
1; Table 1) that had Level 4 products available in the AmeriFlux da-
tabase — http://ameriflux.ornl.gov/ . These flux tower sites are oper-
ated under different management practices (crop rotations and rain-
fed/irrigation) and are representative of the widespread agricultural 
environment in the study area. The AmeriFlux Level 4 products con-
sist of gap-filled meteorological variables and GPP estimates. Miss-
ing data due to unsuitable micrometeorological conditions or equip-
ment failures are gap-filled using the marginal distribution sampling 
method (Reichstein et al., 2005). Flux tower GPP estimates are cal-
culated as the difference between the measured net ecosystem ex-
change and the estimated ecosystem respiration. Required meteo-
rological variables in the MOD17 model were processed from the 
half-hour to 8-day datasets to be consistent with the MODIS data.

According to previous studies (Bandaru et al., 2013; Chenet al., 
2011), we extracted time series of satellite-derived parameters from 
Terra/MODIS products for the pixels containing the tower sites. The 
used Terra/MODIS products included the 8-day 500 m surface reflec-
tance product (MOD09A1), the 8-day 1000 m FPAR/LAI product 
(MOD15A2), and the 8-day 1000 m vegetation productivity product 
(MOD17A2). Observations during cloudy conditions within the study 
period are identified by quality assurance data and gap-filled using lin-

Figure 1. Study site locations in the Midwestern US. The corn and soybean 
maps are shown for 2011 and are derived from the NASS Cropland Data Layer 
datasets. Site codes are specified in Table 1.

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://ameriflux.ornl.gov/
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ear functions (Kalfas et al., 2011). GPP estimates in MOD17A2 are 
8-day sums of daily values for each pixel and are divided by a scale 
factor of 8 to obtain the daily averages. Details regarding these prod-
ucts can be found on the MODIS data website (https://lpdaac.usgs.gov/
products/modis products table/).

2.3. Regional data

Agricultural inventory data provide alternative references for crop pro-
duction throughout the growing season. The 4-year (2009–2012) sta-
tistical data for corn and soybean production were obtained for each 
county from the NASS Quick Stats database — http://www.nass.usda.
gov/Quick Stats/ . The NASS datasets have been used widely for re-
gional crop GPP/NPP modeling (Bandaruet al., 2013; Lobell et al., 
2002). To exclude regions with sparse agriculture, our analysis was 
confined to counties with at least 10% of the total area planted in corn 
and soybean (661 counties were analyzed). Following methods out-
lined in previous agricultural studies (Prince et al., 2001; Reeves et al., 
2005), we translated the reported grain productions to annual GPP. The 
translation takes equations that are analogous to the allometric equa-
tions for forest biomass estimation as follows:

                    
GPP =

  (  Y  +  Y  × RS ) × (1 − MC) × CCB    (5)
                                   HI    HI                                   CUE

where Y is the reported crop yields; MC is the moisture content of the 
grain; RS is the root to shoot ratio; HI is the harvest index; CUE (car-
bon use efficiency) is the ratio of NPP to GPP; and CCB (carbon con-
tent in biomass) is the percentage of dry biomass composed of carbon. 
In our translation, the carbon content in biomass is estimated as 45% 
(Schlesinger and Bernhardt, 2013). The ratio of NPP to GPP is estimated 
as 46% for all crops (Bandaru et al., 2013; Choudhury, 2000). Values for 
the other parameters were obtained from Lobell et al. (2002).

Crop-specific land use maps have shown potential for improving 
satellite estimates of crop yields (Bandaru et al., 2013; Xinet al., 2013). 
Different from the MODIS GPP products that use global land cover 
maps at 1 km resolution, we use fine-resolution land-use maps from 
the NASS Cropland Data Layer (CDL) program for regional model-
ing. The NASS CDL produces crop-specific land use maps for each 
calendar year at a spatial resolution of 30 or 56 m for the United States 
based on the classification of multi-sensor satellite imagery with train-
ing data from extensive ground surveys. The reported producer’s and 
user’s accuracies are 97.1% and 98.6% for corn, and 96.4% and 97.4% 
for soybean, respectively (Boryan et al.,2011). Fine-resolution CDL 
maps are mosaicked, re-projected, and scaled up to coarser resolution 
as percentage maps in the MODIS sinusoidal projection.

2.4. Model setup

Our primary goal in this study is to evaluate ε*
GPP for modeling crop-

land GPP at different scales. GPP references are derived from both flux 
tower measurements and statistical inventory data. We fit linear regres-
sions with no intercept between GPP and the product of PAR × FPAR 

× f(ε) to derive the optimal ε*
GPP value by minimizing the squared er-

rors (Sjöström et al., 2013). GPP estimates from there calibrated mod-
els are further compared with the reference data. To examine factors 
that influence the ε*

GPP and GPP estimates, we set up different inputs 
for the MOD17 model at both site and regional scales (Table 2). These 
model setups are further explained in the following sections.

2.4.1. Site modeling
Evaluation efforts have identified several factors that may con-

tribute to the differences between GPP derived from MODIS and flux 
tower data. Important factors include the model structures (Running 
et al., 2004), errors in the upstream input data (Sjöströmet al., 2013; 
Zhao et al., 2005), MODIS sensor viewing angles (Zhanget al., 2014), 
and the mismatches between the footprints of tower sites and MODIS 
pixels (Gelybó et al., 2013).

To quantify these effects, we gradually replaced the satellite-de-
rived and meteorological inputs in the MOD17 model and compared 
modeled GPP estimates with flux tower measurements (Table 2). First, 
we calibrate the MOD17 model by performing a reference run with 
inputs the same as MOD17A2 (NCEP-MOD15). Second, because the 
MOD17 model relies on MOD15 FPAR inputs,we employ the method 
of Vegetation Photosynthesis Model (Xiaoet al., 2004) to model FPAR 
as a linear function of Enhanced Vegetation Index (EVI; Eq. (6)). EVI 
has been found to perform better than NDVI in terms of explaining the 
seasonal dynamics of carbon exchange in croplands (Bandaru et al., 
2013; Kalfas et al., 2011), because EVI minimizes the influences of 
residual atmospheric contamination and accounts for the variability in 
soil background reflectance (Huete et al., 2002). EVI at 1 km was cal-
culated based on the mean MOD09A1 band reflectance of four pixels 
at 500 m. Third, because of the effects of spatial variability, the mis-
match in the footprints between the flux tower and MODIS could in-
fluence model validation. We performed analysis at 500 m resolution 
instead of 1000 m resolution because examination of the land use maps 
indicates that the extent of crop fields is relatively homogeneous at 500 
m resolution. Finally, to understand the influence of meteorological in-
puts (incoming solar radiation, minimum temperature and vapor pres-
sure deficit) on GPP modeling, we use the daily meteorological data 
from the Ameriflux Level 4 products rather than the NCEP-DOE Re-
analysis II dataset, where incident PAR is estimated as 45% of mea-
sured incoming shortwave solar radiation (Heinschet al., 2003). Over-
all, we used six MOD17 model setups for GPP and ε*

GPP estimates.
The following linear function of the EVI is used as an alternative 

method in the Vegetation Photosynthesis Model for estimating FPAR 
during the photosynthetic active period: 

FPAR = a × EVI                                          (6)

where a is the coefficient constant and is assumed to be 1.0 (Xiaoet 
al., 2004).

2.4.2. Regional modeling
Regional studies have found that the MODIS GPP estimates are con-
strained by upstream datasets such as the MODIS FPAR product and 

Table 1. Information for the studied tower sites. 

Site ID  Site name  Lat (°N)  Lon (°W)  Crops  Irrigation  Period  References 

US-Bo1  Bondville  40.0062  88.2904  Corn, soybean   01–06  Meyers and Hollinger (2004) 
US-IB1  Fermi Agricultural  41.8593  88.2227  Corn, soybean   06–07  Matamala et al. (2008) 
US-Ne1 Mead Irrigated  41.1650  96.4766  Corn  Yes  01–05  Suyker and Verma (2012) 
US-Ne2  Mead Irrigated Rotation  41.1649  96.4701  Corn, soybean  Yes  01–05  Suyker and Verma (2012) 
US-Ne3  Mead Rainfed  41.1797  96.4396  Corn, soybean   01–05  Suyker and Verma (2012) 
US-Ro1  Rosemount G21  44.7143  93.0898  Corn, soybean   04–06  Griffis et al. (2004) 
US-Ro3  Rosemount G19  44.7217  93.0893  Corn   05  Griffis et al. (2004)

http://www.nass.usda.gov/Quick Stats/
http://www.nass.usda.gov/Quick Stats/
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the MODIS land cover product (Zhao et al., 2005). To evaluate these 
effects, we conducted four model runs across the Midwestern US (Ta-
ble 2; Figure 1). A reference run (MOD15-Mask) is performed using 
the same meteorological and satellite-derived inputs as the MODIS 
GPP product by applying a general cropland mask. The general crop-
land mask is defined for pixels with more than 50% fractional cover of 
corn or soybean. For the purpose of comparison, we also run the model 
with EVI-based FPAR to understand how satellite-derived FPAR may 
influence ε*

GPP and annual GPP estimates.
In the above two experiments, applying general cropland masks 

may not account for the effects of pixel variability because crop spe-
cies under different photosynthetic pathways (C3 and C4) may have 
varied GPP, and because the typical crop fields are smaller than the 1 
km spatial resolution of the MODIS products. To investigate the in-
fluences of land-cover/land-use maps, we also derive ε*

GPP and GPP 
estimates by applying fractional cropland maps derived from NASS 
CDL datasets. The use of the relatively new NASS CDL dataset al-
lows us separate GPP contributions from corn and soybean for each 
pixel. Here we implement the hybrid method proposed by Turner et 
al. (2002) and model GPP as an area-weighted value based on frac-
tional land use maps:

GPP = ∑ fi × ε*
GPPi  × f (ε) × PAR × FPAR               (7)

where ε*
GPPi is the maximum light use efficiency for crop species i, and 

fi is the fractional cover for crop species i.

3. Results

3.1. Site-scale analysis

We derived the optimal ε*
GPP from linear regressions with no intercept 

between tower-measured GPP and modeled f(ε) × PAR × FPAR prod-
ucts (Figure 2). Using the model setup of Local-EVI500, the derived 
ε*

GPP values for corn and soybean are 3.18 gC MJ−1 and 1.91 gC MJ−1, 
respectively. These values are approximately 3.1 and 1.8 times greater 
than the prescribed ε*

GPP values of 1.04 gC MJ−1 in the MOD17A2 
products. With recalibrated parameters, the MOD17 model is able to 
explain 67.9% of the GPP variances for corn and 77.4% for soybean. 
The results for each individual site are similar, and the model explains 
62.3–80.8% of the GPP variance for corn and 51.2–88.4% for soybean 
(Table 3). The estimated ε*

GPP values show site-to-site variability, and 
have a wider range for corn (2.44–3.94 gC MJ−1) than for soybean 
(1.74–2.30 gC MJ−1). For all studied sites, the derived ε*

GPP estimates 
were higher than the value prescribed in MOD17A2.

Figure 3 compares the modeled GPP time series with the tower 
measurements. The peak GPP values from the tower measurements 
are 22.8 ± 2.2 gC m−2d−1 for corn (yellow line), which was approxi-
mately 1.71 times greater than that of 13.3 ± 2.2 gC m−2d−1 for soybean 
(green line). Note that the growing season starts earlier in MOD17A2 

than flux tower GPP. A key reason is that MOD17A2 uses NCEP-DOE 
datasets while our modeling effort uses tower-measured meteorology 
data. This suggests that the MODIS GPP model is sensitive to the me-
teorological inputs as found in other studies (Sjöström et al., 2013; 
Zhao et al., 2005). Figure 3 also shows that the GPP time series from 
MOD17A2 (red line) does not capture the magnitude differences be-
tween corn and soybean fields. One reason is that the current version 
of the MOD17A2 product does not differentiate crop species under dif-
ferent photosynthetic pathways (C3 and C4). Using in situ meteorolog-
ical measurements and recalibrated parameters, GPP estimates from 
the MOD17 model (blue line) agree with tower measurements for both 
corn and soybean. Results in Figures 2 and 3 indicate that applying 
crop-specific ε*g values is essential to obtain reasonable GPP estimates.

We used a Tylor diagram in Figure 4 to compare the performances 
for six model setups and MOD17A2 (Taylor, 2001). GPP estimates are 
compared regarding the phase (measured by correlation coefficients be-
tween the modeled and measured GPP), amplitude (measured by stan-
dard deviation), and accuracy (measured by root mean squared errors). 
The model setup of Local-EVI500 performs the best with the largest 
correlation coefficients (0.82 for corn and 0.88 for soybean). In line 
with other studies (Sjöström et al., 2013; Zhao and Running, 2010), 
our results find that the MOD17 model is sensitive to meteorological 
inputs. Modeling using tower meteorological measurements has higher 
correlation coefficients than using the NCEP-DOE Reanalysis II da-
tasets. It is also evident that GPP estimates in MOD17A2 have much 
smaller standard deviations than other modeled results. Other factors 
have less influence on GPP estimation. Models at 1000 m result in 
slightly lower correlation coefficients than those at 500 m resolution, 
reflecting the effects of spatial variability due to the mismatches be-
tween the footprints of tower sites and MODIS pixels. Model setups 
using theMOD15-based and EVI-based FPAR achieve similar perfor-
mance. Our findings indicate that the MOD17 model can be used to 
capture seasonal GPP variations; however, careful parameterization 
especially for ε*

GPP is required.

3.2. Regional-scale analysis

In the regional-scale analysis, we derived cropland ε*
GPP value based 

on regressions between GPP estimated from national inventory data 
and the modeled ∑ PAR × EVI × f(ε) products (Figure 5). We use to-
tal grain production instead of production per unit area in our regres-
sions because large-scale studies usually focus on modeling total crop-
land GPP or yields. The derived cropland ε*

GPP value is 2.06 gC MJ−1 
when applying a general cropland mask and 2.23 gC MJ−1 when apply-
ing a fractional cropland map. Table 4 provides a full statistical sum-
mary of the four model setups in our regional study. The differences in 
the GPP estimates between EVI-based and MOD15-based FPAR are 
minor. The derived ε*

GPP values are higher for corn than for soybean, 
which reflect the GPP differences between corn and soybean. The co-

Table 2. Overview of model setups. The used meteorology data include downward shortwave solar radiation, temperature, and vapor pressure deficit. 

Model codes  GPP reference  Meteorology data  FPAR  Land cover maps  Resolution 

NCEP-MOD15  Eddy covariance  NCEP-DOE reanalysis II  MOD15   1000 m 
NCEP-EVI1000  Eddy covariance  NCEP-DOE reanalysis II  EVI   1000 m 
NCEP-EVI500  Eddy covariance  NCEP-DOE reanalysis II  EVI     500 m 
Local-MOD15  Eddy covariance  Local measurements  MOD15   1000 m 
Local-EVI1000  Eddy covariance  Local measurements  EVI   1000 m 
Local-EVI500  Eddy covariance  Local measurements  EVI     500 m 
MOD15-Mask  National inventory  NCEP-DOE reanalysis II  MOD15  Binary mask  1000 m 
EVI-Mask  National inventory  NCEP-DOE reanalysis II  EVI  Binary mask  1000 m 
MOD15-Frac  National inventory  NCEP-DOE reanalysis II  MOD15  Fractional cover  1000 m 
EVI-Frac  National inventory  NCEP-DOE reanalysis II  EVI  Fractional cover  1000 m
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efficients of determination (R2) are greater when the fractional land 
use map is applied rather than a general mask. Similar to the site-scale 
studies, the derived ε*

GPP values are higher than values prescribed in 
MOD17A2 for all model setups.

The spatial distributions of GPP estimates over the Midwestern US 
are shown in Figure 6. The annual GPP estimates from the MOD17A3 
products are much lower than GPP modeled with recalibrated ε*

GPP val-
ues. The spatial distribution of cropland GPP estimated by applying a 
general cropland ε*

GPP value (Figure 6b) mainly reflects the climatic 

gradients of the crop GPP. In this case, areas with more annual pre-
cipitation have higher cropland productivity. In comparison, modeled 
GPP estimates that apply crop-specific ε*

GPP values and fractional land 
use maps (Figure 6c) are able to capture the variations of crop type and 
area at the sub-pixel level. For example, pixels with more corn covers 
in central Illinois have higher annual GPP estimates.

Figure 7 further compares modeled GPP with national inventory 
data. Annual GPP estimates derived from national inventory data in 
2011 are 1848.4 ± 298.1 gC m−2y−1 for corn and 908.9 ± 166.3 gC 

Figure 2. The 8-day GPP estimates from the flux tower measurements against modeled f(ε) × PAR × FPAR for (a) corn and (b) soybean. This analysis includes all 
8-day site-yearsdata during the vegetative season (GPP > 1 gC m−2d−1) and employs the model setup of Local-EVI500 (Table 2). Solid lines denote linear regres-
sions without interception. Dashed lines denote lines with ε*

GPP values used by MOD17A2.

Table 3. Statistical summary of the model performance for each individual site. The model setup of Local-EVI500 (Table 2 is used to derive the ε*
GPP values using linear 

regressions without intercept. The coefficient of determination (R2), root mean squared error (RMSE), and mean error (ME) are reported for the 8-day GPP estimates. 

 Corn     Soybean 

 ε*
GPP R2  RMSE  ME ε*

GPP R2  RMSE ME  
Site code (gC MJ−1)  (gC m−2 d−1 ) (gC m−2 d−1) (gC MJ−1)  (gC m−2 d−1) (gC m−2 d−1)

US-Bo1  2.44  0.711  3.452  −0.610  1.84  0.884  1.798  0.217 
US-IB1  3.03  0.748  3.332  0.656  1.77  0.672  2.133  0.170 
US-Ne1  3.47  0.701  3.893  0.422 
US-Ne2  3.41  0.778  3.339  0.533  2.02  0.788  2.199  0.397 
US-Ne3  3.94  0.623  4.172  0.419  2.30  0.694  2.293  0.195 
US-Ro1  3.01  0.702  3.860  0.758  1.74  0.512  1.957  0.116 
US-Ro3  2.76  0.808  3.211  0.795

Table 4. Statistical summary for the model performance from 2009 to 2012. ε*
GPP values are derived based on the slope of linear regressions. The model setups 

are specified in Table 2. 

Model  Year  Cropland    Corn    Soybean 

  ε*
GPP   R2  RMSE   ε*

GPP   R2  RMSE   ε*
GPP   R2  RMSE  

  (gC/MJ)  (1012 gC/y) (gC/MJ)  (1012 gC/y) (gC/MJ)  (1012 gC/y)

MOD15-Mask 2009 1.95 0.884 0.235 3.38 0.781 0.262 1.83 0.496 0.122 
 2010 1.67 0.877 0.234 2.76 0.779 0.245 1.64 0.589 0.117 
 2011 1.74 0.835 0.274 2.81 0.841 0.217 1.72 0.387 0.130 
 2012 1.84 0.660 0.373 3.06 0.709 0.273 2.02 0.567 0.112 
MOD15-Frac 2009 2.09 0.867 0.252 2.83 0.929 0.149 1.22 0.877 0.060 
 2010 1.79 0.865 0.245 2.32 0.898 0.167 1.13 0.897 0.058 
 2011 1.86 0.811 0.293 2.43 0.897 0.175 1.12 0.778 0.078 
 2012 1.95 0.622 0.393 2.47 0.639 0.304 1.31 0.788 0.079 
EVI-Mask 2009 2.20 0.884 0.236 3.78 0.761 0.274 2.09 0.562 0.114 
 2010 2.00 0.874 0.237 3.29 0.772 0.249 1.97 0.618 0.112 
 2011 2.06 0.847 0.264 3.29 0.818 0.232 2.08 0.475 0.120 
 2012 2.28 0.680 0.362 3.77 0.720 0.268 2.49 0.592 0.109 
EVI-Frac 2009 2.38 0.878 0.242 3.20 0.926 0.152 1.39 0.903 0.053 
 2010 2.15 0.868 0.242 2.79 0.894 0.169 1.36 0.908 0.055 
 2011 2.23 0.834 0.275 2.89 0.898 0.174 1.36 0.831 0.068 
 2012 2.43 0.647 0.380 3.07 0.658 0.296 1.64 0.810 0.074
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m−2y−1 for soybean, which are approximately 2.28 and 1.15 times 
greater than GPP estimates in the MOD17A3 products (810.7 ± 98.7 
gC m−2y−1 for corn and 790.3 ± 113.8 gC m−2y−1 for soybean). Meth-
ods that apply a general cropland mask tend to overestimate GPP for 
both corn and soybean. By comparison, modeled GPP estimates based 

on fractional land-use maps generally match national inventory refer-
ences. The modeled annual GPP (MOD15-Frac) are1887.8 ± 229.8 gC 
m−2y−1 for corn and 849.1 ± 122.2 gC m−2y−1  for soybean. These re-
sults indicate that integrating fine-resolution land use maps could im-
prove regional GPP modeling.

Figure 3. Time series of GPP estimates at the seven tower sites. The yellow and green lines denote the tower-based GPP estimates for corn and soybean, respec-
tively. The blue lines denote the modeled GPP estimates based on the Local-EVI500 model setup. The red lines denote the GPP estimates from the Collection 5.1 
MOD17A2 products. 

Figure 4. Statistical comparison of the model performances in a Taylor diagram. Results from six model setups based on the MOD17 model (Table 2) are com-
pared with MOD17A2. The correlation coefficient (r), standard deviation (gC m−2d−1) and root mean squared errors (gC m−2d−1) are calculated using all site-years 
data. The “REF” symbol indicates GPP references from the tower measurements.
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4. Discussion

4.1. LUE in field measurements and in remote sensing models

Some large-scale studies have cautioned the use of field-derived LUE 
values in remote sensing models. For the United States, Lobell et al. 
(2002) calibrated LUE values in the CASA model using Advanced 
Very High Resolution Radiometer (AVHRR) satellite data with agri-
cultural survey data. Their derived ε*

GPP values after translation were 
only 1.43 ± 0.27 gC MJ−1 for corn and 0.63 ± 0.20 gC MJ−1 for non-
corn areas. Bradford et al. (2005) also found that the LUE values esti-
mated from the AVHRR data were well below the values that were de-
rived from field measurements. In these studies, the large discrepancies 
between the LUE values in remote sensing models and field measure-
ments were attributed to the biased location selection in field measure-
ments and the overestimated APAR values in satellite-based studies. 
However, we observe that the ε*

GPP values derived from inventory data 
are consistent with those derived from the flux tower data (Figure 8). 
In our best fit with the tower-based GPP reference, the ε*

GPP values are 
2.78 ± 0.48 gC MJ−1 for corn and 1.64 ± 0.23 gC MJ−1 for soybean 
based on the Local-MOD15 model. When using the inventory-based  

Figure 5. Annual GPP derived from the 2011 national inventory data are plotted against the modeled PAR × EVI × f(ε) products by applying (a) a general crop-
land mask (EVI-Mask) and (b) a fractional cropland map (EVI-Frac). Solid lines denote linear regressions with no intercepts. Dashed lines denote lines with the 
ε*

GPP values used by MOD17A2.

Figure 6. The spatial distribution of annual cropland GPP in 2011 as derived 
by (a) the yearly MODIS GPP products (MOD17A3), (b) the EVI-Mask model 
setup with a general cropland ε*

GPP, and (c) the EVI-Frac model setup with 
crop-specific ε*

GPP.

Figure 7. GPP estimates (mean ± standard deviation) in 2011 as derived from 
NASS inventory data and modeled by MOD17A3 and different model setups. 
The model setups are specified in Table 2. Standard deviations of MODIS GPP 
estimates are derived using all pixels that have subpixel proportions of corn or 
soybean greater than 50%.
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GPP references, the derived ε*

GPP values are 2.48 ± 0.65 gC MJ−1 for 
corn and 1.18 ± 0.29 gC MJ−1 for soybean using the MOD15-Frac 
model. All these values fall within the range of field-measured results 
as reviewed by Sinclair and Muchow (1999).

Though different from early studies using AVHRR data (Bradford 
et al., 2005; Lobell et al., 2002), our findings show agreement with re-
cent studies (Bandaru et al., 2013; Chen et al., 2011; Guanter et al., 
2014) and indicate that the field-derived ε*

GPP values should be con-
sistently used for large-scale modeling. In our results (Figures 2 and 
5), it is clear that the underestimated MODIS GPP is largely due to the 
underestimated ε*

GPP. The MODIS Land Science team has made tre-
mendous efforts on model parameterization in a generalized manner 
to characterize global biomes, such that the ε*

GPP values prescribed in 
the current MODIS GPP products do not vary with geographical lo-
cation. Our evaluation efforts imply that there is a need to readjust the 
parameters in the MOD17 model carefully for studies in specific re-
gions, especially agricultural zones.

4.2. Uncertainties of ε*
GPP estimates in regional modeling

Several factors may influence the inversion of the MOD17 model for 
deriving optimal cropland ε*

GPP values in our study. First, we did not try 
to alter the MOD17 model structure, which uses TMIN and VPD to ac-

count for climatic stresses. Other PEMs used slightly different climate 
variables to down-regulate LUE estimates (Cramer et al., 1999; Wu et 
al., 2010), and recent studies also tried to estimate LUE directly from 
remote sensing data (Hilker et al., 2008, 2010). To understand the in-
fluences of environmental factors on the modeled results, we also per-
form model calibrations without environmental LUE limitations (i.e., 
without f(ε) in Eq. (1)) using the Local-MOD15 model setup. The de-
rived LUE values are 2.31 gC MJ−1 for corn and 1.37 gC MJ−1 for soy-
bean, which are approximately 16.9% and 16.5% lower than the mod-
els with environmental LUE down-regulations, respectively.

Second, the general cropland mask defined by a threshold of 50% 
influences regional GPP modeling. When the cropland mask is defined 
based on thresholds of 40% or 60%, the calibrated cropland ε*

GPP val-
ues using the MOD15-Mask model setup are 2.06 ± 0.15 gC MJ−1 or 
1.60 ± 0.10 gC MJ−1, which are approximately 14.4% higher or 11.2% 
lower, respectively, than when a threshold of 50% is applied (Table 
4). The method that applies fractional land use maps circumvents the 
threshold problem and provides reliable ε*

GPP and GPP estimates (Fig-
ures 7 and 8). Even the NASS CDL data routinely produce fine-resolu-
tion land use maps on an annual basis, successful algorithms that can 
produce global crop-specific maps at fine resolutions remain to be de-
veloped (Yu et al., 2013; Zhong et al., 2011).

Finally, satellite-derived FPAR also influence the ε*
GPP estimates. 

Models with EVI-based FPAR perform better than the MOD15-based 
FPAR in terms of the explained GPP variance (Figure 4). However, 
ε*

GPP values derived from EVI-based FPAR are approximately 14–
25% greater than values derived from the MOD15-based FPAR (Ta-
bles 3 and 4). Similar to previous studies (Kalfas et al., 2011; Xiao 
et al., 2004), the constant in Eq. (6) for estimating the FPAR was as-
sumed to be 1.0. Additional field studies are necessary for quantifying 
the relationships between EVI and FPAR for different crop species.

5. Conclusions

Satellite remote sensing provides an efficient method for monitoring 
vegetation GPP at a large scale. However, parameterization of the light 
use efficiency varies considerably for croplands. Based on the MOD17 
model, we evaluate ε*

GPP values at multi scales using both in situ mea-
surements and inventory data.

We observed consistent LUE values from both site and regional-
scale models. The derived ε*

GPP values based on the 28 site-years tower 
measurements are 2.78 ± 0.48 gC MJ−1 for corn and 1.64 ± 0.23 gC 
MJ−1 for soybean. Calibrations using 4-year inventory data generate 
ε*

GPP values of 2.48 ± 0.65 gC MJ−1 for corn and 1.18 ± 0.29 gC MJ−1 
for soybean. The environmental factors account for approximately 16% 
uncertainties of the ε*

GPP estimates. The general cropland mask with 
varying thresholds (0.40–0.60) accounts for 11–14% of the uncertainty 
in the GPP estimates. The different methods that are used to derive 
FPAR from satellite data may generate 14–25% uncertainties of ε*

GPP. 
Given the results from both tower measurements and inventory data, 
we conclude that field-derived LUE values should be used consistently 
in large-scale modeling.

We also observed that the MODIS GPP products are underes-
timated for croplands in the Midwestern US. Using model setups 
similar to the MOD17 GPP product, the derived ε*

GPP value is 1.80 
± 0.12 gC MJ−1, or 1.73 times greater than the value prescribed in the 
current MOD17 GPP model. With recalibrated ε*

GPP values, the mod-
eled annual GPP could match national inventory data. These results 
suggest that the parameters (primarily ε*

GPP) in the MOD17 model 
should be carefully readjusted to characterize cropland GPP in the 
Midwestern US.

Figure 8. Comparisons of the derived ε*
GPP values based on different model 

setups for (a) corn and (b) soybean. Standard deviations are calculated based 
on data from all site-years and county-years.
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